SX1255 WIRELESS & SENSING PRODUCTS DATASHEET SX1255 RF Front-End Transceiver Low Power Digital I and Q RF Multi-PHY Mode Transceiver VBAT1 VR_ANA2 VR_DIG 0 to -30dB with 2dB steps Single to diff 0 to -48dB with 6dB steps RFIN VBAT2 VR_ANA1 CT Rx pre-filter Power Distribution System 1b CT Rx pre-filter I_RX 1b RX PLL I_OUT TX PLL ATT N 2 32 32 I2S Digital Bridge 2 2 Q_OUT I_IN mux Q_RX Fractional frequency synthesizer mux DIV 4 N 32 32 2 Q_IN DIV 4 Fractional frequency synthesizer Gain DAC DIO(2) 5b 1b DIO(3) RFOUT_P Tx Filter FIR-DAC Tx Filter FIR-DAC I_TX Driver RFOUT_M Q_TX balun XTA XTB The SX1255 is a highly integrated RF front-end to digital I and Q modulator/demodulator Multi-PHY mode transceiver capable of supporting multiple constant and non-constant envelope modulation schemes. It is designed to operate over the 400 - 510 MHz worldwide licensed and unlicensed frequency bands. Its highly integrated architecture allows for a minimum of external components whilst maintaining maximum design flexibility. All major RF communication parameters are programmable and most of them can be dynamically set. The SX1255 offers support for both narrow-band and wide-band communication modes without the need to modify external components. The SX1255 is optimized for low power consumption while offering the provision for high RF output power and channelized operation. TrueRFTM technology enables a low-cost external component count whilst still satisfying ETSI, FCC and ARIB and other regulations. IEEE 802.15.4g SUN Multi-PHY Mode Smartgrid Cognitive / Software Defined Radio (SDR) SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation CLK select CLK IN CLK OUT NSS MOSI MISO SCK RESET KEY PRODUCT FEATURES GENERAL DESCRIPTION APPLICATIONS DIO(0) Registers and interface XOSC DIO(1) 1b Fully flexible I and Q modulator and demodulator Half or full-duplex operation Bullet proof RX LNA Analog TX and RX pre-filtering Decimated I&Q signal under I2S industry format Programmable tap TX FIR-DAC filter Linear TX amplifier for both constant and non-constant envelope modulation schemes ORDERING INFORMATION Part Number Temperature Range Qty. per Reel Package SX1255IWLTRT -40; +85 C 3000 MLPQW-32 SX1255WS -40; +85 C 1 Wafer - Page 1 Pb-free, Halogen Free RoHS / WEEE compliant product www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET TABLE OF CONTENT 1. 2. 3. General Description ................................................................................................................................................ 6 1.1. Simplified Block Diagram ............................................................................................................................... 6 1.2. Pin and Marking Diagram................................................................................................................................ 7 1.3. Pin Description ................................................................................................................................................ 8 Electrical Characteristics......................................................................................................................................... 9 2.1. ESD Notice...................................................................................................................................................... 9 2.2. Absolute Maximum Ratings ............................................................................................................................ 9 2.3. Operating Range............................................................................................................................................. 9 2.4. Electrical Specifications ................................................................................................................................ 10 2.4.1. Power Consumption............................................................................................................................... 10 2.4.2. Frequency Synthesis.............................................................................................................................. 10 2.4.3. Transmitter Front-End ............................................................................................................................ 11 2.4.4. Receiver Front-End ................................................................................................................................ 11 2.4.5. SPI Bus Digital Specification.................................................................................................................. 12 Chip Description.................................................................................................................................................... 13 3.1. Power Supply Strategy.................................................................................................................................. 13 3.2. Low Battery Detector..................................................................................................................................... 13 3.3. Frequency Synthesizer ................................................................................................................................. 13 3.3.1. Reference Oscillator............................................................................................................................... 13 3.3.2. CLK_OUT Output................................................................................................................................... 14 3.3.3. PLL Architecture..................................................................................................................................... 14 3.3.3.1. VCO................................................................................................................................................... 14 3.3.3.2. PLL Bandwidth .................................................................................................................................. 14 3.3.3.3. Carrier Frequency and Resolution .................................................................................................... 14 3.3.3.4. PLL Lock Time .................................................................................................................................. 15 3.3.3.5. Lock Detect Indicator......................................................................................................................... 15 3.4. Transmitter Analog Front-End Description.................................................................................................... 15 3.4.1. Architectural Description ........................................................................................................................ 15 3.4.2. TX I / Q Channel Filters.......................................................................................................................... 15 3.4.3. TX I / Q Up-Conversion Mixers .............................................................................................................. 16 3.4.4. RF Amplifier ........................................................................................................................................... 16 3.5. Transmitter Digital Baseband Description..................................................................................................... 17 3.5.1. Digital-to-Analog Converters .................................................................................................................. 17 3.6. Receiver Analog Front-End Description ............................................................................................................19 3.6.1. Architectural Description ........................................................................................................................ 19 3.6.2. LNA and Single to Differential Buffer ..................................................................................................... 19 3.6.3. I /Q Downconversion Quadrature Mixer................................................................................................. 19 3.6.4. Baseband Analog Filters and Amplifiers ................................................................................................ 19 3.7. Receiver Digital Baseband............................................................................................................................ 20 3.7.1. Architectural Block Diagram................................................................................................................... 20 3.7.2. Analog-to-Digital Converters .................................................................................................................. 20 SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 2 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS 3.7.3. 3.8. DATASHEET Temperature Sensor .............................................................................................................................. 