IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 1 Rev. 2.4 12.06.2013
Low Loss DuoPack : IGBT in TrenchStop®and Fieldstop technology with soft,
fast recovery anti-parallel Emitter Controlled HE diode
Approx. 1.0V reduced VCE(sat)
and 0.5V reduced VFcompared to BUP313D
Short circuit withstand time 10s
Designed for :
- Frequency Converters
- Uninterrupted Power Supply
TrenchStop®and Fieldstop technology for 1200 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
NPT technology offers easy parallel switching capability due to
positive temperature coefficient in VCE(sat)
Low EMI
Low Gate Charge
Very soft, fast recovery anti-parallel Emitter Controlled HE diode
Qualified according to JEDEC1for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE ICVCE(sat),Tj=25°C Tj,max Marking Code Package
IKW15T120 1200V 15A 1.7V 150CK15T120 PG-TO-247-3
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 1200 V
DC collector current
TC= 25C
TC= 100C
IC30
15
A
Pulsed collector current, tplimited by Tjmax ICpuls 45
Turn off safe operating area
VCE 1200V, Tj150C-45
Diode forward current
TC= 25C
TC= 100C
IF30
15
Diode pulsed current, tplimited by Tjmax IFpuls 45
Gate-emitter voltage VGE 20 V
Short circuit withstand time2)
VGE = 15V, VCC 1200V, Tj150CtSC 10 s
Power dissipation
TC= 25CPtot 110 W
Operating junction temperature Tj-40...+150 C
Storage temperature Tstg -55...+150
1J-STD-020 and JESD-022
2) Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
PG-TO-247-3
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 2 Rev. 2.4 12.06.2013
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction case RthJC 1.1 K/W
Diode thermal resistance,
junction case RthJCD 1.5
Thermal resistance,
junction ambient RthJA 40
Electrical Characteristic, at Tj= 25 C, unless otherwise specified
Parameter Symbol Conditions Value Unit
min. typ. max.
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=0.5mA 1200 - - V
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=15A
Tj=25C
Tj=125C
Tj=150C
-
-
-
1.7
2.0
2.2
2.2
-
-
Diode forward voltage VFVGE=0V, IF=15A
Tj=25C
Tj=125C
Tj=150C
-
-
-
1.7
1.7
1.7
2.2
-
-
Gate-emitter threshold voltage VGE(th) IC=0.6mA,VCE=VGE 5.0 5.8 6.5
Zero gate voltage collector current ICES VCE=1200V,
VGE=0V
Tj=25C
Tj=150C-
--
-0.2
2.0
mA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=15A - 10 - S
Integrated gate resistor RGint none Ω
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 3 Rev. 2.4 12.06.2013
Dynamic Characteristic
Input capacitance Ciss VCE=25V,
VGE=0V,
f=1MHz
- 1100 - pF
Output capacitance Coss - 100 -
Reverse transfer capacitance Crss - 50 -
Gate charge QGate VCC=960V, IC=15A
VGE=15V - 85 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from case LE- 13 - nH
Short circuit collector current1) IC(SC) VGE=15V,tSC10s
VCC = 600V,
Tj= 25C
- 90 - A
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td(on) Tj=25C,
VCC=600V,IC=15A,
VGE=0/15V,
RG=56,
L
2)=180nH,
C
2)=39pF
Energy losses include
“tail” and diode
reverse recovery.
- 50 - ns
Rise time tr- 30 -
Turn-off delay time td(off) - 520 -
Fall time tf- 60 -
Turn-on energy Eon - 1.3 - mJ
Turn-off energy Eoff - 1.4 -
Total switching energy Ets - 2.7 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr Tj=25C,
VR=600V, IF=15A,
diF/dt=600A/s
- 140 - ns
Diode reverse recovery charge Qrr - 1.9 - µC
Diode peak reverse recovery current Irrm - 17 - A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt - 230 - A/s
1) Allowed number of short circuits: <1000; time between short circuits: >1s.
2) Leakage inductance L
and Stray capacity Cdue to dynamic test circuit in Figure E.
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 4 Rev. 2.4 12.06.2013
Switching Characteristic, Inductive Load, at Tj=150 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td(on) Tj=150C,
VCC=600V,IC=15A,
VGE=0/15V,
RG= 56
L
1)=180nH,
C
1)=39pF
Energy losses include
“tail” and diode
reverse recovery.
- 50 - ns
Rise time tr- 35 -
Turn-off delay time td(off) - 600 -
Fall time tf- 120 -
Turn-on energy Eon - 2.0 - mJ
Turn-off energy Eoff - 2.1 -
Total switching energy Ets - 4.1 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr Tj=150C
VR=600V, IF=15A,
diF/dt=600A/s
- 330 - ns
Diode reverse recovery charge Qrr - 3.4 - µC
Diode peak reverse recovery current Irrm - 21 - A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt - 190 - A/s
1) Leakage inductance L
and Stray capacity Cdue to dynamic test circuit in Figure E.
