ATF-33143 Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package Data Sheet Description Features Avago's ATF-33143 is a high dynamic range, low noise PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package. Lead-free Option Available Based on its featured performance, ATF-33143 is ideal for the first or second stage of base station LNA due to the excellent combination of low noise figure and enhanced linearity[1]. The device is also suitable for applications in Wireless LAN, WLL/RLL, MMDS, and other systems requiring super low noise figure with good intercept in the 450 MHz to 10 GHz frequency range. 1600 micron Gate Width Low Noise Figure Excellent Uniformity in Product Specifications Low Cost Surface Mount Small Plastic Package SOT-343 (4 lead SC-70) Tape-and-Reel Packaging Option Available Specifications Note: 1.9 GHz; 4V, 80 mA (Typ.) 1. From the same PHEMT FET family, the smaller geometry ATF34143 may also be considered for the higher gain performance, particularly in the higher frequency band (1.8 GHz and up). 0.5 dB Noise Figure Surface Mount Package SOT-343 15 dB Associated Gain 22 dBm Output Power at 1 dB Gain Compression 33.5 dBm Output 3rd Order Intercept Applications Tower Mounted Amplifier, Low Noise Amplifier and Driver Amplifier for GSM/TDMA/CDMA Base Stations DRAIN SOURCE 3Px Pin Connections and Package Marking SOURCE GATE Note: Top View. Package marking provides orientation and identification. "3P" = Device code "x" = Date code character. A new character is assigned for each month, year. LNA for Wireless LAN, WLL/RLL and MMDS Applications General Purpose Discrete PHEMT for other Ultra Low Noise Applications Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) ESD Human Body Model (Class 0) Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control. ATF-33143 Absolute Maximum Ratings[1] Symbol Parameter Drain - Source Voltage [2] VDS Source Voltage [2] Units Absolute Maximum V 5.5 VGS Gate - V -5 VGD Gate Drain Voltage [2] V -5 IDS Drain Current[2] mA Idss[3] Pdiss Total Power Dissipation[4] mW 600 RF Input Power dBm 20 C 160 Pin max Channel Temperature [5] TCH TSTG Storage Temperature C -65 to 160 jc Thermal Resistance [6] C/W 145 Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Assumes DC quiesent conditions. 3. VGS = 0 V 4. Source lead temperature is 25C. Derate 6 mW/C for TL > 60C. 5. Please refer to failure rates in reliability section to assess the reliability impact of running devices above a channel temperature of 140C. 6. Thermal resistance measured using 150C Liquid Crystal Measurement method. Product Consistency Distribution Charts [8, 9] 500 120 Cpk = 1.7 Std = 0.05 +0.6 V 100 400 I DS (mA) 80 300 +3 Std -3 Std 0V 60 200 40 100 -0.6 V 20 0 0 2 4 V DS (V) 6 0 0.2 8 0.3 0.4 0.5 0.6 0.7 0.8 NF (dB) Figure 1. Typical Pulsed I-V Curves[7]. (VGS = -0.2 V per step) 100 Cpk = 1.21 Std = 0.94 Figure 2. NF @ 2 GHz, 4 V, 80 mA. LSL=0.2, Nominal=0.53, USL=0.8 120 Cpk = 2.3 Std = 0.2 100 80 80 60 -3 Std +3 Std -3 Std +3 Std 60 40 40 20 20 0 29 31 33 35 OIP3 (dBm) Figure 3. OIP3 @ 2 GHz, 4 V, 80 mA. LSL=30.0, Nominal=33.3, USL=37.0 37 0 13 14 15 16 17 GAIN (dB) Figure 4. Gain @ 2 GHz, 4 V, 80 mA. LSL=13.5, Nominal=14.8, USL=16.5 Notes: 7. Under large signal conditions, VGS may swing positive and the drain current may exceed Idss. These conditions are acceptable as long as the maximum Pdiss and Pin max ratings are not exceeded. 8. Distribution data sample size is 450 samples taken from 9 different wafers. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits. 9. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on production test requirements. Circuit losses have been de-embedded from actual measurements. 10. The probability of a parameter being between 1 is 68.3%, between 2 is 95.4% and between 3 is 99.7%. 