20 Loop-Back .................................................................................................................................................... 21 3.8.1. Digital Loop-Back ................................................................................................................................... 21 3.8.2. RF Loop Back ............................................................................................................................................22 4. Digital Interface ..................................................................................................................................................... 23 4.1. General overview .......................................................................................................................................... 23 4.2. Definition and operation of the SPI interface................................................................................................. 23 4.3. Digital IO Pin Mapping .................................................................................................................................. 24 4.4. I and Q interface............................................................................................................................................ 24 4.4.1. General description ................................................................................................................................ 24 4.4.2. Mode A................................................................................................................................................... 25 4.4.3. Mode B................................................................................................................................................... 26 4.4.3.1. Introduction........................................................................................................................................ 26 4.4.3.2. Parameters........................................................................................................................................ 29 5. Configuration and Status Registers ...................................................................................................................... 33 5.1. 6. 7. 8. General Description ...................................................................................................................................... 33 Application Information ......................................................................................................................................... 37 6.1. Crystal Resonator Specification .................................................................................................................... 37 6.2. Reset of the Chip .......................................................................................................................................... 37 6.2.1. POR ....................................................................................................................................................... 37 6.2.2. Manual Reset ......................................................................................................................................... 38 6.3. TX Noise Shaper........................................................................................................................................... 38 6.4. Reference Design ......................................................................................................................................... 39 Packaging Information .......................................................................................................................................... 40 7.1. Package Outline Drawing.............................................................................................................................. 40 7.2. Recommended Land Pattern ........................................................................................................................ 40 7.3. Thermal Impedance ...................................................................................................................................... 41 7.4. Tape and Reel Specification ......................................................................................................................... 41 Revision History .................................................................................................................................................... 42 SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 3 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET FIGURES Figure 1 Block Diagram ..................................................................................................................................... 6 Figure 2 Pin Diagram ......................................................................................................................................... 7 Figure 3 Marking Diagram ................................................................................................................................. 7 Figure 4 TCXO Connection .............................................................................................................................. 13 Figure 5 SX1255 Transmitter Analog Front-End Block Diagram ..................................................................... 15 Figure 6 FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 32 ....................................... 17 Figure 7 FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 64 ....................................... 18 Figure 8 SX1255 Receiver Analog Front-End Block Diagram ......................................................................... 19 Figure 9 SX1255 Digital Receiver Baseband Block Diagram .......................................................................... 20 Figure 10 Temperature Sensor Response ........................................................................................................ 21 Figure 11 Digital and RF Loop-Back Paths ....................................................................................................... 22 Figure 12 SPI Timing Diagram (single access) .................................................................................................. 23 Figure 13 Tx timing diagram of I and Q interface in mode A (SX1255 master) ................................................. 25 Figure 14 Tx timing diagram of I and Q interface in mode A (SX1255 slave) .................................................... 26 Figure 15 The I2S interface block in its context (mux cells are included in PAD_CTL block) ........................... 27 Figure 16 Timing diagram of I and Q interfaces in mode B1 ............................................................................. 28 Figure 17 Timing diagram of I and Q interfaces in mode B2 ............................................................................. 29 Figure 18 POR Timing Diagram ......................................................................................................................... 37 Figure 19 Manual Reset Timing Diagram .......................................................................................................... 38 Figure 20 Example Digital Modulator Implementation ....................................................................................... 38 Figure 21 SX1255 Application Schematic .......................................................................................................... 39 Figure 22 Package Outline Drawing .................................................................................................................. 40 Figure 23 Recommended Land Pattern ............................................................................................................ 40 Figure 24 Tape and Reel Specification .............................................................................................................. 41 SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 4 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET TABLES Table 1 SX1255 Pinout ..................................................................................................................................... 8 Table 2 Absolute Maximum Ratings ................................................................................................................. 9 Table 3 Operating Ranges ............................................................................................................................... 9 Table 4 Power Consumption Specification ..................................................................................................... 10 Table 5 Frequency Synthesizer Specification ................................................................................................ 10 Table 6 TX Front-End Specifications .............................................................................................................. 