-1-
A
AV
V6
60
0C
C
H
Ha
al
lf
f-
-b
br
ri
ic
ck
k
S
Se
er
ri
ie
es
s
T
Te
ec
ch
hn
ni
ic
ca
al
l
R
Re
ef
fe
er
re
en
nc
ce
e
N
No
ot
te
es
s
48V Input, 3.3V Output
48V Input, 3.3V Output
50-150W DC-DC Converter
50-150W DC-DC Converter
(Rev01)
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 Publishing Date: 20020626
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-2-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Introduction
Introduction
The AV60C half-brick series of switching DC-
DC converters is one of the most cost effective
options available in component power. The
AV60C series uses an industry standard pack-
age size of 2.4” x 2.28” x 0.5” and pinout con-
figuration, provides standard control, trim, and
sense functions, also features high power den-
sity up to 54.8W/in3which gives more selectiv-
ity to meet small size requirement.
AV60C half-brick series comes in 48V input ver-
sion with a 2:1 ( 36-75V ) input range. This
series has input LVP, output OVP, OCP, short
circuit protection and over temperature protec-
tion. There are isolated single output 3.3V, 5V,
12V, 15V and the isolation voltage is 1500Vdc.
This series is designed to meet CISPR22, FCC
class A, UL and CSA certifications.
The design features of the AV60C half-brick
series set a new standard for high density
power converters. The unit employs an alu-
minum baseplate to carry all of the power com-
ponents, and conduct the dissipated heat to the
ambient. A conventional, multi-layer printed cir-
cuit board, over the top of the power substrate,
contains all of the small signal control circuitry,
all constructed with automated SMD technolo-
gy.
Feature
Feature
! High Efficiency
! High power density
! Low output noise
! Metal baseplate
! CNT function
! Remote sense
! Trim function
! Input under-voltage lockout
! Output short circuit protection
! Output current limiting
! Output over-voltage protection
! Overtemperature protection
! High input-output isolation voltage
Options
Options
! Heat sink available for extended operation
! Choice of CNT logic configuration
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-3-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Fuse*
Trim
-Vout
-Sense
+Vout
+Sense
-Vin
CNT
+Vin
Load
C4 C2
Case
Vin
C1
C3
Fuse*: Use external fuse ( fast blow type ) for each unit.
Rated output 50W : 5A fuse
Rated output 75W : 7.5A fuse
Rated output 100W : 10A fuse
Rated output 150W : 20A fuse
C1: Recommended input capacitor C1
-20°C ~ +100°C: m47µF/100V electrolytic or ceramic type capacitor.
-40°C ~ +100°C: m47µF/100V ceramic type capacitor only.
C2: Recommended output capacitor C2
-20°C ~ +100°C: 1000µF/10V (electrolytic capacitor) for 50W-75W
2200µF/10V (electrolytic capacitor) for 100W-150W
-40°C ~ +100°C: For this temperature range, use two pieces of the recommended capacitor
above.
C3: Recommended 4700pF/2000V
C4: Recommended 0.1µF/10V
T
Typical Application
ypical Application
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Block Diagram
Block Diagram
Ordering Information
Ordering Information
AV60C-048L-033F10 36-75V 3.3V 10A 40 150 78% 81%
AV60C-048L-033F10N 36-75V 3.3V 10A 40 150 78% 81%
AV60C-048L-033F15 36-75V 3.3V 15A 40 150 78% 81%
AV60C-048L-033F15N 36-75V 3.3V 15A 40 150 78% 81%
AV60C-048L-033F20 36-75V 3.3V 20A 40 150 78% 81%
AV60C-048L-033F20N 36-75V 3.3V 20A 40 150 78% 81%
AV60C-048L-033F30 36-75V 3.3V 30A 40 150 78% 81%
AV60C-048L-033F30N 36-75V 3.3V 30A 40 150 78% 81%
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-4-
+Vout
-Vout
+Sense
-Sense
CNT
+Vin
-Vin
Trim
Model Input Output Output Ripple Noise Efficiency
Number Voltage Voltage Current (mV rms) (mV pp) min. typ.
