Sep.2000
TYPE
NAME
VOLTAGE
CLASS
φ5.0 MAX
4.4
5.0 MAX
12.5 MIN
3.9 MAX
1.3
1.25 1.25
CIRCUMSCRIBE
CIRCLE
φ0.7
1
32
OUTLINE DRAWING
Dimensions
in mm
JEDEC : TO-92
2
1
3
1
2
3
CATHODE
ANODE
GATE
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
CR04AM
APPLICATION
Ignitor, solid state relay, strobe flasher, circuit breaker, other general pur pose control applications
Symbol
VRRM
VRSM
VR (DC)
VDRM
VD (DC)
Parameter
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage
DC reverse voltage
Repetitive peak off-state voltage 1
DC off-state voltage 1
Voltage class Unit
V
V
V
V
V
MAXIMUM RATINGS
8
400
500
320
400
320
12
600
720
480
600
480
•IT (AV) ........................................................................0.4A
•V
DRM ..............................................................400V/600V
•I
GT .........................................................................100µA
Symbol
IT (RMS)
IT (AV)
ITSM
I2t
PGM
PG (AV)
VFGM
VRGM
IFGM
Tj
Tstg
Parameter
RMS on-state current
Average on-state current
Surge on-state current
I2t for fusing
Peak gate power dissipation
Average gate power dissipation
Peak gate forward voltage
Peak gate reverse voltage
Peak gate forward current
Junction temperature
Storage temperature
Weight
Conditions
Commercial frequency, sine half wave, 180° conduction, Ta=54°C
60Hz sine half wave 1 full cycle, peak value, non-repetitive
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
Typical value
Unit
A
A
A
A2s
W
W
V
V
A
°C
°C
g
Ratings
0.63
0.4
10
0.4
0.5
0.1
6
6
0.3
–40 ~ +125
–40 ~ +125
0.23
1. With Gate-to-cathode resistance RGK=1k
Sep.2000
3V
DC
I
GS
I
GT
6V
DC
60
V
GT
21
TUT
1k
R
GK
A3 A2 V1
A1
SWITCH 1 : I
GT
measurement
SWITCH 2 : V
GT
measurement
(Inner resistance of voltage meter is about 1k)
3. I
GT
, V
GT
measurement circuit.
SWITCH
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Test conditions
Tj=125°C, VRRM applied
Tj=125°C, VDRM applied, RGK=1k
Ta=25°C, ITM=1.2A, instantaneous value
Ta=25°C, VD=6V, IT=0.1A3
Tj=125°C, VD=1/2VDRM, RGK=1k
Tj=25°C, VD=6V, IT=0.1A3
Tj=25°C, VD=12V, RGK=1k
Junction to ambient
Unit
mA
mA
V
V
V
µA
mA
°C/W
Typ.
1.5
Symbol
IRRM
IDRM
VTM
VGT
VGD
IGT
IH
Rth (j-a)
Parameter
Repetitive peak reverse current
Repetitive peak off-state current
On-state voltage
Gate trigger voltage
Gate non-trigger voltage
Gate trigger current
Holding current
Thermal resistance
2.If special values of IGT are required, choose at least two items from those listed in the table below. (Example: AB, BC)
B
20 ~ 50
C
40 ~ 100
Item
IGT (µA)
A
1 ~ 30
The above values do not include the current flowing through the 1k resistance between the gate and cathode.
Limits
Min.
0.2
1
Max.