2 ATF-33143 DC Electrical Specifications TA = 25C, RF parameters measured in a test circuit for a typical device Symbol Idss [1] VP [1] Id Parameters and Test Conditions Saturated Drain Current VDS = 1.5 V, VGS = 0 V Pinchoff Voltage Quiescent Bias Current VGS = -0.5 V, VDS = 4 V Transconductance IGDO Gate to Drain Leakage Current Igss Gate Leakage Current VDS = 1.5 V, gm = Idss /VP Associated Gain[3] OIP3 Output 3rd Order Intercept Point [3] P1dB 1 dB Compressed Compressed Power [3] Typ.[2] Max. 175 237 305 V -0.65 -0.5 -0.35 mA -- 80 -- mmho 360 440 -- -- 42 600 0.8 VGD = 5 V A VGD = VGS = -4 V A f = 2 GHz VDS = 4 V, IDS = 80 mA VDS = 4 V, IDS = 60 mA dB 0.5 0.5 f = 900 MHz VDS = 4 V, IDS = 80 mA VDS = 4 V, IDS = 60 mA dB 0.4 0.4 f = 2 GHz VDS = 4 V, IDS = 80 mA VDS = 4 V, IDS = 60 mA dB f = 900 MHz VDS = 4 V, IDS = 80 mA VDS = 4 V, IDS = 60 mA dB f = 2 GHz 5 dBm Pout/Tone VDS = 4 V, IDS = 80 mA VDS = 4 V, IDS = 60 mA dBm f = 900 MHz 5 dBm Pout/Tone VDS = 4 V, IDS = 80 mA VDS = 4 V, IDS = 60 mA dBm 32.5 31 f = 2 GHz VDS = 4 V, IDS = 80 mA VDS = 4 V, IDS = 60 mA dBm 22 21 f = 900 MHz VDS = 4 V, IDS = 80 mA VDS = 4 V, IDS = 60 mA dBm 21 20 Noise Figure Ga Min. mA VDS = 1.5 V, IDS = 10% of Idss gm[1] NF Units 1000 13.5 15 15 16.5 21 21 30 33.5 32 Notes: 1. Guaranteed at wafer probe level. 2. Typical value determined from a sample size of 450 parts from 9 wafers. 3. Measurements obtained using production test board described in Figure 5. Input 50 Ohm Transmission Line Including Gate Bias T (0.5 dB loss) Input Matching Circuit G_mag = 0.20 G_ang = 124 (0.3 dB loss) DUT 50 Ohm Transmission Line Including Drain Bias T (0.5 dB loss) Output Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test requirements. Circuit losses have been de-embedded from actual measurements. 3 40 40 30 30 OIP3, IIP3 (dBm) OIP3, IIP3 (dBm) ATF-33143 Typical Performance Curves 20 10 2V 3V 4V 20 10 2V 3V 4V 0 0 0 20 40 60 80 120 100 0 20 40 IDSQ (mA) 80 100 120 Figure 7. OIP3, IIP3 vs. Bias[1] at 900 MHz. 25 25 20 20 P1dB (dBm) 15 10 2V 3V 4V 5 15 10 2V 3V 4V 5 0 0 0 20 40 60 80 100 120 0 20 40 IDSQ (mA) Figure 8. P1dB vs. Bias[1,2] at 2 GHz. 1.2 1.2 21 1.0 0.8 13 0.6 NF 11 10 60 80 IDSQ (mA) Figure 10. NF and Ga vs. Bias[1] at 2 GHz. 100 Ga 0.6 19 NF 18 0.4 17 0.2 120 16 2V 3V 4V 0.8 20 Ga (dB) 1.0 14 40 120 22 Ga 20 100 1.4 NOISE FIGURE (dB) 15 0 80 Figure 9. P1dB vs. Bias[1,2] Tuned for NF @ 4V, 80 mA at 900 MHz. 16 12 60 IDSQ (mA) 0.4 2V 3V 4V 0 20 40 60 80 100 NOISE FIGURE (dB) P1dB (dBm) Figure 6. OIP3, IIP3 vs. Bias[1] at 2 GHz. Ga (dB) 60 IDSQ (mA) 0.2 0 120 IDSQ (mA) Figure 11. NF and Ga vs. Bias[1] at 900 MHz. Notes: 1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4V 80 mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. 4 ATF-33143 Typical Performance Curves, continued 1.5 30 80 mA 60 mA 80 mA 60 mA 25 20 Ga (dB) Fmin (dB) 1.0 15 10 0.5 5 0 0 2 4 6 8 10 0 2 FREQUENCY (GHz) Figure 12. Fmin vs. Frequency and Current at 4V. 15 1.0 0.5 10 8 30 25 20 15 0 10 5 6 0 2000 3.5 3.0 2.5 20 2.0 15 1.5 10 1.0 5 0.5 0 40 60 80 100 0 120 IDSQ (mA) Figure 16. OIP3, P1dB, NF and Gain vs. Bias[1,2] at 3.9 GHz. OIP3, P1dB (dBm), GAIN (dB) P1dB OIP3 Gain NF 20 8000 35 NOISE FIGURE (dB) OIP3, P1dB (dBm), GAIN (dB) 35 0 6000 Figure 15. P1dB, OIP3 vs. Frequency and Temp at VDS = 4V, IDS = 80 mA. Figure 14. Fmin and Ga vs. Frequency and Temp at VDS = 4V, IDS = 80 mA. 25 4000 FREQUENCY (MHz) FREQUENCY (GHz) 30 10 25C -40C 85C 35 P1dB, OIP3 (dBm) 1.5 NOISE FIGURE (dB) Ga (dB) 20 4 8 40 2.0 25C -40C 85C 2 6 Figure 13. Associated Gain vs. Frequency and Current at 4V. 25 0 4 FREQUENCY (GHz) 30 3 25 2 20 15 1 10 5 P1dB OIP3 Gain NF 0 0 20 40 60 NOISE FIGURE (dB) 0 80 100 0 120 IDSQ (mA) Figure 17. OIP3, P1dB, NF and Gain vs. Bias[1,2] at 5.8 GHz. Notes: 1. Measurements made on a fixed tuned test fixture that was tuned for noise figure at 4V 80 mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match and a realizable match based on production test requirements. Circuit losses have been deembedded from actual measurements. 