11 Table 7 RX Front-End Specification ............................................................................................................... 11 Table 8 SPI Digital Specification .................................................................................................................... 12 Table 9 TX Analog Filter Single Sideband Bandwidth .................................................................................... 16 Table 10 TX DAC Single Sideband Bandwidth ................................................................................................ 17 Table 11 DIO Mapping ..................................................................................................................................... 24 Table 12 Mapping of IO pins related to the I and Q transfer ............................................................................. 25 Table 13 Sampling rates 1st set ....................................................................................................................... 30 Table 14 Sampling rates 2nd set ...................................................................................................................... 30 Table 15 Number of bits per sample for the 1st set and B1 mode ................................................................... 30 Table 16 Number of bits per sample for the 2nd set and B1 mode .................................................................. 31 Table 17 Number of bits per sample for the 2nd set and B2 mode .................................................................. 32 Table 18 Number of bits per sample for the 1st set and B2 mode ................................................................... 32 Table 19 Crystal Resonator Specification ........................................................................................................ 37 Table 20 Datasheet Revision History ............................................................................................................... 42 SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 5 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 1. General Description The SX1255 is a single-chip Zero-IF RF-to-digital front-end transceiver integrated circuit ideally suited for today's high performance multi-PHY mode or SDR ISM band RF applications. The SX1255 has a maximum signal bandwidth of 500 kHz in both transmission and reception and is intended as a high performance, low-cost RF-to-digital converter and provides a generic RF front-end that allows several constant and non-constant envelope modulation schemes to be handled, such as the MR-FSK, MR-OFDM and MR-O-QPSK applications in the 400 - 510 MHz licensed and unlicensed frequency bands. The SX1255's advanced features set greatly simplifies system design whilst the high level of integration reduces the external BOM to an optional RF power amplifier, and a handful of passive decoupling and matching components. A simple 4-wire 1-bit digital serial or I2S like interface are provided for the baseband I and Q data streams to the baseband processor. The SX1255 can operate in both half and full-duplex mode and is compliant with ETSI, FCC and ARIB regulatory requirements. It is available in a MLPQ-W 5 x 5 mm 32 lead package. 1.1. Simplified Block Diagram VBAT1 VR_ANA2 VR_DIG 0 to -30dB with 2dB steps Single to diff 0 to -48dB with 6dB steps RFIN VBAT2 VR_ANA1 CT Rx pre-filter Power Distribution System 1b CT Rx pre-filter I_RX 1b RX PLL I_OUT TX PLL ATT N 2 Digital Bridge 2 mux Q_RX Fractional frequency synthesizer 32 32 I2S mux DIV 4 2 Q_OUT I_IN N 32 32 2 Q_IN DIV 4 Fractional frequency synthesizer Gain DAC DIO(2) 5b 1b DIO(3) RFOUT_P FIR-DAC Tx Filter I_TX Driver Tx Filter RFOUT_M DIO(1) 1b FIR-DAC Q_TX balun DIO(0) Registers and interface XOSC XTA XTB CLK select CLK IN CLK OUT NSS MOSI MISO SCK RESET Figure 1. Block Diagram SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 6 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 1.2. Pin and Marking Diagram The following diagrams illustrate the pin arrangement of the MLPQ-W package (top view) and the IC marking description. Figure 2. Pin Diagram Figure 3. Marking Diagram Note: yyww refers to the date code xxxxxx refers to the lot number SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 7 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 1.3. Pin Description Table 1 SX1255 Pinout Number Name Type 0 Ground - Exposed ground pad 1 VR_PA - Regulated supply for TX amplifier 2 VBAT1 - VBAT Supply voltage 3 VR_ANA1 - Regulated supply for analog TX circuit 4 GND - Ground 5 VR_DIG - Regulated supply for digital circuit 6 XTA I/O 7 GND - 8 XTB I/O Crystal pad / input for external clock 9 Reset I/O Reset 10 CLK_OUT O 36 MHz digital clock output 11 CLK_IN I 36 MHz digital clock input (SX1255 used in slave TX mode) 12 Q_IN I Digital baseband data input for I (inphase) channel DAC 13 I_IN I Digital baseband data input for Q (quadrature) channel DAC 14 Q_OUT O Digital baseband data output from I (inphase) channel ADC 15 I_OUT O Digital baseband data output from Q (quadrature) channel ADC 16 VBAT2 - VBAT supply voltage 17 SCK I SPI clock 18 MISO O Master In Slave Output SPI output 19 MOSI I Master Out Slave Input SPI input 20 NSS I SPI chip select 21 DIO0 O Digital I/O, software configured 22 DIO1 O Digital I/O, software configured 23 DIO2 O Digital I/O, software configured 24 DIO3 O Digital I/O, software configured 25 VR_ANA2 - Regulated supply for analog RX circuit 26 GND - Ground 27 RF_IN I RX LNA input 28 GND - Ground 29 RF_ON O Differential TX Output, negative node 30 RF_OP O Differential TX Output, positive node 31 GND - Ground 32 VBAT3 - VBAT supply for TX amplifier SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Description Crystal pad Ground Page 8 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 2. Electrical Characteristics 2.1. ESD Notice The SX1255 is a high performance radio frequency device. Class 2 of the JEDEC standard JESD22-A114-C (Human Body Model) on all pins Class III of the JEDEC standard JESD22-C101-C (Charged Device Model) on all pins 2.2. Absolute Maximum Ratings Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for extended periods may affect device reliability. Table 2 Absolute Maximum Ratings Symbol Description Min Max Units VDDmr Maximum Supply Voltage -0.5 3.9 V Tmr Maximum Temperature -55 115 C Tj Maximum Junction Temperature - 125 C Pmr Maximum RF Input Level - +6 dBm 2.3. Operating Range Operating ranges define the limits for functional operation and parametric characteristics of the device as described in this section. Functionality outside these limits is not implied. Table 3 Operating Ranges Symbol Description Min Max Units VDDop Operational Supply Voltage 2.7 3.6 V Top Operational Temperature -40 +85 C Clop Load Capacitance on Digital Ports - 25 pF ML RF Input Level - 0 dBm SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 9 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 2.4. Electrical Specifications The table below gives the electrical specifications of the transceiver under the following conditions: supply Voltage = 3.3 V, temperature = 25 C, fXOSC = 36 MHz, fRF = 434 MHz, Output power = -5 dBm (100 ohm differential transmission), TXBWANA = 250 kHz, RXBWANA = 250 kHz, mode A, external baseband RX filter = 150 kHz, unless otherwise specified. Note: RF performance depends on assembly. Electrical specifications listed below are obtained with the QFN package described in section 7 "Packaging Information". 2.4.1. Power Consumption Table 4 Power Consumption Specification Symbol Description IDDSL Supply Current in Sleep Mode IDDST Supply Current in Standby Mode IDDRX Supply Current in Receive Mode IDDTX Supply Current in Transmit Mode Conditions Crystal oscillator enabled RFOutput Power = -5 dBm Min Typ Max Units - 0.2 1 uA - 1.15 1.5 mA - 18 25 mA - 60 90 mA 2.4.2. Frequency Synthesis Table 5 Frequency Synthesizer Specification Symbol Description Conditions Min Typ Max Units FR Synthesizer Frequency Range Programmable 400 - 510 MHz FXOSC Crystal Oscillator Frequency See Section 5 32 36 36.864 MHz TS_OS Crystal Oscillator Wake-up Time From sleep mode - 300 500 us TS_FS RX Frequency Synthesizer Wake-up Time Crystal Oscillator Enabled - 50 150 us FSTEP Frequency Synthesizer Step Size FSTEP = FXOSC / 220 30.5 34.3 35.16 Hz TS_HOP_RX RX Frequency Synthesizer Hop Time (to within 10 kHz of target frequency) 200 kHz step 400 kHz step 1.2 MHz step 25 MHz step - 20 20 30 50 - us us us us TS_HOP_TX RX Frequency Synthesizer Hop Time (to within 10 kHz of target frequency) 200 kHz step 400 kHz step 1.2 MHz step 25 MHz step - 20 20 30 50 - us us us us SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 10 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 2.4.3. Transmitter Front-End Table 6 TX Front-End Specifications Symbol Description Conditions Min Typ Max Units FCLK_IN External Clock Frequency for TX Synthesizer or DAC input clock SX1255 