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 5 Rev. 2.4 12.06.2013
IC,COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
10A
20A
30A
40A
TC=110°C
TC=80°C
IC,COLLECTOR CURRENT
1V 10V 100V 1000V
0,1A
1A
10A
DC
10µs
tp=2µs
50µs
500µs
20ms
150µs
f,SWITCHING FREQUENCY VCE,COLLECTOR-EMITTER VOLTAGE
Figure 1.
Collector current as a function of
switching frequency
(Tj150C, D = 0.5, VCE = 600V,
VGE = 0/+15V, RG= 56)
Figure 2.
Safe operating area
(D = 0, TC= 25C,
Tj150C;VGE=15V)
Ptot,POWER DISSIPATION
25°C 5C 7C 100°C 125°C
0W
20W
40W
60W
80W
100W
IC,COLLECTOR CURRENT
25°C 75°C 12C
0A
10A
20A
TC,CASE TEMPERATURE TC,CASE TEMPERATURE
Figure 3.
Power dissipation
as a function of
case temperature
(Tj150C)
Figure 4.
Collector current as a function of
case temperature
(VGE 15V, Tj150C)
I
I
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 6 Rev. 2.4 12.06.2013
IC,COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V 6V
0A
10A
20A
30A
40A
15V
7V
9V
11V
13V
VGE=17V
IC,COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V 6V
0A
10A
20A
30A
40A
15V
7V
9V
11V
13V
VGE=17V
VCE,COLLECTOR-EMITTER VOLTAGE VCE,COLLECTOR-EMITTER VOLTAGE
Figure 5.
Typical output characteristic
(Tj= 25°C)
Figure 6.
Typical output characteristic
(Tj= 150°C)
IC,COLLECTOR CURRENT
0V 2V 4V 6V 8V 10V 12V
0A
5A
10A
15A
20A
25A
30A
35A
40A
25°C
TJ=150°C
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
-50°C C 50°C 100°C
0,0V
0,5V
1,0V
1,5V
2,0V
2,5V
3,0V
IC=15A
IC=30A
IC=8A
IC=5A
VGE,GATE-EMITTER VOLTAGE TJ,JUNCTION TEMPERATURE
Figure 7.
Typical transfer characteristic
(VCE=20V)
Figure 8.
Typical collector
-
emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 7 Rev. 2.4 12.06.2013
t, SWITCHING TIMES
0A 10A 20A
1ns
10ns
100ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES





1ns
10ns
100ns
1µs
tf
tr
td(off)
td(on)
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure 9.
Typical switching times as a
function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=56Ω,
Dynamic test circuit in Figure E)
Figure 10.
Typical switching times as a
function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=15A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
C 50°C 100°C 150°C
10ns
100ns
tr
tf
td(on)
td(off)
VGE(th),GATE-EMITT TRSHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
6V
7V
min.
typ.
max.
TJ,JUNCTION TEMPERATURE TJ,JUNCTION TEMPERATURE
Figure 11.
Typical switching times as a
function of junction temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=15A, RG=56Ω,
Dynamic test circuit in Figure E)
Figure 12.
Gate
-
emitter threshold voltage as
a function of junction temperature
(IC= 0.6mA)
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 8 Rev. 2.4 12.06.2013
E,SWITCHING ENERGY LOSSES
5A
10A
15A
20A
25A
0,0mJ
2,0mJ
4,0mJ
6,0mJ
8,0mJ
Ets*
Eoff
*) Eon and Etsinclude losses
due to diode recovery
Eon*
E,SWITCHING ENERGY LOSSES





0 mJ
1 mJ
2 mJ
3 mJ
4 mJ
5 mJ Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure 13.
Typical switching energy losses
as a function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=56Ω,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=15A,
Dynamic test circuit in Figure E)
E,SWITCHING ENERGY LOSSES
50°C 100°C 150°C
0mJ
1mJ
2mJ
3mJ
4mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
E,SWITCHING ENERGY LOSSES
400V 500V 600V 700V 800V
0mJ
1mJ
2mJ
3mJ
4mJ
5mJ
6mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
TJ,JUNCTION TEMPERATURE VCE,COLLECTOR-EMITTER VOLTAGE
Figure 15.
Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=15A, RG=56Ω,
Dynamic test circuit in Figure E)
Figure 16.
Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ=150°C,
VGE=0/15V, IC=15A, RG=56Ω,
Dynamic test circuit in Figure E)
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 9 Rev. 2.4 12.06.2013
VGE,GATE-EMITTER VOLTAGE
0nC 50nC 100nC
0V
5V
10V
15V
960V
240V
c, CAPACITANCE
0V 10V 20V
10pF
100pF
1nF
Crss
Coss
Ciss
QGE,GATE CHARGE VCE,COLLECTOR-EMITTER VOLTAGE
Figure 17.
Typical gate charge
(IC=15 A)
Figure 18.
Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f= 1 MHz)
tSC,SHORT CIRCUIT WITHSTAND TIME
12V 14V 16V
0µs
5µs
10µs
15µs
IC(sc), short circuit COLLECTOR CURRENT
12V 14V 16V 18V
0A
25A
50A
75A
100A
125A
VGE,GATE-EMITTETR VOLTAGE VGE,GATE-EMITTETR VOLTAGE
Figure 19.
Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V,start at TJ=25°C)
Figure 20.
Typical short circuit collector
current as a function of gate-
emitter voltage
(VCE 600V, Tj150C)
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 10 Rev. 2.4 12.06.2013
VCE,COLLECTOR-EMITTER VOLTAGE
0V
200V
400V
600V
0A
10A
20A
30A
1.5us1us
0.5us
0us
IC
VCE
IC,COLLECTOR CURRENT
0V
200V
400V
600V
0A
10A
20A
30A
1.5us1us0.5us
0us
IC
VCE
t,TIME t,TIME
Figure 21.
Typical turn on behavior
(VGE=0/15V, RG=56Ω, Tj= 150C,
Dynamic test circuit in Figure E)
Figure 22.
Typical turn off behavior
(VGE=15/0V, RG=56Ω, Tj= 150C,
Dynamic test circuit in Figure E)
ZthJC,TRANSIENT THERMAL RESISTANCE
10µs 100µs 1ms 10ms 100ms
10
-2K/W
10
-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
ZthJC,TRANSIENT THERMAL RESISTANCE
10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tP,PULSE WIDTH tP,PULSE WIDTH
Figure 23.
IGBT transient thermal resistance
(D = tp/T)
Figure 24.
Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
R,(K /W )
,(s)
0.121 1.73*10
-
1
0.372 2.75*10
-
2
0.381 2.57*10
-
3
0.226
2.71*10
-
4
C
1
=
1
/
R
1
R1R2
C
2
=
2
/
R
2
R,(K /W )
,(s)
0.360 7.30*10
-
2
0.477 8.13*10
-
3
0.434 1.09*10
-
3
0.224
1.55*10
-
4
C
1
=
1
/
R
1
R1R2
C
2
=
2
/
R
2
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 11 Rev. 2.4 12.06.2013
trr,REVERSE RECOVERY TIME
200A/µs 400A/µs 600A/µs 800A/µs
0ns
100ns
200ns
300ns
400ns
500ns
600ns
TJ=25°C
TJ=150°C
Qrr,REVERSE RECOVERY CHARGE
200A/µs 400A/µs 600A/µs 800A/µs
0µC
1µC
2µC
3µC
TJ=25°C
TJ=150°C
diF/dt,DIODE CURRENT SLOPE diF/dt,DIODE CURRENT SLOPE
Figure 23.
Typical reverse recovery time as
a function of diode current slope
(VR=600V, IF=15A,
Dynamic test circuit in Figure E)
Figure 24.
Typical reverse recovery charge
as a function of diode current
slope
(VR=600V, IF=15A,
Dynamic test circuit in Figure E)
Irr,REVERSE RECOVERY CURRENT
200A/µs 400A/µs 600A/µs 800A/µs
0A
5A
10A
15A
20A
25A
30A
TJ=25°C
TJ=150°C
di
rr
/dt
,
DIODE PEAK RATE OF FALL
OF
REVERSE RECOVERY CUR
RENT
200A/µs 400A/µs 600A/µs 800A/µs
-0A/µs
-100A/µs
-200A/µs
-300A/µs
TJ=25°C
TJ=150°C
diF/dt,DIODE CURRENT SLOPE diF/dt,DIODE CURRENT SLOPE
Figure 25.
Typical reverse recovery current
as a function of diode current
slope
(VR=600V, IF=15A,
Dynamic test circuit in Figure E)
Figure
26.
Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR=600V, IF=15A,
Dynamic test circuit in Figure E)
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 12 Rev. 2.4 12.06.2013
IF,FORWARD CURRENT
0V 1V 2V
0A
10A
20A
30A
40A
150°C
TJ=25°C
VF,FORWARD VOLTAGE
-50°C 0°C 50°C 100°C
0,0V
0,5V
1,0V
1,5V
2,0V
15A
8A
IF=30A
5A
VF,FORWARD VOLTAGE TJ,JUNCTION TEMPERATURE
Figure 27.
Typical diode forward current as
a function of forward voltage
Figure 28.
Typical diode forward voltage as a
function of junction temperature
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 13 Rev. 2.4 12.06.2013
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 14 Rev. 2.4 12.06.2013
I
r
r
m
90%
Ir r m
10%
Ir r m
di /dt
F
tr r
IF
i,v
t
QSQF
tStF
VR
di /dt
r r
Q =Q Q
r r S F
+
t =t t
r r S F
+
Figure C. Definition of diodes
switching characteristics
p(t)
1
2
n
T
(
t
)
j
1
1
2
2
n
n
T
C
r r
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
=180nH
and Stray capacity C
=39pF.
Figure A. Definition of switching times
Figure B. Definition of switching losses
IKW15T120
TrenchStop®Series
IFAG IPC TD VLS 15 Rev. 2.4 12.06.2013
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or
systems and/or automotive, aviation and aerospace applications or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted in the
human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable
to assume that the health of the user or other persons may be endangered.