2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of Idsq the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. 5 25 25 20 20 15 15 P 1d B (dBm) P 1dB (dBm) ATF-33143 Typical Performance Curves, continued 10 10 5 5 0 0 0 20 40 60 80 100 120 I DS (mA) Figure 18. P1dB vs. IDS Active Bias[1] Tuned for NF @ 4V, 80 mA at 2 GHz. 0 20 40 60 80 100 120 I DS (mA) Figure 19. P1dB vs. IDS Active Bias[1] Tuned for NF @ 4V, 80 mA at 900 MHz. Note: 1. Measurements made on a fixed tuned test board that was tuned for optimal gain match with reasonable noise figure at 4V 80 mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 6 ATF-33143 Power Parameters Tuned for Max P1dB, VDS = 4 V, IDSQ = 80 mA Freq (GHz) P1dB (dBm) Id (mA) G1dB (dB) PAE1dB (%) P3dB (dBm) Id (mA) PAE3dB (%) Out_mag (Mag.) Out_ang () 0.9 1.5 1.8 2.0 4.0 6.0 20.7 21.2 21.1 21.6 23.0 24.0 89 91 80 81 97 130 23.2 20.7 19.2 18.1 11.9 5.9 33 36 40 44 48 36 23.2 23.8 23.0 23.2 24.6 25.2 102 116 94 89 135 136 51 51 52 57 48 36 0.39 0.43 0.43 0.42 0.40 0.37 160 165 170 174 -150 -124 Pout (dBm), G (dB), PAE (%) 70 Pout Gain PAE 60 50 40 30 20 10 0 -10 -20 -40 -30 -20 -10 0 10 20 Pin (dBm) Figure 20. Swept Power Tuned for Max P1dB VDS =4V, IDSQ = 80 mA, 2 GHz. Notes: 1. Measurements made on ATN LP1 power load pull system. 2. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. 3. PAE (%) = ((Pout - Pin) / Pdc) X 100 4. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device. 7 ATF-33143 Typical Scattering Parameters, VDS = 2V, IDS = 40 mA Freq. (GHz) 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 dB S21 Mag. 22.08 19.46 18.86 16.11 14.70 13.84 11.98 10.37 7.95 6.20 4.69 3.12 1.68 0.48 -0.46 -1.50 -2.70 -4.24 -5.49 -6.42 -7.26 -8.20 -9.51 12.81 9.41 8.86 6.44 5.47 4.94 3.98 3.31 2.50 2.05 1.73 1.44 1.22 1.07 0.96 0.85 0.74 0.62 0.54 0.49 0.44 0.40 0.34 S11 Mag. 0.88 0.79 0.78 0.75 0.74 0.74 0.74 0.75 0.75 0.76 0.78 0.80 0.83 0.83 0.86 0.88 0.90 0.91 0.91 0.92 0.93 0.94 0.93 Ang. -72.70 -112.10 -119.80 -149.60 -162.80 -170.10 172.30 159.10 137.00 117.20 98.10 80.10 64.50 50.30 36.30 21.50 7.20 -5.00 -15.50 -27.50 -40.50 -52.30 -61.20 Ang. 134.40 111.20 106.50 88.30 79.80 74.80 63.00 53.10 35.00 17.20 -1.30 -19.30 -35.20 -49.30 -64.30 -80.20 -95.80 -110.20 -121.90 -134.20 -146.80 -160.40 -171.00 dB -27.02 -24.13 -23.93 -22.57 -22.14 -21.84 -21.24 -20.68 -19.59 -18.56 -17.83 -17.42 -17.29 -17.08 -16.59 -16.53 -16.81 -17.38 -17.78 -18.00 -17.87 -18.07 -18.79 S12 Mag. Ang. Mag. S22 Ang. MSG/MAG (dB) 0.045 0.062 0.064 0.075 0.079 0.082 0.088 0.094 0.106 0.119 0.129 0.135 0.137 0.140 0.148 0.149 0.144 0.135 0.129 0.126 0.128 0.125 0.115 54.50 40.70 38.00 29.80 26.80 24.90 20.80 17.10 9.30 -0.70 -12.80 -26.00 -37.30 -46.80 -58.30 -71.30 -83.90 -95.60 -103.90 -113.70 -124.20 -136.40 -145.10 0.28 0.37 0.38 0.42 0.45 0.46 0.49 0.51 0.53 0.54 0.54 0.57 0.60 0.63 0.65 0.68 0.72 0.75 0.77 0.80 0.82 0.83 0.85 -118.70 -149.90 -155.40 -176.20 174.70 169.40 160.10 152.10 139.20 124.70 108.00 90.40 74.80 62.70 50.90 37.40 21.40 5.80 -5.70 -15.80 -25.70 -37.90 -49.70 24.54 21.81 21.41 19.34 18.40 17.80 16.56 15.46 13.73 11.44 9.80 8.35 7.43 6.45 6.41 6.14 5.64 4.60 3.64 3.44 3.22 3.11 1.79 ATF-33143 Typical Noise Parameters 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.26 0.30 0.31 0.34 0.34 0.39 0.51 0.53 0.61 0.70 0.82 0.93 1.04 1.12 1.21 0.45 0.38 0.36 0.31 0.26 0.27 0.28 0.32 0.41 0.49 0.53 0.59 0.62 0.67 0.69 40 Ang. 26.00 42.20 44.80 69.50 93.60 108.60 150.70 165.60 -162.10 -136.80 -113.60 -91.50 -72.60 -55.90 -42.20 Rn/50 0.07 0.07 0.07 0.06 0.04 0.05 0.03 0.03 0.04 0.06 0.11 0.23 0.38 0.59 0.77 Ga dB 24.74 21.02 20.36 17.40 16.50 15.82 14.59 13.13 