slave mode 32 - 36.864 MHz TS_TR Transmitter Wake-up Time Frequency synthesizer enabled - 120 - us TXPmax TX Maximum Output Power Saturated Power +4 +7 - dBm TXP1dB TX 1 dB Compression Point Peak Value +2 +5 - dBm TXOIP3 TX Output IP3 -5 dBm average output power +13 +16 - dBm PHN Transmitter Phase Noise 10 kHz offset from carrier 100 kHz offset from carrier 1 MHz offset from carrier - -110 -108 -128 - dBc/Hz dBc/Hz dBc/Hz PHNF Transmitter Output Noise Floor 10 MHz offset from carrier -128 -135 - dBc/Hz PHNID Transmitter Integrated DSB Phase Noise Integrated bandwidth from 500 Hz to 125 kHz - 0.2 1.5 RMS TXGM Transmitter IQ Gain Mismatch - 0.5 1 dB TXPM Transmitter IQ Phase Mismatch - 1 3 TXBWANA Transmitter Analog Prefilter BW (DSB) Programmable in 31 steps 420 - 1700 kHz TXBWANAPrc Transmitter Analog Prefilter BW precision -30 - +30 % TXBWDIFG Transmitter FIR-DAC Taps Programmable 24 - 64 - TXLO TX LO Leakage (Before DC offset Calibration) ADC rms input: -10 dBFS - -8 - dBc TXEVM Transmitter Error Vector Magnitude tbd dB 2.4.4. Receiver Front-End Table 7 RX Front-End Specification Symbol Description Conditions Min Typ Max Units FCLK_IN External Clock Frequency for RX ADC SX1255 slave mode 32 - 36.864 MHz CLK_INJ External Clock Jitter Specification External clock. White noise - - 0.01 % RXNF Receiver Noise Figure Maximum LNA Gain Maximum LNA Gain -6dB Minimum LNA Gain - 4.5 6.5 38 7 9 40 dB - 70 - dB -28 -21 +10 -23 -16 +20 - dBm RXGR RX Gain Range Adjustable in 2 dB steps IIP3 3rd Order Input Intercept Point Unwanted tones are 2 MHz and 3.8 MHz above the LO Maximum LNA Gain Maximum LNA Gain -6dB Minimum LNA Gain SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 11 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS Table 7 DATASHEET RX Front-End Specification Symbol Description RXGM Conditions Min Typ Max Units Receiver IQ Gain Mismatch - 0.5 1 dB RXPM Receiver IQ Phase Mismatch - 0.5 3 RXBWANA Receiver Analog Prefilter BW (SSB) Programmable 500 - 1500 kHz TS_RE Receiver Wake-up Time Frequency synthesizer enabled - tbd - ms Min Typ Max Units 2.4.5. SPI Bus Digital Specification Table 8 SPI Digital Specification Symbol Description VIH Digital Input High Level 0.8 - - VDD VIL Digital Input Low Level - - 0.2 VDD VOH Digital Output High Level Imax = 1 mA 0.9 - - VDD VOL Digital Output Low Level Imax = -1 mA - - 0.1 VDD FSCK SCK Frequency - - 10 MHz tch SCK High Time 50 - - ns tcl SCK Low Time 50 - - ns trise SCK Rise Time - 5 - ns tfall SCK Fall Time - 5 - ns tsetup MOSI Set-up Time From MOSI change to SCK rising edge 30 - - ns thold MOSI Hold Time From SCK rising edge to MOSI change 60 - - ns tnsetup NSS Set-up Time From NSS falling edge to SCK rising edge 30 - - ns tnhold NSS Hold Time From SCK falling edge to NSS rising edge 100 - - ns tnhigh NSS High Time Between SPI Access 20 - - ns tdata Data Hold and Set-up Time 250 - - ns SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Conditions Page 12 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 3. Chip Description This section describes the architecture of the SX1255 Multi-PHY mode transceiver. 3.1. Power Supply Strategy The SX1255 employs an advanced power distribution scheme (PDS), which provides stable operating characteristics over the full temperature and voltage range of operation. The SX1255 can be powered from any low-noise voltage source via pins VBAT1, VBAT2 and VBAT3. Decoupling capacitors should be connected, as suggested in the reference design, on VR_PA, VR_DIG, VR_ANA1 and VR_ANA2 pins to ensure a correct operation of the built-in voltage regulators. 3.2. Low Battery Detector A low battery detector is also included allowing the generation of an interrupt signal in response to passing a programmable threshold adjustable through the register RegLowBat. The interrupt signal can be mapped to the DIO0 pin, through the programmation of RegDioMapping. 3.3. Frequency Synthesizer The SX1255 incorporates two separate state of the art fractional-N PLLs for the TX and RX circuit blocks 3.3.1. Reference Oscillator The crystal oscillator is the main timing reference of the SX1255. It provides the reference source for the transmit and receive frequency synthesizers and as a clock for digital processing. The XO startup time, TS_OSC, depends on the actual XTAL being connected on pins XTA and XTB. When using the builtin sequencer, the SX1255 optimizes the startup time and automatically triggers the PLL when the XO signal is stable. To manually control the startup time, the user should monitor the signal CLK_OUT which will only be made available on the output buffer when a stable XO oscillation is achieved. An external crystal controlled source, such as a clipped-sinewave TCXO, clock can be used to replace the crystal oscillator, This external source should be provided on XTB (pin 8) and XTA (pin 6) should be left open, as illustrated in Figure 4, below. XTA GND XTB VCC OP VCC GND CD Figure 4. TCXO Connection SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 13 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET The peak-peak amplitude of the input signal must never exceed 1.8 V. Please consult your TCXO supplier for an appropriate value of decoupling capacitor, CD. Due to the low jitter requirements required by the receiver digital block it is recommended that only a crystal controlled external frequency source is used. 3.3.2. CLK_OUT Output For master mode operation the SX1255 provides a system clock output made available at pin CLK_OUT. 3.3.3. PLL Architecture The SX1255 incorporates two fourth-order type fractional-N sigma-delta PLLs. The PLLs include integrated VCO and programmable bandwidth loop filter, removing the need for any external components. The PLLs are autocalibrating and are capable of fast switching and settling times. 3.3.3.1. VCO Both TX and RX VCOs operate at twice the RF frequency, with the oscillators centered at 1.9 GHz. This reduces any LO leakage in receive mode, to improve the quadrature precision of the receiver, and to reduce the pulling effects on the VCO during transmission. The VCO calibration is fully automated, calibration times are fully transparent to the end-user as the processing time is included in the TS_TR and TS_RE specifications. 3.3.3.2. PLL Bandwidth The bandwidth of the PLL loop filters are independently configurable via the configuration registers TxPllBw and RxPllBw for the modulation schemes supported, as well as fast channel switching and lock times to support FHSS and frequency agile applications, such as AFA. 3.3.3.3. Carrier Frequency and Resolution Both the TX and RX embed a 20-bit sigma-delta modulator and the frequency resolution, constant over the entire frequency range, is calculated using the following formula: F XOSC F STEP = --------------20 2 The RX and RX carrier frequencies are programmed through registers RegFrfRx and RegFrfTx, split across register addresses 0x01 to 0x03 and 0x04 to 0x06, respectively, and are calculated by: F RF = F STEP x Frfxx ( 23, 0 ) where: Frfxx is the integer value of the RegFrfRx or RegFrfTx as defined above. Note: As stated above, the Frfxx settings are split across 3 bytes for both the transmitter and receiver frequency synthesizers. A change in the center frequency will only be taken into account when the least significant byte FrfxxLsb in RegFrfxxLsb is written and when exiting SLEEP mode SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 14 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 3.3.3.4. PLL Lock Time RX and TX PLL lock times are a function of a number of technical factors, such as synthesized frequency, frequency step, etc. The SX1255 includes an auto-sequencer that manages the start-up sequence of the PLL. 3.3.3.5. Lock Detect Indicator A lock indication signal for both RX and TX PLLs can be accessed via DIO pins, and is toggled high when the PLL reaches its locking range. Please refer to Figure 11 to map this interrupt to the desired DIO pins. 3.4. Transmitter Analog Front-End Description The analog front-end of the SX1255 transmitter stage comprises the TX frequency synthesizer, I and Q channel filters, the I / Q mixer and RF amplifier blocks. 