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-5-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Absolute Maximum Rating
Input Voltage(continuous) -0.3 80 Vdc
Input Voltage(peak/surge) -0.3 100 Vdc 100ms non-repetitive
Case temperature -40 100 °C
storage temperature -55 125 °C
Input Characteristics
Input Voltage Range 36 48 75 Vdc
Input Reflected Current 30 50 mAp-p
T urn-of f Input Voltage 30 33 35 V
T urn-on Input Voltage 31 34 36 V
T urn On Time 10 35 ms
CNT Function
Logic High 3 15 Vdc
Logic Low 1.2 Vdc
Control Current 2 mA
General Specifications
MTBF 2000 k Hrs Bellcore TR332, Tc=40°C
Isolation 1500 Vdc
Pin solder temperature 260 °C wave solder < 10 s
Hand Soldering Time 5 s iron temperature 425°C
Weight 75 grams
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
Characteristic Min Typ Max Units Notes
AV60C-048L-033F10(N) Output Characteristics
Power 50 W
Output Current 1 10 A
Output Setpoint Voltage 3.267 3.3 3.333 Vdc Vin=48V, Io=10A
Line Regulation 0.02 0.2 %Vo Vin=36~75V, Io=10A
Load Regulation 0.1 0.5 %Vo Io=0~10A, Vin=48V
Dynamic Response
50-75% load 2.5 %Vo Ta=25°C, DI/Dt=1A/10µs
100 µs Ta=25°C, DI/Dt=1A/10µs
50-25% load 2.5 %Vo Ta=25°C, DI/Dt=1A/10µs
100 µs Ta=25°C, DI/Dt=1A/10µs
Current Limit Threshold 11 13 14 A
Short Circuit Current 17 A
Efficiency 78 81 % Vin=48V, Io=10A
T rim Range 90 110 %V o
Over Voltage Protection Setpoint 3.9 5 V
Sense Compensation 10 %Vo 5%V o each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (p-p) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 300 kHz
Maximum Capacitor Load 10000 µF
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-6-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Min Typ Max Units Notes
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-7-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AV60C-048L-033F15(N) Output Characteristics
Power 75 W
Output Current 1.5 15 A
Output Setpoint Voltage 3.267 3.3 3.333 Vdc V in=48V, Io=15A
Line Regulation 0.02 0.2 %Vo Vin=36~75V, Io=15A
Load Regulation 0.1 0.5 %Vo Io=0~15A, Vin=48V
Dynamic Response
50-75% load 2.5 5 %V o Ta=25°C, DI/Dt=1A/10µs
100 250 µs Ta=25°C, DI/Dt=1A/10µs
50-25% load 2.5 5 %V o Ta=25°C, DI/Dt=1A/10µs
100 250 µs Ta=25°C, DI/Dt=1A/10µs
Current Limit Threshold 16.5 19 21 A
Short Circuit Current 25 A
Efficiency 78 81 % Vin=48V, Io=15A
T rim Range 90 110 %Vo
Over Voltage Protection Setpoint 3.9 5 V
Sense Compensation 10 %Vo 5%V o each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (p-p) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 300 kHz
Maximum Capacitor Load 10000 µF
Characteristic Min Typ Max Units Notes
AV60C-048L-033F20(N) Output Characteristics
Power 100 W
Output Current 2 20 A
Output Setpoint Voltage 3.267 3.3 3.333 Vdc Vin=48V, Io=20A
Line Regulation 0.02 0.2 %Vo Vin=36~75V, Io=20A
Load Regulation 0.1 0.5 %Vo Io=0~20A, Vin=48V
Dynamic Response
50-75% load 2.5 5 %V o Ta=25°C, DI/Dt=1A/10µs
100 250 µs Ta=25°C, DI/Dt=1A/10µs
50-25% load 2.5 5 %V o Ta=25°C, DI/Dt=1A/10µs
100 250 µs Ta=25°C, DI/Dt=1A/10µs
Current Limit Threshold 22 25 28 A
Short Circuit Current 34 A
Efficiency 78 81 % Vin=48V, Io=20A
T rim Range 90 110 %Vo
Over Voltage Protection Setpoint 3.9 5 V
Sense Compensation 10 %Vo 5%V o each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (pp) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 300 kHz
Maximum Capacitor Load 10000 µF
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-8-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Characteristic Min Typ Max Units Notes
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-9-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
AV60C-048L-033F30(N) Output Characteristics
Power 150 W
Output Current 3 30 A
Output Setpoint Voltage 3.267 3.3 3.333 Vdc Vin=48V, Io=30A
Line Regulation 0.02 0.2 %Vo Vin=36~75V, Io=30A
Load Regulation 0.1 0.5 %Vo Io=0~30A, Vin=48V
Dynamic Response
50-75% load 2.5 5 %V o Ta=25°C, DI/Dt=1A/10µs
100 250 µs Ta=25°C, DI/Dt=1A/10µs
50-25% load 2.5 5 %V o Ta=25°C, DI/Dt=1A/10µs
100 250 µs Ta=25°C, DI/Dt=1A/10µs
Current Limit Threshold 32 36 40 A
Short Circuit Current 50 A
Efficiency 78 81 % Vin=48V, Io=30A