11.27 9.92 8.70 7.71 6.69 6.04 5.73 MSG/MAG and |S21|2 (dB) VDS = 2V, IDS = 40 mA Freq. Fmin opt GHz dB Mag. 30 MSG 20 MAG 10 0 -10 |S21|2 0 5 10 15 20 FREQUENCY (GHz) Figure 21. MSG/MAG and |S21|2 vs. Frequency at 2V, 40 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 8 ATF-33143 Typical Scattering Parameters, VDS = 3 V, IDS = 40 mA Freq. (GHz) 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 S11 Mag. 0.87 0.78 0.77 0.74 0.73 0.73 0.73 0.74 0.74 0.75 0.77 0.79 0.82 0.83 0.86 0.88 0.90 0.91 0.91 0.92 0.93 0.94 0.93 Ang. -72.20 -111.60 -119.30 -149.00 -162.20 -169.50 172.90 159.70 137.60 117.70 98.60 80.60 64.90 50.70 36.60 21.90 7.50 -4.80 -15.40 -27.40 -40.40 -52.30 -61.30 dB S21 Mag. 22.51 19.88 19.28 16.52 15.11 14.24 12.38 10.78 8.37 6.63 5.10 3.54 2.10 0.92 -0.04 -1.11 -2.32 -3.86 -5.11 -6.05 -6.95 -7.91 -9.25 13.42 9.87 9.26 6.73 5.72 5.17 4.17 3.46 2.62 2.15 1.80 1.51 1.28 1.12 1.00 0.89 0.77 0.64 0.56 0.50 0.45 0.41 0.35 Ang. 134.40 111.20 106.50 88.30 79.90 74.80 63.10 53.30 35.20 17.30 -1.30 -19.50 -35.50 -49.60 -64.90 -81.00 -96.80 -111.40 -123.30 -135.90 -148.70 -162.30 -172.90 dB -27.20 -24.27 -24.06 -22.79 -22.34 -22.13 -21.41 -20.91 -19.79 -18.80 -17.99 -17.58 -17.44 -17.13 -16.64 -16.58 -16.81 -17.38 -17.78 -17.93 -17.87 -18.00 -18.72 S12 Mag. Ang. Mag. S22 Ang. MSG/MAG (dB) 0.044 0.061 0.063 0.073 0.077 0.079 0.086 0.091 0.103 0.115 0.126 0.132 0.134 0.139 0.147 0.148 0.144 0.135 0.129 0.127 0.128 0.126 0.116 54.40 40.60 37.90 29.80 26.90 25.00 21.10 17.50 10.00 0.00 -11.90 -24.90 -36.00 -45.50 -57.00 -70.10 -82.70 -94.40 -103.00 -112.80 -123.40 -135.70 -144.30 0.27 0.35 0.36 0.40 0.42 0.43 0.46 0.48 0.50 0.51 0.52 0.55 0.57 0.60 0.63 0.66 0.70 0.73 0.76 0.79 0.81 0.82 0.84 -109.80 -143.70 -150.10 -172.10 178.40 172.90 163.10 154.80 141.20 126.50 109.80 92.10 76.20 64.00 52.10 38.60 22.60 6.80 -5.00 -15.10 -25.10 -37.30 -49.10 24.84 22.09 21.67 19.64 18.71 18.16 16.85 15.80 14.06 11.53 9.99 8.57 7.64 6.69 6.65 6.38 6.00 4.90 3.90 3.71 3.48 3.41 1.94 ATF-33143 Typical Noise Parameters 40 Freq. GHz Fmin dB opt Mag. Ang. 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.24 0.29 0.31 0.37 0.34 0.38 0.51 0.52 0.58 0.68 0.80 0.89 1.01 1.09 1.18 0.45 0.38 0.34 0.28 0.25 0.25 0.28 0.31 0.40 0.46 0.54 0.57 0.61 0.65 0.68 28.40 40.90 42.60 66.30 90.10 105.80 147.40 162.80 -165.20 -138.50 -115.00 -92.50 -72.80 -56.40 -42.60 Rn/50 0.07 0.07 0.07 0.07 0.05 0.05 0.03 0.03 0.03 0.05 0.09 0.20 0.35 0.53 0.69 Ga dB 25.26 21.26 20.50 17.67 16.57 15.93 14.72 13.29 11.45 10.05 8.97 7.90 6.90 6.26 5.99 MSG/MAG and |S21|2 (dB) VDS = 3 V, IDS = 40 mA 30 MSG 20 MAG 10 0 -10 |S21|2 0 5 10 15 20 FREQUENCY (GHz) Figure 22. MSG/MAG and |S21|2 vs. Frequency at 3V, 40 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 9 ATF-33143 Typical Scattering Parameters, VDS = 3 V, IDS = 60 mA Freq. (GHz) 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 S11 Mag. 0.87 0.78 0.77 0.74 0.73 0.73 0.73 0.74 0.75 0.75 0.77 0.79 0.82 0.83 0.86 0.88 0.90 0.91 0.91 0.92 0.93 0.94 0.93 Ang. -75.30 -114.70 -122.30 -151.60 -164.60 -171.80 171.00 158.10 136.40 116.90 97.80 79.90 64.50 50.40 36.40 21.60 7.30 -5.00 -15.50 -27.50 -40.60 -52.30 -61.40 dB S21 Mag. 22.95 20.22 19.59 16.78 15.35 14.47 12.60 10.99 8.56 6.80 5.28 3.71 2.26 1.07 0.12 -0.94 -2.13 -3.67 -4.93 -5.85 -6.70 -7.61 -8.97 14.06 10.26 9.56 6.91 5.87 5.30 4.27 3.54 2.68 2.19 1.84 1.53 1.30 1.13 1.02 0.90 0.78 0.66 0.57 0.51 0.46 0.42 0.36 Ang. 133.00 110.00 105.50 87.60 79.30 74.40 62.80 53.10 35.40 17.70 -0.60 -18.60 -34.40 -48.50 -63.50 -79.50 -95.10 -109.70 -121.40 -133.90 -146.60 -160.30 -170.90 dB -28.18 -25.19 -24.89 -23.37 -22.87 -22.53 -21.76 -21.07 -19.79 -18.68 -17.88 -17.42 -17.29 -17.03 -16.49 -16.43 -16.71 -17.27 -17.72 -17.86 -17.72 -17.92 -18.64 S12 Mag. Ang. Mag. S22 Ang. MSG/MAG (dB) 0.039 0.055 0.057 0.068 0.072 