3.4.1. Architectural Description The block diagram of the transmitter front-end block is illustrated below. TX Fractional-N Frequency Synthesizer RF Loop-Back (To RX) Div by 2 4 Differential I-Channel Filter I-Channel DAC RF_OP Driver RF_ON Differential I/Q Mixer Q-Channel DAC Differential Q-Channel Filter Figure 5. SX1255 Transmitter Analog Front-End Block Diagram 3.4.2. TX I / Q Channel Filters Differential analog I and Q signals input to the TX Front-End from the TX FIR DAC are filtered by I and Q channel filters. These filters smooth the reconstructed analog waveforms and remove quantization noise generated by the I and Q channel TX FIR DACs. The filters are unity gain third-order low pass Butterworth types with programmable bandwidth configured via TxAnaBw. The 3 dB BW of the analog TX filter BW can be calculated from: 17.15 BW 3dB = -----------------------------------------------------------------( 41 - RegTxBwAna ( 4, 0 ) ) SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 15 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET The analog filter bandwidth should be set to greater than the signal bandwidth so as to reduce any group delay variations. The range of programmable TX analog filter bandwidths is tabulated below in Table 9. Table 9 TX Analog Filter Single Sideband Bandwidth TxAnaBw (Dec) TxAnaBw (Bin) SSB Filter BW (kHz) TxAnaBw (Dec) TxAnaBw (Bin) SSB Filter BW (kHz) 0 00000 209 16 10000 343 1 00001 214 17 10001 357 2 00010 220 18 10010 373 3 00011 226 19 10011 390 4 00100 232 20 10100 408 5 00101 238 21 10101 429 6 00110 245 22 10110 451 7 00111 252 23 10111 476 8 01000 260 24 11000 504 9 01001 268 25 11001 536 10 01010 277 26 11010 572 11 01011 286 27 11011 613 12 01100 296 28 11100 660 13 01101 306 29 11101 715 14 01110 318 30 11110 780 15 01111 330 31 11111 858 3.4.3. TX I / Q Up-Conversion Mixers The TX I / Q mixer block mixes the baseband analog I and Q signals with that from the PLL frequency synthesizer and up converts to the RF carrier frequency. The mixer block includes a highly linear I/ Q mixer stage with programmable gain configurable via configuration register RegTxGain. The modulated RF signal is input to the TX RF amplifier stage. 3.4.4. RF Amplifier The TX amplifier receives the input signal from the TX mixer and provides two differential outputs. The first output provides the RF_OP and RF_ON signals in TX mode. The second output is used to provide an internal differential signal to the receiver during RX gain calibration. The amplifier provides good linear performance required to meet the peak to average power level variation of OFDM. The peak output power is +5 dBm, which allows for an average output power of greater than -5 dBm with 10 dB back-off. The Output signal is intended to be amplified through a suitable external RF power amplifier to the maximum permissible SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 16 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET level allowed by relevant regulatory standards. The optimum load impedance presented RF amplifier is 100 ohms differential. 3.5. Transmitter Digital Baseband Description The transmitter digital baseband section contains separate I and Q channel digital-to-analog convertors. 3.5.1. Digital-to-Analog Converters The TX DAC is the first block of the SX1255 transmitter. It accepts the 1-bit I and Q noise shaped 32 to 36 Msample/ second or I2S datastream from the baseand processor and converts into two analog differential signals. Each TX DAC provides 8-bits of resolution in a 500 kHz bandwidth which corresponds to maximum RF transmitted double sideband bandwidth of 1 MHz. A programmable Finite Impulse Response (FIR) filter allows the removal of the digital modulator noise from the external baseband processor. The number of taps implemented by the FIR-DAC and subsequent single-side DAC bandwidth is controlled by the parameter TxDacBw. Table 10 TX DAC Single Sideband Bandwidth TxDacBw (Dec) TxDacBw (Bin) No. DAC-FIR Taps 0 000 24 1 001 32 2 010 40 3 011 48 4 100 56 5 101 64 SSB Filter BW (kHz) 450 290 Examples of the FIR DAC normalized magnitude response are illustrated below. Figure 6. FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 32 SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 17 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET Figure 7. FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 64 The DAC 3dB bandwidth is proportional to the sampling frequency fs and inversely proportional to the number of taps N. In the case where fS = 32MHz with N = 32 the 3 dB bandwidth is typically 450 kHz. Reducing the bandwidth may be useful to reduce the quantisation noise contribution when the signal bandwidth request is lower, as is illustrated in the case where N = 64, resulting in a 3 dB bandwidth of approximately 290 kHz. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 18 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 3.6. Receiver Analog Front-End Description The SX1255 Receiver Front-End is based upon a Zero-IF architecture, ideally suited to handle multiple complex modulation schemes. The RX chain incorporates a programmable gain LNA and single to differential buffer, I / Q mixer, separate I and Q channel analog low-pass filters and programmable baseband amplifiers. The amplified differential analog I and Q outputs are input to two 5th order continuous-time Sigma-Delta Analog to Digital Converters (ADC) for further signal processing in the digital domain. 3.6.1. Architectural Description The block diagram of the receiver front-end block is illustrated below. LNA I-Channel Pre-Filter Singleto Differential Balun I-Channel Baseband Amplifier I-Channel CT ADC RF_IN Differential I/Q Mixer Q-Channel CT ADC Q-Channel Pre-Filter RF LoopBack (From TX) Q-Channel Baseband Amplifier Div by 4 TX Fractional-N FrequencySynthesizer Figure 8. SX1255 Receiver Analog Front-End Block Diagram 3.6.2. LNA and Single to Differential Buffer The LNA uses a common-gate topology, which allows for a flat characteristic over the whole frequency range. It is designed to have an input impedance of 50 Ohms or 200 Ohms (as selected with bit LnaZin in RegRxAnaGain). A single to differential buffer is implemented to improve the second order linearity of the receiver. The LNA gain, including the single-to-differential buffer, is programmable over a 48 dB dynamic range, and gain control can be enabled via an external AGC function. 3.6.3. I /Q Downconversion Quadrature Mixer The mixer is inserted between output of the RF buffer stage and the input of the I and Q channel analog low-pass filter stages.This block is designed to downconvert the spectrum of the input RF signal to base-band and offers both high IIP2 and IIP3 responses. 3.6.4. Baseband Analog Filters and Amplifiers The differential I and Q baseband mixer signals are pre-filtered by a programmable 1st order low-pass pre-filter and input to programmable linear baseband amplifiers. The single sideband 3 dB bandwidth of the pre-filters can be programmed between 500 kHz and 1500 kHz. This additional pre-filtering improves the selectivity of the receiver for complex modulation schemes, such as OFDM. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 19 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET The amplifier stage gain offers 32 dB of programmable gain, in 2 dB steps, from -24 dB to +6 dB via configuration register RegRxAnaGain while the analog filter bandwidth is programmed via the two least significant bits of configuration register RegRxBw. 3.7. Receiver Digital Baseband The receiver digital baseband section contains separate I and Q channel continuous time Sigma-Delta analog-to-digital converters to digitize and filter the analog bit stream. 3.7.1. Architectural Block Diagram The block diagram of the receiver digital baseband is illustrated below. I-Channel Baseband Amplifier I(t) 1-bit serial stream I-Channel CT ADC Q-Channel CT ADC SX1255 SX1257 Q(t) 1-bit serial stream LOGIC Q-Channel Baseband Amplifier DSP CLK_IN or CLK_OUT DSP INTERFACE Figure 9. SX1255 Digital Receiver Baseband Block Diagram 3.7.2. Analog-to-Digital Converters The receiver digital baseband consists of separate I and Q channel 5th order continuous-time sigma-delta modulator analog -to-digital converters which sample and digitize the analog baseband I and Q signals output at the analog baseband amplifiers. The ADC output allows for 13-bits of resolution after decimation and filtering by the external baseband processor within a 500 kHz maximum bandwidth, corresponding to a maximum RF received double sideband bandwidth of 1 MHz. The ADC output is one bit per channel quadrature bit stream at 32 to 36 MSamples/s or I2S data-stream. 3.7.3. Temperature Sensor The receiver ADC can be used to perform a temperature measurement by digitizing the sensor response. The response of the sensor is -1C / Lsb. Since a CMOS temperature sensor is not accurate by nature, the sensor should be calibrated at ambient temperature for a precise reading. It takes less than 100 us for the SX1255 to evaluate the temperature (from setting RxAdcTemp = "1"). The AdcTemp value can be read at Q_OUT. Since there is no on-chip decimation or averaging it is recommended that data on Q_OUT is externally processed, for example using a simple FFT. The temperature measurement should be performed with the SX1255 in StandbyEnable Mode (RegMode = 0x01). SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 20 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET RxAdcTemp -1C/Lsb RxAdcTemp(t) RxAdcTemp(t-1) Returns 150d (typ.) Needs calibration -40C t t+1 Ambient +85C Figure 10. Temperature Sensor Response 3.8. Loop-Back The SX1255 provides mechanisms to both monitor and externally calibrate both the RF transmission path and the I and Q bit streams generated by the external baseband processor. 