T rim Range 90 110 %Vo
Over Voltage Protection Setpoint 3.9 5 V
Sense Compensation 10 %Vo 5%V o each leg
Temperature Regulation 0.02 %Vo/°C
Ripple (rms) 20 40 mV ( 0 to 20MHz Bandwidth )
Noise (pp) 100 150 mV ( 0 to 20MHz Bandwidth )
Over Temperature Protection 105 °C
Switching Frequency 300 kHz
Maximum Capacitor Load 10000 µF
Characteristic Min Typ Max Units Notes
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-10-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Ef
Efficiency Characteristic Curves
ficiency Characteristic Curves (at 25
(at 25 °C)
°C)
60
65
70
75
80
85
0 102030405060708090100
36V
48V
75V
Efficiency (%)
%Io
60
65
70
75
80
85
0 102030405060708090100
36V
48V
75V
Efficiency (%)
Io%
60
65
70
75
80
85
0 102030405060708090100
36V
48V
75V
Efficiency (%)
Io%
60
65
70
75
80
85
0 102030405060708090100
36V
48V
75V
Efficiency (%)
Io%
Typical Efficiency AV60C-048L-033F10N
Typical Efficiency AV60C-048L-033F20N
Typical Efficiency AV60C-048L-033F15N
Typical Efficiency AV60C-048L-033F30N
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-11-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Overcurrent Protection (OCP)
Overcurrent Protection (OCP)(at 25
(at 25 °C)
°C)
3.5
3
2.5
2
1.5
1
0.50 5 10 15 20
Vin=36V
Vin=48V
Vin=75V
Output Voltage (volts)
Output Current (amps)
Vin=36V
Vin=48V
Vin=75V
3.5
3
2.5
2
1.5
1
0.5 0 10 20 30
Output Voltage (volts)
Output Current (amps)
Vin=36V
Vin=48V
Vin=75V
3.5
3
2.5
2
1.5
1 0 10 20 30 40
Output Voltage (volts)
Output Current (amps)
3.5
3
2.5
2
1.5 10 20 30 40 50
Vin=36V
Vin=48V
Vin=75V
Output Voltage (volts)
Output Current (amps)
Typical Output Overcurrent Performance
AV60C-048L-033F10N
Typical Output Overcurrent Performance
AV60C-048L-033F20N
Typical Output Overcurrent Performance
AV60C-048L-033F15N
Typical Output Overcurrent Performance
AV60C-048L-033F30N
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-12-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
T
Transient response
ransient response (at 25
(at 25 °C)
°C)
Typical Transient Response Load Increased
from 50%Iomax to 75%Iomax
AV60C-048L-033F30N
Typical Transient Response Load Decreased
from 50%Iomax to 25%Iomax
AV60C-048L-033F30N
Typical Start-Up from Remote CNT
AV60C-048L-033F30N Typical Shut-down from Remote CNT
AV60C-048L-033F30N
Typical Output Voltage Start-up From Power On
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-13-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Pins
Pins
The +Vin and -Vin input connection pins are
located as shown in Figure 1. AV60C half-brick
series has a 2:1 input voltage range and 48 Vin
converters can accept 36-75 Vdc. Care should
be taken to avoid applying reverse polarity to
the input which can damage the converter.
Input Characteristic
Input Characteristic
Fusing
Fusing
The AV60C half-brick power modules have
no internal fuse. An external fuse must
always be employed! To meet international
safety requirements, a 250 Volt rated fuse
should be used. If one of the input lines is con-
nected to chassis ground, then the fuse must
be placed in the other input line.
Standard safety agency regulations require
input fusing. Recommended fuse ratings for the
AV60C half-brick series are shown in Table 1.
Input Reverse V
Input Reverse Voltage Protection
oltage Protection
Under installation and cabling conditions where
reverse polarity across the input may occur,
reverse polarity protection is recommended.
Protection can easily be provided as shown in
Figure 2. In both cases the diode rating is deter-
mined by the power of the converter. Diodes
value should be selected as Table 1 showing.
Placing the diode across the inputs rather
than in-line with the input offers an advan-
tage in that the diode only conducts in a
reverse polarity condition, which increases
circuit efficiency and thermal performance.
Input Undervoltage Protection
Input Undervoltage Protection
The AV60C half-brick series is protected
against undervoltage on the input. If the input
voltage drops below the acceptable range, the
converter will shut down. It will automatically
restart when the undervoltage condition is
removed.