0.5
0.5
1.2
0.8
1002
3
150
PERFORMANCE CURVES
10
0
23 5710
1
4
2
23 5710
2
44
6
8
10
3
1
5
7
9
0
501 423
10
2
7
5
3
2
10
1
7
5
3
2
10
0
7
5
3
2
10
–1
T
a
= 25°C
MAXIMUM ON-STATE CHARACTERISTICS
ON-STATE CURRENT (A)
ON-STATE VOLTAGE (V)
RATED SURGE ON-STATE CURRENT
SURGE ON-STATE CURRENT (A)
CONDUCTION TIME
(CYCLES AT 60Hz)
Sep.2000
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
102
10–2
10
0
101
7
5
3
2
10–1
7
5
3
2
100
7
5
3
2
7
5
3
2
10
–2
23 57 23 57
10
1
23 57
10
2
23 57 23
10
–1
VFGM = 6V
VGT = 0.8V
(Tj = 25°C)
IGT = 100µA
(Tj = 25°C)
PGM = 0.5W
PG(AV) = 0.1W
VGD = 0.2V IFGM = 0.3V
231005710
123 5710
223 5710
3
101
2310–3 5710
–2 23 5710
–1 23 5710
0
103
7
5
3
2
102
7
5
3
2
7
5
3
2
100
16060–20–40 0 20 40 80 100120140
103
7
5
3
2
102
7
5
3
2
101
7
5
3
2
100
TYPICAL EXAMPLE
1.0
0.8
0.7
0.6
0.3
0.4
0.1
0120–40 –20 20 80
0.2
0.5
0.9
06040 100
TYPICAL EXAMPLE
DISTRIBUTION
160
120
60
40
20
140
100
80
00.80 0.2 0.4 0.6 0.70.1 0.3 0.5
θ = 30°
60°120°
90°180°
θ
360°
RESISTIVE,
INDUCTIVE
LOADS
NATURAL
CONVECTION
0.8
0.6
0.3
0.2
0.1
0.7
0.5
0.4
00.80 0.2 0.4 0.6 0.70.1 0.3 0.5
θ
360°
θ = 30°60°120°
90°180°
RESISTIVE, INDUCTIVE LOADS
MAXIMUM AVERAGE POWER DISSIPATION
(SINGLE-PHASE HALF WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO AMBIENT)
TRANSIENT THERMAL IMPEDANCE (°C/W)
TIME (s)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(SINGLE-PHASE HALF WAVE)
AMBIENT TEMPERATURE (°C)
AVERAGE ON-STATE CURRENT (A)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
GATE TRIGGER VOLTAGE (V)
JUNCTION TEMPERATURE (°C)
GATE VOLTAGE (V)
GATE CURRENT (mA)
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (°C)
GATE CHARACTERISTICS
100 (%)
GATE TRIGGER CURRENT (T
j
= t°C)
GATE TRIGGER CURRENT (T
j
= 25°C)
Sep.2000
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
160
120
60
40
20
140
100
80
0160–40 0 40 80 120140–20 20 60 100
R
GK
= 1k
TYPICAL EXAMPLE
0.8
0.6
0.3
0.2
0.1
0.7
0.5
0.4
00.80 0.2 0.4 0.6 0.70.1 0.3 0.5
θ = 30°
60°120°
90°
180°
θ θ
360°
RESISTIVE LOADS
160
120
60
40
20
140
100
80
00.80 0.2 0.4 0.6 0.70.1 0.3 0.5
θ = 30°120°
180°DC
270°60°
90°
θ
360°
RESISTIVE,
INDUCTIVE
LOADS
NATURAL
CONVECTION
0.8
0.6
0.3
0.2
0.1
0.7
0.5
0.4
00.80 0.2 0.4 0.6 0.70.1 0.3 0.5
θ = 30°60°120°
90°180°
270°
DC
θ
360°
RESISTIVE,
INDUCTIVE
LOADS
160
120
60
40
20
140
100
80
00.80 0.2 0.4 0.6 0.70.1 0.3 0.5
θ = 30°60°120°90°180°
θ θ
360°
RESISTIVE LOADS
NATURAL
CONVECTION
2310
–1
5710
0
23 5710
1
23 5710
2
0
80
100
120
40
60
20
TYPICAL EXAMPLE
T
j
= 125°C
MAXIMUM AVERAGE POWER DISSIPATION
(SINGLE-PHASE FULL WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(SINGLE-PHASE FULL WAVE)
AMBIENT TEMPERATURE (°C)
AVERAGE ON-STATE CURRENT (A)
MAXIMUM AVERAGE POWER DISSIPATION
(RECTANGULAR WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(RECTANGULAR WAVE)
AMBIENT TEMPERATURE (°C)
AVERAGE ON-STATE CURRENT (A)
BREAKOVER VOLTAGE VS.