3.8.1. Digital Loop-Back The digital loop-back enables the connection of the input and output I and Q baseband bit streams prior to processing by the SX1255. This loop back path enables the validation of the transmitter and receiver baseband processing paths. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 21 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 3.8.2. RF Loop Back The RF loop-back path connects the balanced RF output signal of the transmitter driver stage to the output of the differential mixer of the receiver. This path provides a mechanism for the external baseband processor to implement a calibration for the following: - Receiver I, Q gain mismatch - Receiver I and Q phase imbalance - Transmitter I, Q gain mismatch - Transmitter I and Q phase imbalance - Transmitter DC offset Figure 11. Digital and RF Loop-Back Paths SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 22 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 4. Digital Interface 4.1. General overview The SX1255 has several operating modes, configuration parameters and internal status indicators. All these operating modes, configuration parameters and status information are stored in internal registers that may be accessed by the external micro-controller via the serial SPI interface. 4.2. Definition and operation of the SPI interface The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to CPOL = 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implemented. Three access modes to the registers are provided: SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and a read byte is received for the read access. The NSS pin goes low at the begin of the frame and goes high after the data byte. BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally between each data byte. This mode is available for both read and write accesses. The NSS pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the last byte transfer. Figure 12 below shows a typical SPI single access to a register. Figure 12. SPI Timing Diagram (single access) MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the rising edge of SCK. MISO is generated by the slave on the falling edge of SCK. A transfer always starts by the NSS pin going low. MISO is high impedance when NSS is high. The first byte is the address byte. It is made of: wnr bit, which is 1 for write access and 0 for read access 7 bits of address, MSB first The second byte is a data byte, either sent on MOSI by the master in case of a write access, or received by the master on MISO in case of read access. The data byte is transmitted MSB first. Succeeding bytes may be sent on MOSI (for write access) or received on MISO (for read access) without rising NSS and re-sending the address. The address is then automatically incremented at each new byte received (BURST mode). SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 23 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET The frame ends when NSS goes high. The next frame must start with an address byte. The SINGLE access mode is actually a special case of BURST mode with only 1 data byte transferred. During the write accesses, the byte transferred from the slave to the master on the MISO line is the value of the written register before the write operation. 4.3. Digital IO Pin Mapping Four general purpose IO pins are available on the SX1255 and their configuration is controlled through the RegDioMapping configuration register. Mode Diox Mapping DIO3 DIO2 DIO1 DIO0 Sleep 00 - - - - 01 - - - - 10 - - - - 11 - - - 00 - xosc_ready - - 01 - - - - 10 - - - - 11 - - - - 00 pll_lock_rx - - pll_lock_rx 01 - - - pll_lock_rx 10 - - - pll_lock_rx 11 - - - Low Bat 00 pll_lock_tx - pll_lock_tx - 01 - - - - 10 - - - - 11 - - - - Standby RX TX Table 11 DIO Mapping 4.4. I and Q interface 4.4.1. General description There are two main ways of transferring the I and Q signals between the SX1255 and the external digital circuit. In mode A, the I and Q signals are directly the outputs of the sigma-delta modulator in Rx, and the inputs of the FIR-DAC in Tx. This mode is the one which is implemented in the SX1255 circuit. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 24 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET In mode B, the I and Q signals are pre- and post-processed by the internal digital bridge. In Rx the I and Q signals are decimated inside the chip and in Tx the I and Q signals are interpolated and modulated internally. In this mode the signals are transferred via an I2S-like protocol working in two possible configurations. The table below gives the mapping of the pins as a function of the selected mode. Pins Mode A Mode B1 Mode B2 10) CLK_OUT CLK_OUT CLK_OUT CLK_OUT 11) CLK_IN CLK_IN Not used Not used 12) Q_IN Q_IN Q_IN Not used 13) I_IN I_IN I_IN IQ_IN 14) Q_OUT Q_OUT Q_OUT Not used 15) I_OUT I_OUT I_OUT IQ_OUT 23) DIO2 Not used WS WS Table 12 . Mapping of IO pins related to the I and Q transfer 4.4.2. Mode A The convention of the I and Q interface for the Rx link in mode A is that the data is delivered on a rising edge of the internal clock, available on CLK_OUT. For the Tx link, the Tx DACs can be used either with the internal clock, available on CLK_OUT for data synchronization (SX1255 master) or with an input clock CLK_IN (SX1255 slave). The figure below provides the timing diagram for the Tx link in mode A, in the case SX1255 is master: CLK_OUT I/Q tsetup thold data stable data stable Figure 13. Tx timing diagram of I and Q interface in mode A (SX1255 master) To relax the constraints on the setup and hold time, when SX1255 is used as master, it is recommended to use the falling edge of the clock (CLK_OUT) to provide the I&Q bitstreems to the chip. The circuit will sample the data on the next falling edge of the clock. tsetup_min = 14 ns thold_min = 0 ns SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 25 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET The figure below provides the timing diagram for the Tx link in mode A, in the case SX1255 is slave: CLK_IN thold tsetup I/Q data stable data stable Figure 14. Tx timing diagram of I and Q interface in mode A (SX1255 slave) In the case SX1255 is slave, CLK_IN is provided externally. The I/Q bitstreems should be provided on the rising edge of the CLK_IN clock and the circuit will sample the data on the falling edge of the clock. tsetup_min = 0 ns thold_min = 6 ns 4.4.3. Mode B 4.4.3.1. Introduction In mode B, the I and Q signals are pre- and post-processed by the internal digital bridge. An I2S based interface provides an easy way to transfer parallel I/Q data between the SX1255 and an external baseband chip. In Rx mode, the serial I/Q data coming from the RF front-end (I_RX/Q_RX) is decimated in the digital bridge to generate parallel I/Q signals at a sampling rate depending on the programmed decimator factor. The I2S interface block is able then to convert this parallel I/Q data (buses i_in_bridge[31:0] / q_in_bridge[31:0]) into one or two I2S serial bitstream(s) and send it to an external baseband signal along with the other I2S signals as defined by the standard. Similarly, in Tx mode the FIR-DACs are fed by two serial I/Q bitstreems coming from the digital bridge (I_TX/Q_TX). The I2S interface is able to convert the I2S serial data coming from an external baseband chip into parallel I/Q signals (buses SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 26 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET i_out_bridge[31:0]/q_out_bridge[31:0]). Then these parallels signals are interpolated and modulated before being fed to the FIR_DACs. The figure below shows the I2S interface in its context in mode B: Q_RX iism_sd_i_out I_OUT mux i_in_bridge[31:0] N mux I_RX ADC q_in_bridge[31:0] N iism_sd_q_out RX BRIDGE in_rdy iism_ws CLK_XTAL out_rdy TX BRIDGE mux I_TX DAC mux Q_TX DAC I2S INTERFACE I_IN N N i_out_bridge[31:0] iism_sd_i_in q_out_bridge[31:0] iism_sd_q_in Q_OUT mux ADC DIO2 EXTERNAL BASEBAND CHIP Q_IN mux iism_sck_out CLK_XTAL mux CLK_OUT CLK_IN XTAL Figure 15. The I2S interface block in its context (mux cells are included in PAD_CTL block) In B mode, the I2S interface is master of the I2S bus. The block generates the usual I2S signal, the clock CLK_OUT, the word select WS (available on DIO2 pin) and one or two serial data. It also samples the serial data coming from the external chip. Mode B1 is an extension of the I2S format, where the I and Q serial data are not multiplexed on the same line but put or accepted on 2 pins I_OUT/Q_OUT or I_IN/Q_IN respectively in I2S transmitter mode or in I2S receiver mode. In mode B1, the WS frequency corresponds to half of the sampling rate of the parallel I/Q signals. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 27 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET The figure below shows the timing diagram in B1 mode for samples of 8 bits wide, as an example, actually the number of bits is variable, as explained later on in this document. CLK_OUT WS I_OUT or I_IN In-1[1] In-1[0] In[7] In[6] In[1] In[0] In+1[7] In+1[6] Qn+1[7] Qn+1[6] Nth sample of I Q_OUT or Q_IN Qn-1[1] Qn-1[0] Qn[7] Qn[6] Qn[1] Qn[0] Nth sample of Q Figure 16. Timing diagram of I and Q interfaces in mode B1 Mode B2 is purely I2S compatible and the I/Q serial data is multiplexed on the I_OUT pin (Tx mode) or pin I_IN (Rx mode). Serial data with WS polarity set to "0" corresponds to I signal while WS polarity set to "1" corresponds to Q signal. