
Chopper Stabilized Omnipolar Hall-Ef fect Switch
A1126
11
Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com
The device must be operated below the maximum junction
temperature of the device, TJ(max) . Under certain combina-
tions of peak conditions, reliable operation may require derating
supplied power or improving the heat dissipation properties of
the application. This section presents a procedure for correlating
factors affecting operating TJ. (Thermal data is also available on
the Allegro MicroSystems Web site.)
The Package Thermal Resistance, RJA, is a figure of merit sum-
marizing the ability of the application and the device to dissipate
heat from the junction (die), through all paths to the ambient air.
Its primary component is the Effective Thermal Conductivity,
K, of the printed circuit board, including adjacent devices and
traces. Radiation from the die through the device case, RJC, is
relatively small component of RJA. Ambient air temperature,
TA, and air motion are significant external factors, damped by
overmolding.
The effect of varying power levels (Power Dissipation, PD), can
be estimated. The following formulas represent the fundamental
relationships used to estimate TJ, at PD.
P
D = VIN × IIN
(1)
T = PD × RJA (2)
T
J = TA + ΔT (3)
For example, given common conditions such as: TA= 25°C,
VIN = 12 V, IIN = 4 mA, and RJA = 140 °C/W, then:
P
D = VIN × IIN = 12 V × 4 mA = 48 mW
T = PD × RJA = 48 mW × 140 °C/W = 7°C
T
J = TA + T = 25°C + 7°C = 32°C
A worst-case estimate, PD(max) , represents the maximum allow-
able power level, without exceeding TJ(max) , at a selected RJA
and TA.
Example: Reliability for VCC at TA =
150°C, package UA, using a
single-layer PCB.
Observe the worst-case ratings for the device, specifically:
RJA
=
165 °C/W, TJ(max)
=
165°C, VCC(max)
=
24
V, and
ICC(max) = 4 mA.
Calculate the maximum allowable power level, PD(max) . First,
invert equation 3:
Tmax = TJ(max) – TA = 165
°C
–
150
°C = 15
°C
This provides the allowable increase to TJ resulting from internal
power dissipation. Then, invert equation 2:
PD(max) = Tmax ÷ RJA = 15°C ÷ 165 °C/W = 91 mW
Finally, invert equation 1 with respect to voltage:
VCC(est) = PD(max) ÷ ICC(max) = 91 mW ÷ 4 mA = 23 V
The result indicates that, at TA, the application and device can
dissipate adequate amounts of heat at voltages ≤VCC(est) .
Compare VCC(est) to VCC(max) . If VCC(est) ≤ VCC(max) , then
reliable operation between VCC(est) and VCC(max) requires
enhanced RJA. If VCC(est) ≥ VCC(max) , then operation
between VCC(est) and VCC(max) is reliable under these condi-
tions.
Power Derating