0.075 0.082 0.089 0.103 0.117 0.128 0.135 0.137 0.141 0.150 0.151 0.146 0.137 0.130 0.128 0.130 0.127 0.117 55.10 42.60 40.50 33.50 30.80 29.00 25.10 21.40 13.20 2.80 -9.70 -23.20 -34.60 -44.50 -56.20 -69.40 -82.10 -94.00 -102.70 -112.40 -123.00 -135.30 -144.00 0.27 0.36 0.37 0.41 0.43 0.44 0.47 0.50 0.52 0.52 0.53 0.56 0.59 0.62 0.65 0.68 0.71 0.74 0.77 0.80 0.82 0.82 0.84 -124.20 -153.90 -158.80 -178.70 172.60 167.50 158.50 151.00 138.60 124.40 107.80 90.20 74.70 62.70 50.90 37.40 21.40 5.80 -6.10 -15.80 -25.80 -37.90 -49.70 25.57 22.71 22.24 20.07 19.11 18.49 17.17 16.00 14.15 11.53 10.03 8.66 7.75 6.81 6.72 6.46 6.04 4.99 3.98 3.78 3.54 3.45 2.08 ATF-33143 Typical Noise Parameters 40 Freq. GHz Fmin dB opt Mag. Ang. 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.23 0.28 0.29 0.34 0.34 0.38 0.52 0.53 0.61 0.68 0.83 0.91 1.04 1.09 1.13 0.43 0.35 0.35 0.26 0.23 0.22 0.25 0.30 0.39 0.47 0.52 0.58 0.61 0.66 0.70 29.20 42.40 45.00 68.80 93.30 109.70 150.60 167.50 -160.30 -134.70 -112.10 -89.70 -71.50 -54.80 -41.40 Rn/50 0.06 0.06 0.07 0.06 0.04 0.05 0.03 0.03 0.04 0.06 0.11 0.22 0.36 0.56 0.73 Ga dB 25.64 21.62 20.87 17.84 16.89 16.24 14.93 13.52 11.65 10.28 9.09 8.09 7.07 6.43 6.15 MSG/MAG and |S21|2 (dB) VDS = 3 V, IDS = 60 mA 30 MSG 20 MAG 10 0 -10 |S21|2 0 5 10 15 20 FREQUENCY (GHz) Figure 23. MSG/MAG and |S21|2 vs. Frequency at 3V, 60 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 10 ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 40 mA Freq. (GHz) 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 S11 Mag. 0.87 0.78 0.77 0.73 0.72 0.72 0.72 0.73 0.74 0.75 0.77 0.79 0.82 0.83 0.86 0.88 0.90 0.91 0.91 0.92 0.93 0.94 0.93 Ang. -72.50 -111.80 -119.40 -149.10 -162.20 -169.50 173.00 159.80 137.70 117.90 98.80 80.80 65.10 50.90 36.80 22.00 7.60 -4.70 -15.30 -27.20 -40.30 -52.20 -61.20 dB S21 Mag. 22.73 20.07 19.46 16.69 15.28 14.41 12.55 10.95 8.54 6.80 5.28 3.72 2.29 1.10 0.15 -0.93 -2.14 -3.69 -4.97 -5.92 -6.85 -7.83 -9.19 13.74 10.09 9.43 6.85 5.82 5.26 4.24 3.53 2.68 2.19 1.84 1.54 1.30 1.14 1.02 0.90 0.78 0.66 0.57 0.51 0.46 0.41 0.35 Ang. 134.30 111.00 106.40 88.20 79.80 74.70 63.00 53.20 35.10 17.10 -1.60 -19.80 -35.90 -50.20 -65.60 -81.80 -97.60 -112.40 -124.50 -137.30 -150.10 -163.80 -174.60 dB -27.39 -24.42 -24.20 -22.90 -22.44 -22.23 -21.58 -21.07 -19.93 -18.92 -18.11 -17.68 -17.50 -17.23 -16.69 -16.58 -16.81 -17.32 -17.78 -17.93 -17.79 -18.00 -18.72 S12 Mag. Ang. Mag. S22 Ang. MSG/MAG (dB) 0.043 0.060 0.062 0.072 0.076 0.078 0.084 0.089 0.101 0.113 0.124 0.130 0.133 0.137 0.146 0.148 0.144 0.136 0.129 0.127 0.129 0.126 0.116 54.10 40.40 37.70 29.80 26.90 25.00 21.20 17.80 10.40 0.70 -11.20 -24.10 -35.10 -44.60 -56.10 -69.10 -81.70 -93.50 -102.10 -112.20 -122.80 -135.10 -143.80 0.26 0.33 0.34 0.38 0.40 0.41 0.44 0.46 0.48 0.49 0.50 0.53 0.56 0.59 0.62 0.65 0.69 0.72 0.76 0.79 0.81 0.82 0.84 -104.90 -140.20 -147.10 -169.70 -179.30 175.10 165.10 156.50 142.50 127.70 111.00 93.40 77.30 64.90 53.00 39.50 23.50 7.50 -4.30 -14.60 -24.50 -36.80 -48.70 25.04 22.26 21.82 19.78 18.84 18.29 17.03 15.98 14.23 11.54 10.07 8.68 7.77 6.80 6.78 6.55 6.13 5.03 4.06 3.87 3.62 3.54 2.05 ATF-33143 Typical Noise Parameters 40 Freq. GHz 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Fmin dB 0.30 0.33 0.34 0.38 0.37 0.40 0.53 0.54 0.60 0.68 0.82 0.89 1.00 1.07 1.16 opt Mag. 0.44 0.36 0.33 0.26 0.25 0.23 0.27 0.31 0.38 0.46 0.49 0.56 0.60 0.66 0.68 Ang. 31.50 42.70 44.50 68.70 90.70 106.40 145.80 162.00 -165.30 -138.80 -115.40 -93.20 -73.10 -56.60 -42.80 Rn/50 0.08 0.07 0.08 0.06 0.05 0.05 0.04 0.03 0.04 0.05 0.09 0.19 0.33 0.50 0.65 Ga dB 25.59 21.43 20.63 17.72 16.65 15.99 14.70 13.32 11.47 10.17 8.93 7.99 7.00 6.40 6.11 MSG/MAG and |S21|2 (dB) VDS = 4 V, IDS = 40 mA 30 MSG 20 MAG 10 0 -10 |S21|2 0 5 10 15 20 FREQUENCY (GHz) Figure 24. MSG/MAG and |S21|2 vs. Frequency