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 28 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET The figure below shows an example of timing diagram in B2 mode: CLK_OUT WS IQ_OUT or IQ_IN Qn-1[1] Qn-1[0] In[7] In[1] In[6] In[0] Qn[6] Qn[7] Nth sample of I Figure 17. Timing diagram of I and Q interfaces in mode B2 In B mode the WS is one CLK_OUT clock period ahead of time. The digital bridge and the I2S interface are automatically started in Tx and Rx mode as soon as the corresponding modes are activated. Disabled control bits are available in test mode. The full duplex run is possible, but the user must be aware that in this case input and output I2S frames have the same format, hence the decimator and interpolation factors must be identical. 4.4.3.2. Parameters Two main parameters are programmable: - the decimation/interpolation factor - the frequency of the output clock CLK_OUT. The decimation/interpolation factor is programmable on 2 sets of 14 values.The ratios are defined as follows: m R = MANT 3 2 n where MANT is 8 for the 1st set and 9 for the 2nd set, m can be 0 or 1, and n is an integer between 0 and 6. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 29 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET The ratios available and the corresponding sampling rates are given in the tables below for 32MHz, 36.864MHz and Sampling Rates vs Decimation / Interpolation factor [MS/s] 8 16 24 32 48 64 96 128 192 256 384 512 768 1536 32MHz xtal 4 2 1.333 1 0.667 0.5 0.333 0.25 0.167 0.125 0.083 0.063 0.042 0.021 36.864MHz xtal 4.608 2.304 1.536 1.152 0.768 0.576 0.384 0.288 0.192 0.144 0.096 0.072 0.048 0.024 36 54 72 108 144 216 288 432 576 864 0.167 0.125 0.083 0.063 0.042 Table 13 Sampling rates 1st set 36MHz crystals. Sampling Rates vs Decimation / Interpolation factor [MS/s] 36MHz xtal 9 4 18 2 27 1.333 1 0.667 0.5 0.333 0.25 1728 0.021 Table 14 Sampling rates 2nd set Other frequencies between 32 and 36.9 MHz can be used with any decimation factor. The frequency of the output clock CLK_OUT is equal to the crystal frequency divided by a ratio programmable on several values which are 1, 2, 4, 8, 12, 16, 24, 32 and 48. In IISM test mode, any integer between 1 and 64 can be selected. The number of bits per sample depends on the decimation/interpolation factor (2 sets of 14 values) as well as the frequency of the CLK_OUT clock (9 possibilities) and the type of B mode. The allowed number of bits is between 8 and 32. In IISM test mode, any number of bits between 4 and 32 can be selected. Less than 4 bits is not possible for implementation reason In B2 mode, there is a new I/Q sample every period of WS. In B1 mode, there are two I/Q samples every WS period, and the WS frequency is reduced by a factor of 2. This mode allows to allocate twice more bits per I/Q sample. Only a limited number of parameters combination generate valid I2S frames. Therefore the valid combination are clearly documented and the other ones aborts the I2S interface. The tables below illustrate this statement. Depending on the XTAL/CLK_OUT divider and the decimation/interpolation factor, the number of bits per samples are computed for the 2 predefined sets. Combination with a number of bits higher than 32 and lower than 8 are disabled in functional mode ("NA") and an error bit is set. CLK_OUT/XTAL 1 2 4 8 12 16 24 32 48 8 8 NA NA NA NA NA NA NA NA 16 16 8 NA NA NA NA NA NA NA Decimation/ interpolation factor Table 15 Number of bits per sample for the 1st set and B1 mode SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 30 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS CLK_OUT/XTAL DATASHEET 1 2 4 8 12 16 24 32 48 24 12 NA NA NA NA NA NA NA 32 32 16 8 NA NA NA NA NA NA 48 NA 24 12 NA NA NA NA NA NA 64 NA 32 16 8 NA NA NA NA NA 96 NA NA 24 12 8 NA NA NA NA 128 NA NA 32 16 NA 8 NA NA NA 192 NA NA NA 24 16 12 8 NA NA 256 NA NA NA 32 NA 16 NA 8 NA 384 NA NA NA NA 32 24 16 12 8 512 NA NA NA NA NA 32 NA 16 NA 768 NA NA NA NA NA NA 32 24 16 1536 NA NA NA NA NA NA NA NA 32 Decimation/ interpolation factor 24 Table 15 Number of bits per sample for the 1st set and B1 mode CLK_OUT/XTAL 1 2 4 8 12 16 24 32 48 Decimation/ interpolation factor 9 9 NA NA NA NA NA NA NA NA 18 18 9 NA NA NA NA NA NA NA 27 27 NA NA NA NA NA NA NA NA 36 NA 18 9 NA NA NA NA NA NA 54 NA 27 NA NA NA NA NA NA NA 72 NA NA 18 9 NA NA NA NA NA 108 NA NA 27 NA 9 NA NA NA NA 144 NA NA NA 18 12 9 NA NA NA 216 NA NA NA 27 18 NA 9 NA NA 288 NA NA NA NA 24 18 12 9 NA 432 NA NA NA NA NA 27 18 NA 9 576 NA NA NA NA NA NA 24 18 12 864 NA NA NA NA NA NA NA 27 18 1728 NA NA NA NA NA NA NA NA NA Table 16 Number of bits per sample for the 2nd set and B1 mode SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 31 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS CLK_OUT/XTAL DATASHEET 1 2 4 8 12 16 24 32 48 NA NA NA NA NA NA NA NA NA 16 8 NA NA NA NA NA NA NA NA 24 12 NA NA NA NA NA NA NA NA 32 16 8 NA NA NA NA NA NA NA 48 24 12 NA NA NA NA NA NA NA 64 32 16 8 NA NA NA NA NA NA 96 NA 24 12 NA NA NA NA NA NA 128 NA 32 16 8 NA NA NA NA NA 192 NA NA 24 12 8 NA NA NA NA 256 NA NA 32 16 NA 8 NA NA NA 384 NA NA NA 24 16 12 8 NA NA 512 NA NA NA 32 NA 16 NA 8 NA 768 NA NA NA NA 32 24 16 12 8 1536 NA NA NA NA NA NA 32 24 16 Decimation/ interpolation factor 8 Table 17 Number of bits per sample for the 1st set and B2 mode CLK_OUT/XTAL 1 2 4 8 12 16 24 32 48 9 NA NA NA NA NA NA NA NA NA 18 9 NA NA NA NA NA NA NA NA 27 NA NA NA NA NA NA NA NA NA 36 18 9 NA NA NA NA NA NA NA 54 27 NA NA NA NA NA NA NA NA 72 NA 18 9 NA NA NA NA NA NA Decimation/ interpolation factor 108 NA 27 NA NA NA NA NA NA NA 144 NA NA 18 9 NA NA NA NA NA 216 NA NA 27 NA 9 NA NA NA NA 288 NA NA NA 18 12 9 NA NA NA 432 NA NA NA 27 18 NA 9 NA NA 576 NA NA NA NA 24 18 12 9 NA 864 NA NA NA NA NA 27 18 NA 9 1728 NA NA NA NA NA NA NA 27 18 Table 18 Number of bits per sample for the 2nd set and B2 mode The parallel I/Q data bus is expected to be 32-bits wide. Hence, if the number of bits per frame is lower, the I/Q data is truncated, either MSBs or the LSBs are taken, according to a configuration bit, iism_trunc_mode. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 32 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 5. Configuration and Status Registers 5.1. General Description Notes - Reset values are automatically refreshed at Power on Reset - DEFAULT values are the Semtech recommended register values, optimizing the device operation - Registers for which the DEFAULT value differs from the RESET values are denoted by a * in the tables of this section Address Bits Name Mode Reset Description General registers MODE (0x00) 7-4 - r 0x00 unused 3 driver_enable rw 0x00 enables the PA driver 2 tx enable rw 0x00 enables the complete TX part of the frontend (except the PA) 1 rx_enable rw 0x00 enables the complete RX part of the frontend 0 ref_enable rw 0x01 enables the PDS & XOSC FRFH_RX (0x01) 7-0 freq_rf_rx(23:16) rw 0xC0 MSB of RF RX carrier frequency FRFM_RX (0x02) 7-0 freq_rf_rx(15:8) rw 0xE3 MSB of RF RX carrier frequency FRFL_RX (0x03) 7-0 freq_rf_rx(7:0) rw 0x8E LSB of RF RX carrier frequency F(XOSC) freq_rf_rx f RF_RX = ----------------------------------------------------20 2 Resolution is 34.3323 Hz if F(XOSC) = 36 MHz. Default value is 0xC0E38E = 434 MHz. The RX RF frequency is taken into account internally only when: - FRFL_RX is written - leaving SLEEP mode (ref_enable 0 1 transition) FRFH_TX (0x04) 7-0 freq_rf_tx(23:16) rw 0xC0 MSB of RF TX carrier frequency FRFM_TX (0x05) 7-0 freq_rf_tx(15:8) rw 0xE3 MSB of RF TX carrier frequency FRFL_TX (0x06) 7-0 freq_rf_tx(7:0) rw 0x8E LSB of RF TX carrier frequency F(XOSC) freq_rf_txf RF_TX = ---------------------------------------------------20 2 Resolution is 34.3323 Hz if F(XOSC) = 36 MHz. Default value is 0xC0E38E = 434 MHz. The TX RF frequency is taken into account internally only when: - FRFL_TX is written - leaving SLEEP mode (ref_enable 0 1 transition) VERSION (0x07) 7-0 chip_version(7:0) SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation r 0x11 Version code of the chip. Bits 7-4 give the fill revision number, bits 3-0 give the metal mask revision number. Current value is V1A Page 33 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS Address Bits Name DATASHEET Mode Reset Description Transmitter registers TXFE1 (0x08) TXFE2 (0x09) TXFE3 (0x0A) TXFE4 (0x0B) 7 unused r 0x00 6-4 tx_dac_gain(2:0) rw 0x02 3-0 tx_mixer_gain(3:0) rw 0x0E Mixer gain, steps of about 2 dB: * Actual gain -37.5 dB + 2.tx_mixer_gain(3:0) 7-6 - r 0x00 unused 5-3 tx_mixer_tank_cap(2:0) rw 0x04 Capacitance in parallel with the mixer tank: Cap = 128 * tx_mixer_tank_cap(2:0) [fF] 2-0 