GATE TO CATHODE RESISTANCE
GATE TO CATHODE RESISTANCE (k)
100 (%)
BREAKOVER VOLTAGE (R
GK
= rk)
BREAKOVER VOLTAGE (R
GK
= 1k)
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (°C)
100 (%)
BREAKOVER VOLTAGE (T
j
= t°C)
BREAKOVER VOLTAGE (T
j
= 25°C)
Sep.2000
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
10
0
10
1
10
2
4.0
0
2.0
2.5
3.0
3.5
1.0
1.5
0.5
2310
0
5710
1
23 5710
2
23 5710
3
160
0
80
100
120
140
40
60
20
T
j
= 125°C
R
GK
= 1k
TYPICAL EXAMPLE
2310
–1
5710
0
23 5710
1
23 5710
2
500
0
300
400
100
200
10
0
2310
–1
5710
0
23 5710
1
23 5710
2
10
2
7
5
3
2
10
1
7
5
3
2
7
5
3
2
10
–1
V
D
= 100V
R
L
= 47
R
GK
= 1k
T
a
= 25°C
TYPICAL EXAMPLE 40
30
15
10
5
35
25
20
01600 40 80 120 14020 60 100
V
D
= 50V, V
R
= 50V
I
T
= 2A, R
GK
= 1k
TYPICAL EXAMPLE
DISTRIBUTION
60–20–40–60 0 20 40 80 100120140
10
1
7
5
3
2
10
0
7
5
3
2
10
–1
7
5
3
2
10
–2
DISTRIBUTION
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
HOLDING CURRENT (mA)
JUNCTION TEMPERATURE (°C)
HOLDING CURRENT VS.
GATE TO CATHODE RESISTANCE
GATE TO CATHODE RESISTANCE (k)
100 (%)
HOLDING CURRENT (R
GK
= rk)
HOLDING CURRENT (R
GK
= 1k)
BREAKOVER VOLTAGE VS.
RATE OF RISE OF OFF-STATE VOLTAGE
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
100 (%)
BREAKOVER VOLTAGE (dv/dt = vV/µs)
BREAKOVER VOLTAGE (dv/dt = 1V/µs)
TURN-ON TIME VS. GATE CURRENT
TURN-ON TIME (µs)
GATE CURRENT (mA)
HOLDING CURRENT VS.
GATE TRIGGER CURRENT
HOLDING CURRENT (mA)
GATE TRIGGER CURRENT (µA)
TURN-OFF TIME VS.
JUNCTION TEMPERATURE
TURN-OFF TIME (µs)
JUNCTION TEMPERATURE (°C)
T
j
= 25°C
T
j
= 25°C
I
GT
(25°C) = 35µA
R
GK
= 1k
TYPICAL EXAMPLE
TYPICAL EXAMPLE
I
GT
(25°C) I
H
(1k)
# 1 25µA 0.9mA
# 1
Sep.2000
MITSUBISHI SEMICONDUCTOR THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
160
120
100
40
60
20
0160–40–20 20 80 140120
80
140
06040 100
102
100101
24357 10
2
24357
104
7
5
3
2
103
7
5
3
2
7
5
3
2
101
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
100 (%)
GATE TRIGGER CURRENT (tw)
GATE TRIGGER CURRENT (DC)
JUNCTION TEMPERATURE (°C)
100 (%)
REPETITIVE PEAK REVERSE VOLTAGE (T
j
= t°C)
REPETITIVE PEAK REVERSE VOLTAGE (T
j
= 25°C)
GATE CURRENT PULSE WIDTH (µs)
T
j
= 25°C
TYPICAL EXAMPLE
I
GT
(DC)
# 1 10µA
# 2 65µA
# 1 # 2
REPETITIVE PEAK REVERSE VOLTAGE VS.
JUNCTION TEMPERATURE