at 4V, 40 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 11 ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 60 mA Freq. (GHz) 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 S11 Mag. 0.86 0.77 0.76 0.73 0.72 0.72 0.72 0.73 0.74 0.75 0.77 0.79 0.82 0.83 0.86 0.88 0.90 0.91 0.91 0.92 0.93 0.94 0.93 Ang. -75.60 -115.00 -122.50 -151.80 -164.60 -171.80 171.00 158.20 136.50 117.00 98.00 80.20 64.70 50.60 36.60 21.80 7.50 -4.80 -15.40 -27.30 -40.40 -52.20 -61.20 dB S21 Mag. 23.20 20.45 19.80 16.98 15.55 14.66 12.79 11.17 8.76 7.00 5.48 3.92 2.48 1.29 0.34 -0.72 -1.94 -3.48 -4.73 -5.68 -6.56 -7.54 -8.87 14.45 10.53 9.77 7.06 5.99 5.41 4.36 3.62 2.74 2.24 1.88 1.57 1.33 1.16 1.04 0.92 0.80 0.67 0.58 0.52 0.47 0.42 0.36 Ang. 132.90 109.80 105.30 87.50 79.20 74.20 62.70 53.00 35.20 17.50 -1.00 -19.00 -34.90 -49.10 -64.30 -80.40 -96.20 -110.80 -122.80 -135.40 -148.30 -162.10 -172.80 dB -28.18 -25.35 -25.04 -23.61 -22.97 -22.73 -21.94 -21.31 -20.00 -18.86 -17.99 -17.52 -17.39 -17.08 -16.54 -16.48 -16.71 -17.27 -17.65 -17.79 -17.72 -17.92 -18.56 S12 Mag. S22 Ang. Mag. Ang. MSG/MAG (dB) 0.039 0.054 0.056 0.066 0.071 0.073 0.080 0.086 0.100 0.114 0.126 0.133 0.135 0.140 0.149 0.150 0.146 0.137 0.131 0.129 0.130 0.127 0.118 54.80 42.20 40.20 33.20 30.60 28.90 25.10 21.60 13.70 3.40 -8.90 -22.30 -33.60 -43.40 -55.20 -68.40 -81.10 -92.90 -101.60 -111.60 -122.20 -134.70 -143.30 0.26 0.34 0.35 0.39 0.41 0.42 0.45 0.47 0.49 0.50 0.51 0.54 0.57 0.60 0.63 0.66 0.70 0.73 0.76 0.79 0.81 0.82 0.84 -118.50 -150.00 -155.50 -176.10 175.00 169.80 160.60 152.70 139.90 125.70 109.10 91.60 75.90 63.70 52.00 38.50 22.50 6.70 -5.20 -15.20 -25.10 -37.30 -49.20 25.69 22.90 22.42 20.29 19.26 18.70 17.36 16.24 13.79 11.57 10.15 8.80 7.88 6.92 6.92 6.69 6.27 5.14 4.12 3.90 3.72 3.59 2.19 ATF-33143 Typical Noise Parameters 40 Freq. GHz Fmin dB opt Mag. Ang. 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.29 0.33 0.34 0.38 0.39 0.42 0.47 0.51 0.63 0.72 0.82 0.93 1.03 1.13 1.22 0.42 0.33 0.32 0.26 0.22 0.22 0.25 0.29 0.39 0.46 0.51 0.57 0.61 0.66 0.69 31.40 44.70 48.00 71.90 94.00 109.70 149.40 166.80 -160.60 -135.30 -112.40 -90.90 -71.80 -55.50 -41.80 Rn/50 0.08 0.07 0.07 0.06 0.05 0.05 0.03 0.03 0.04 0.06 0.11 0.21 0.37 0.55 0.72 Ga dB 25.91 21.80 21.00 18.14 16.96 16.29 14.95 13.58 11.74 10.36 9.17 8.18 7.19 6.56 6.29 MSG/MAG and |S21|2 (dB) VDS = 4 V, IDS = 60 mA 30 MSG 20 MAG 10 0 -10 |S21|2 0 5 10 15 20 FREQUENCY (GHz) Figure 25. MSG/MAG and |S21|2 vs. Frequency at 4V, 60 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 12 ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 80 mA Freq. (GHz) 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 S11 Mag. 0.86 0.77 0.76 0.73 0.72 0.72 0.72 0.73 0.74 0.75 0.77 0.79 0.82 0.83 0.86 0.88 0.90 0.91 0.91 0.92 0.93 0.94 0.93 Ang. -77.20 -116.60 -124.00 -153.00 -165.80 -172.90 170.10 157.40 136.00 116.70 97.70 80.00 64.50 50.50 36.50 21.70 7.40 -4.80 -15.40 -27.30 -40.40 -52.20 -61.20 dB S21 Mag. 23.39 20.60 19.93 17.09 15.66 14.77 12.89 11.27 8.84 7.09 5.57 4.00 2.55 1.36 0.43 -0.65 -1.85 -3.39 -4.64 -5.57 -6.46 -7.40 -8.75 14.76 10.71 9.91 7.15 6.06 5.47 4.41 3.66 2.77 2.26 1.90 1.58 1.34 1.17 1.05 0.93 0.81 0.68 0.59 0.53 0.47 0.43 0.36 Ang. 132.20 109.20 104.80 87.10 78.90 74.00 62.50 53.00 35.30 17.70 -0.70 -18.70 -34.50 -48.70 -63.80 -79.90 -95.60 -110.20 -122.00 -134.80 -147.60 -161.40 -172.10 dB -28.82 -25.86 -25.49 -23.86 -23.31 -22.95 -22.03 -21.39 -20.00 -18.86 -17.99 -17.47 -17.34 -17.03 -16.49 -16.38 -16.66 -17.21 -17.59 -17.79 -17.65 -17.85 -18.56 S12 Mag. Ang. Mag. S22 Ang. MSG/MAG (dB) 0.036 0.051 0.053 0.064 0.068 0.071 0.079 0.085 0.100 0.114 0.126 0.134 0.136 0.141 0.150 0.152 0.147 0.138 0.132 0.129 0.131 0.128 0.118 55.30 43.40 41.70 35.20 32.70 31.00 27.20 23.50 15.30 4.80 -7.80 -21.30 -32.80 -42.80 -54.60 -67.80 -80.60 -92.60 -101.10 -111.20 -121.90 -134.30 -143.10 0.26 0.34 0.36 0.39 0.41 0.42 0.45 0.48 0.50 0.51 0.52 0.55 0.58 0.61 0.63 0.66 0.70 0.73 0.76 0.79 0.81 0.82 0.84 -125.40 -154.80 -159.50 -179.10 172.40 167.30 158.50 151.00 138.80 124.80 108.40 90.90 75.40 63.30 51.60 38.10 22.10 6.40 -5.00 -15.40 -25.30 -37.50 -49.30 26.13 23.22 22.72 20.48 19.50 18.87 17.47 16.34 13.59 11.56 10.17 8.84 7.93 6.98 6.96 6.73 6.26 5.21 4.20 3.98 3.73 3.65 2.24 ATF-33143 Typical Noise Parameters 40 Freq. GHz Fmin dB opt Mag. Ang. 