tx_mixer_tank_res(2:0) rw 0x04 * Resistance in parallel with the mixer tank: 000 -> 0.95 k 100 -> 2.18 k 001 -> 1.11 k 101 -> 3.24 k 010 -> 1.32 k 110 -> 6.00 k 011 -> 1.65 k 111 -> none => about 64 k 7 - r 0x00 unused 6-5 tx_pll_bw rw 0x03 Tx PLL bandwidth PLL BW = (rx_pll_bw + 1)*75 KHz 4-0 tx_filter_bw(4:0) rw 0x00 Tx analog filter bandwidth DSB: BW3dB = 17.15 / (41 - tx_filter_bw(4:0)) MHz 7-3 - rw 0x00 unused 2-0 tx_dac_bw(2:0) rw 0x02 Number of taps of FIR-DAC: Actual number of taps = 24 + 8.tx_dac_bw(2:0) (max = 64) DAC gain, steps of 3 dB: 000 => Max gain - 9 dB 001 => Max gain - 6 dB 010 => Max gain - 3 dB 011 => Max gain, 0 dBFS -> rail-to-rail signal 100 and higher: test modes not recommended: 100 => Max gain - 9 dB with test Vref voltage 101 => Max gain - 6 dB with test Vref voltage 110 => Max gain - 3 dB with test Vref voltage 111 => Max gain, 0 dBFS with test Vref voltage Receiver registers RXFE1 (0x0C) 7-5 rx_lna_gain(2:0) rw 0x01 LNA gain setting: 000 not used 001 G1 = highest gain low power - 0 dB 010 G2 = highest gain low power - 6 dB 011 G3 = highest gain low power - 12 dB 100 G4 = highest gain low power - 24 dB 101 G5 = highest gain low power - 36 dB 110 G6 = highest gain low power - 48 dB 111 not used 4-1 rx_pga_gain(3:0) rw 0x0F PGA gain setting: Gain=lowest gain + 2dB * rx_pga_gain 0 rx_zin_200 rw 0x01 change of input impedance 0: 50 ohm 1: 200 ohm SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 34 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET Address Bits Name RXFE2 (0x0D) 7:5 rx_adc_bw(2:0) rw 0x07 4:2 rx_adc_trim(2:0) rw 0x05* Rx ADC Trimming for 36MHz crystal 1-0 rx_pga_bw(1:0) rw 0x01 7:3 unused r 0x00 2:1 rx_pll_bw(1:0) rw 0x03 Rx PLL bandwidth PLL BW = (rx_pll_bw + 1)*75 KHz 0 rx_adc_temp rw 0x00 Sets the Rx ADC into temperature measurement mode. RXFE3 (0x0E) Mode Reset Description RX ADC bandwidth configuration For BW>400kHz SSB use 0x07 For 200kHz< BW<400kHz SSB use 0x05 For 100kHz EOL threshold 1 VBAT < EOL threshold (battery low) 2 xosc_ready r 0x00 Goes high when the XOSC is ready 1 pll_lock_rx r 0x00 Asserted when the Rx PLL is locked 0 pll_lock_tx r 0x00 Asserted when the Tx PLL is locked 7 iism_rx_disable rw 0x00 disable IISM Rx (during TX mode) 6 iism_tx_disable rw 0x00 disable IISM Tx (during RX mode) 5-4 iism_mode[1:0] rw 0x00 00 -> mode A 01 -> mode B1 10 -> mode B2 11 -> not used 3-0 iism_clk_div[3:0] rw 0x00 XTAL/CLK_OUT division factor 0000 -> 1 0001 -> 2 0010 -> 4 0011 -> 8 0100 -> 12 0101 -> 16 0110 -> 24 0111 -> 32 1000 -> 48 higher values not used 7 int_dec_mantisse rw 0x00 interpolation/decimation factor = mant * 3^m * 2^n 0 -> 1st set; mant=8 1 -> 2nd set; mant=9 6 int_dec_m_parameter rw 0x00 interpolation/decimation factor = mant * 3^m * 2^n m value 5-3 int_dec_n_parameter rw 0x00 interpolation/decimation factor = mant * 3^m * 2^n n value (accepted values 0 to 6) 2 IISM_truncation rw 0x00 IISM truncation mode in Rx and Tx 0 -> MSB is truncated, alignement on LSB 1 -> LSB is truncated, alignement on MSB 1 IISM_status_flag r 0x00 IISM error status bit when selected factors force IISM off 0 -> no error 1 -> error, IISM off 0 unused r 0x00 IISM (0x12) DIG_BRIDGE (0x13) SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Mode Reset Description Page 36 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 6. Application Information 6.1. Crystal Resonator Specification The specification for the crystal resonator of the reference oscillator circuit block is tabulated below in Table 19. Table 19 Crystal Resonator Specification Symbol Description Min Typ Max Units FXOSC XTAL Frequency 32 - 36.864 MHz RS XTAL Series Resistance - 30 140 C0 XTAL Shunt Capacitance - 2.8 7 pF CLOAD External Foot Capacitance 8 16 22 pF Notes Conditions On each pin XTA and XTB - The initial frequency tolerance, temperature stability and aging performance should be chosen in accordance with the target operating temperature range and the receiver bandwidth selected - The loading capacitance should be applied externally, and adapted to the actual Cload specification of the XTAL 6.2. Reset of the Chip A power-on reset of the SX1255 is automatically triggered at power up. Additionally, a manual reset can be issued by controlling the RESET pin (pin 9). 6.2.1. POR If the application requires the disconnection of VDD from the SX1255, despite the extremely low Sleep Mode current, the user should wait for 10 ms from of the end of the POR cycle before commencing communications over the SPI bus. Pin 9 (RESET) should be left floating during the POR sequence. VDD Pin 9 (Output) Undefined Wait for 10 ms SX1255 SX1257 is ready from this point on Figure 18. POR Timing Diagram Please note that xosc_ready on DIO2 can be used to detect that the chip is ready. SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 37 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 6.2.2. Manual Reset A manual reset of the SX1255 is possible even for applications in which VDD cannot be physically disconnected. Pin 9 should be pulled high for a hundred microseconds, and then released. The user should then wait for 5 ms before using the chip. VDD Pin 9 (Input) High-Z "1" High-Z > 100 us Wait for 5 ms SX1255 SX1257 is ready from this point on Figure 19. Manual Reset Timing Diagram Please note that whilst pin 9 is driven high, an over current consumption of 10 mA may be observed on VDD 6.3. TX Noise Shaper In order to generate a single TX bit-stream, th 8-bit I and Q signal should be processed by an external third order sigmadelta modulator (implemented within the baseband processor). The noise shaper should be stable for input signals lower than -3dBFS and compatible with SX1255 noise requirements. It is advised that the integrator outputs are saturated to avoid any wraparound of the 2's-complement digital word. A representative block diagram of a single-bit feed-forward modulator is illustrated below. Figure 20. Example Digital Modulator Implementation SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 38 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 6.4. Reference Design Please contact your Semtech representative for evaluation tools, reference designs and design assistance. Note that all schematics shown in this section are full schematics, listing ALL required components, including those required for power supply decoupling. Figure 21. SX1255 Application Schematic SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 39 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 7. Packaging Information 7.1. Package Outline Drawing A D B DIM PIN 1 INDICATOR (LASER MARK) A A1 A2 b D D1 E E1 e L N aaa bbb E A2 A SEATING PLANE aaa C DIMENSIONS MILLIMETERS INCHES MIN NOM MAX MIN NOM MAX .028 .030 .031 - .002 .000 - (.008) .008 .010 .012 .193 .197 .201 .118 .122 .126 .193 .197 .201 .118 .122 .126 .020 BSC .012 .016 .020 32 .003 .004 0.70 0.75 0.80 - 0.05 0.00 - (0.20) 0.18 0.25 0.30 4.90 5.00 5.10 3.00 3.10 3.20 4.90 5.00 5.10 3.00 3.10 3.20 0.50 BSC 0.30 0.40 0.50 32 0.08 0.10 C A1 D1 LxN E/2 E1 2 1 N bxN e bbb C A B D/2 NOTES: 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. Figure 22. Package Outline Drawing 7.2. Recommended Land Pattern H (C) DIMENSIONS Z K G Y X DIM C G H K P X Y Z INCHES (.193) .161 .130 .130 .020 .012 .031 .224 MILLIMETERS (4.90) 4.10 3.30 3.30 0.50 0.30 0.80 5.70 P NOTES: 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET. 3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE. 4. SQUARE PACKAGE-DIMENSIONS APPLY IN BOTH X AND Y DIRECTIONS. Figure 23. Recommended Land Pattern SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 40 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 7.3. Thermal Impedance The thermal impedance of this package is: Theta ja = 23.8 C/W typ., calculated from a package in still air, on a 4-layer FR4 PCB, as per the Jedec standard. 7.4. Tape and Reel Specification Figure 24. Tape and Reel Specification Carrier Tape (mm) Reel (mm) Tape Width (W) Pocket Pitch (P) AO / B O KO Reel Size 12 +/- 0.30 8 +/- 0.20 5.25 +/- 0.20 1.10 +/- 0.10 330.2 Note Reel Width Min. Trailer Length (mm) 12.4 400 Min. Leader Length (mm) QTY per Reel 400 3000 Single sprocket holes SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 41 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET 8. Revision History Table 20 Datasheet Revision History Revision Date 1.0 February 2013 2.0 May 2013 3.0 October 2013 Comment First Datasheet revision Updated specifications after part characterization Add wafer sale part number SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 42 www.semtech.com SX1255 WIRELESS & SENSING PRODUCTS DATASHEET (c) Semtech 2013 All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range. SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise. Contact information Semtech Corporation Wireless & Sensing Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111 Fax: (805) 498-3804 E-mail: sales@semtech.com support_rf@semtech.com Internet: http://www.semtech.com SX1255 - Rev. 3.0 October 2013 (c)2013 Semtech Corporation Page 43 www.semtech.com