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.30 0.35 0.35 0.40 0.42 0.45 0.49 0.55 0.68 0.75 0.90 1.00 1.12 1.19 1.33 0.42 0.32 0.32 0.23 0.20 0.19 0.23 0.28 0.38 0.48 0.52 0.57 0.62 0.67 0.69 34.50 46.40 50.40 74.80 98.80 114.10 153.70 171.50 -156.70 -133.30 -110.70 -89.60 -70.80 -54.60 -40.80 Rn/50 0.08 0.07 0.07 0.06 0.05 0.05 0.04 0.03 0.04 0.07 0.13 0.25 0.43 0.65 0.85 Ga dB 26.23 21.96 21.16 18.47 17.18 16.48 15.09 13.70 11.85 10.49 9.27 8.27 7.28 6.66 6.31 MSG/MAG and |S21|2 (dB) VDS = 4 V, IDS = 80 mA 30 MSG 20 MAG 10 0 -10 |S21|2 0 5 10 15 20 FREQUENCY (GHz) Figure 26. MSG/MAG and |S21|2 vs. Frequency at 4V, 80 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 13 Noise Parameter Applications Information Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements, a true Fmin is calculated. Fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50, to an impedance represented by the reflection coefficient o. The designer must design a matching network that will present o to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to Fmin only when the device is presented with o. If the reflection coefficient of the matching network is other than o, then the noise figure of the device will be greater than Fmin based on the following equation. NF = Fmin + 4 Rn Zo |s - o | 2 (|1 + o| 2)(1 -s| 2) Where Rn /Zo is the normalized noise resistance, o is the optimum reflection coefficient required to produce Fmin and s is the reflection coefficient of the source impedance actually presented to the device. The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. o is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower o as compared to narrower gate width devices. Typically for FETs, the higher o usually infers that an impedance much higher than 50 is required for the device to produce Fmin. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms. Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz, when airwwound coils (Q > 100) are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using muiltilayer molded inductors with Qs in the 30 to 50 range results in additional loss over the airwound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB Fmin of the device creating an amplifier noise figure of nearly 0.65 dB. A discussion concerning calculated and measured circuit losses and their effect on amplifier noise figure is covered in Avago Application 1085. Reliability Data Channel Temperature (oC) Nominal Failures per million (FPM) for different durations (FITs) 1 year 5 year 10 year 1000 hours 30 year 90% confidence Failures per million (FPM) for different durations (FITs) 1 year 5 year 10 year 30 year 1000 hours 100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 125 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 11 140 <0.1 <0.1 <0.1 <0.1 160 <0.1 <0.1 6 160 9.3K 150 <0.1 <0.1 2 140 26K <0.1 0.3 780 8800 131K 160 <0.1 <0.1 920 21K 370K <0.1 67 24K 120K 520K 180 NOT recommended <0.1 4400 450K 830K 1000K 21 53K 590K 850K 1000K Predicted failures with temperature extrapolated from failure distribution and activation energy data of higher temperature operational life STRIFE of PHEMT process 14 ATF-33143 Die Model Statz Model MESFETM1 NFET=yes PFET=no Vto=-0.95 Beta=0.48 Lambda=0.09 Alpha=4 B=0.8 Tnom=27 Idstc= Vbi=0.7 Tau= Betatce= Delta1=0.2 Delta2= Gscap=3 Taumd1=no Fnc=1E6 R=0.17 C=0.2 P=0.65 wVgfwd= wBvgs= wBvgd= wBvds= wldsmax= wPmax= Al lParams= Rc=62.5 Gsfwd=1 Gsrev=0 Gdfwd=1 Gdrev=0 Vjr=1 Is=1 nA Ir=1 nA Imax=0.1 Xti= N= Eg= Vbr= Vtotc= Rin= Cgs=1.6 pF Gdcap=3 Cgd=0.32 pF Rgd= Tqm= Vmax= Fc= Rd=.125 Rg=1 Rs=0.0625 Ld=0.00375 nH Lg-0.00375 nH Ls=0.00125 nH Cds=0.08 pF Crf=0.1 This model can be used as a design tool. It has been tested on MDS for various specifications. However, for more precise and accurate design, please refer to the measured data in this data sheet. For future improvements Avago reserves the right to change these models without prior notice. ATF-33143 Model INSIDE Package Var Ean VAR VAR1 K=5 Z2=85 Z1=30 C C1 C=0.1 pF GATE Port G Num=1 VIA2 V1 D=20 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40 mil TLINP TL4 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001 TLINP TL3 Z=Z2 Ohm L=25 mil K=K A=0.000 F=1 GHz TanD=0.001 L L6 L=0.2 nH R=0.001 L L1 L=0.6 nH R=0.001 GaAsFET FET1 Model=MESFETN1 Mode=nonlinear SOURCE Port S1 Num=2 15 VIA2 V2 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil TLINP TL10 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001 TLINPTL9 Z=Z2 Ohm L=10.0 mil K=K A=0.000 F=1 GHz TanD=0.001 L L4 L=0.2 nH R=0.001 VIA2 V3 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil TLINP TL2 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL1 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 MSub MSUB MSub1 H=25.0 mil Er=9.6 Mur=1 Cond=1.0E+50 Hu=3.9e+0.34 mil T=0.15 mil TanD=D Rough=D mil C C2 C=0.11 pF L L7 C=0.6 nH R=0.001 SOURCE TLINP TL7 Z=Z2/2 Ohm L=5.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL8 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 TLINP TL5 Z=Z2 Ohm L=26.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL6 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 VIA2 V4 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil Port S2 Num=4 DRAIN Port D Num=4 Part Number Ordering Information No. of Devices Part Number Container ATF-33143-TR1G 3000 7" Reel ATF-33143-TR2G 10000 13" Reel ATF-33143-BLKG 100 antistatic bag Package Dimensions Recommended PCB Pad Layout for Avago's SC70 4L/SOT-343 Products SC-70 4L/SOT-343 1.30 (.051) BSC 1.30 (0.051) 1.00 (0.039) HE E 2.00 (0.079) 0.60 (0.024) 1.15 (.045) BSC 0.9 (0.035) b1 1.15 (0.045) D Dimensions in A2 A A1 b L C DIMENSIONS (mm) SYMBOL E D HE A A2 A1 b b1 c L 16 MIN. 1.15 1.85 1.80 0.80 0.80 0.00 0.15 0.55 0.10 0.10 MAX. 1.35 2.25 2.40 1.10 1.00 0.10 0.40 0.70 0.20 0.46 NOTES: 1. All dimensions are in mm. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash & metal burr. 4. All specifications comply to EIAJ SC70. 5. Die is facing up for mold and facing down for trim/form, ie: reverse trim/form. 6. Package surface to be mirror finish. mm (inches) Device Orientation REEL TOP VIEW END VIEW 4 mm CARRIER TAPE 8 mm 3Px 3Px 3Px 3Px USER FEED DIRECTION COVER TAPE Tape Dimensions and Product Orientation For Outline 4T P P2 D Po E F W C D1 t1 (CARRIER TAPE THICKNESS) Ko 10 MAX. Ao DESCRIPTION CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER PERFORATION DIAMETER PITCH POSITION CARRIER TAPE WIDTH THICKNESS COVER TAPE WIDTH TAPE THICKNESS DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION) Tt (COVER TAPE THICKNESS) 10 MAX. Bo SYMBOL SIZE (mm) SIZE (INCHES) Ao Bo Ko P D1 D Po E 2.40 0.10 2.40 0.10 1.20 0.10 4.00 0.10 1.00 + 0.25 0.094 0.004 0.094 0.004 0.047 0.004 0.157 0.004 0.039 + 0.010 1.55 0.10 4.00 0.10 1.75 0.10 0.061 + 0.002 0.157 0.004 0.069 0.004 W t1 C Tt F 8.00 + 0.30 - 0.10 0.254 0.02 0.315 + 0.012 0.0100 0.0008 5.40 0.10 0.062 0.001 0.205 + 0.004 0.0025 0.0004 3.50 0.05 0.138 0.002 2.00 0.05 0.079 0.002 P2 For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright (c) 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5989-3747EN AV02-1442EN - June 8, 2012