Input Filter
Input Filter
Input filters are included in the converters to
help achieve standard system emissions certifi-
cations. Some users however, may find that
additional input filtering is necessary. The
AV60C half-brick series has an internal switch-
ing frequency of 300 kHz so a high frequency
capacitor mounted close to the input terminals
produces the best results. To reduce reflected
noise, a capacitor can be added across the
-Vin
Case
CNT
-Vout
-Sense
Trim
+Sense
+Vout
+Vin
Component-side footprint
Fig.1 Pin Location
Table 1
Rated Pout Fuse Rating
50 Watt 5A
75 Watt 7.5A
100 Watt 10A
150Watt 20A
+Vin
-Vin
+Vin
-Vin
Fig.2 Reverse Polarity Protection Circuits
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-14-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
input as shown in Figure 3, forming a πfilter. A
47µF/100V electrolytic capacitor is recom-
mended for C1.
For conditions where EMI is a concern, a differ-
ent input filter can be used. Figure 4 shows an
input filter designed to reduce EMI effects. C1is
a 47µF/100V electrolytic capacitor, and C2is a
1µF/100V metal film or ceramic high frequency
capacitor, Cy1 and Cy2 are each
1000pf/1500Vdc high frequency ceramic
capacitors, and L1 is a 1.5mH common mode
choke.
When a filter inductor is connected in series
with the power converter input, an input capac-
itor C1should be added. An input capacitor C1
should also be used when the input wiring is
long, since the wiring can act as an inductor.
Failure to use an input capacitor under these
conditions can produce large input voltage
spikes and an unstable output.
CNT Function
CNT Function
Two CNT options are available.
Negative logic applying a voltage less than
1.2V to the CNT pin will enable the output, and
applying a voltage greater than 3V will disable
it.
Positive logic applying a voltage larger than
3V to the CNT pin will enable the output, and
applying a voltage less than 1.2V will disable it.
Negative logic, device code suffix “ N “ .
Positive logic, device code suffix nothing is the
factory-preferred.
If the CNT pin is left open, the converter will
default to “ control off ” operation in nega-
tive logic, but default to “ control on ” in
positive logic.
The maximum voltage that can be applied to
the CNT pin is 15V.
+Vin
-Vin
C1
Fig.3 Ripple Rejection Input Filter
+Vin
-Vin
C1
C2Cy1
Cy2 L1
Fig.4 EMI Reduction Input Filter
-Vin
CNT
-Vin
CNT
-Vin
CNT
-Vin
CNT
Fig.8 Relay Control
Fig.5 Simple Control
Fig.6 Transistor Control
Fig.7 Isolated Control
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-15-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Input-Output Characteristic
Input-Output Characteristic
Safety Consideration
Safety Consideration
For safety-agency approval of the system in
which the power module is used, the power
module must be installed in compliance with the
spacing and separation requirements of the
end-use safety agency standard, i.e., UL1950,
CSA C22.2 No. 950-95, and EN60950. The
input-to-output 1500VDC isolation is an opera-
tional insulation. The DC/DC power module
should be installed in end-use equipment, in
compliance with the requirements of the ulti-
mate application, and is intended to be supplied
by an isolated secondary circuit. When the sup-
ply to the DC/DC power module meets all the
requirements for SELV(<60Vdc), the output is
considered to remain within SELV limits (level
3). If connected to a 60Vdc power system, dou-
ble or reinforced insulation must be provided in
the power supply that isolates the input from
any hazardous voltages, including the ac
mains. One Vin pin and one Vout pin are to be
grounded or both the input and output pins are
to be kept floating. Single fault testing in the
power supply must be performed in combina-
tion with the DC/DC power module to demon-
strate that the output meets the requirement for
SELV. The input pins of the module are not
operator accessible.
Note: Do not ground either of the input pins of
the module, without grounding one of the output
pins. This may allow a non-SELV voltage to
appear between the output pin and ground.
Case Grounding
Case Grounding
For proper operation of the module, the case or
baseplate of the AV60C half-brick module does
not require a connection to a chassis ground. If
the module is not in a metallic enclosure in a
system, it may be advisable to directly ground
the case to reduce electric field emissions.
Leaving the case floating can help to reduce
magnetic field radiation from common mode
noise currents. If the case has to be grounded
for safety or other reasons, an inductor can be
connected to chassis at DC and AC line fre-
quencies, but be left floating at switching fre-
quencies. Under this condition, the safety
requirements are met and the emissions are
minimized.
Output Characteristics
Output Characteristics
Minimum Load Requirements
Minimum Load Requirements
The AV60C half-brick series will maintain regu-
lation and operate properly with a NO LOAD
condition. However, the transient response is
altered below a minimum output load condition.
When the module is operating below the mini-
mum load, the transient amplitude and recovery
time are both increased when the load is
stepped higher, the output ripple continues to
meet the peak to peak requirements. For the
AV60C half-brick series, 10% minimum load
requirement is strictly in order to meet all per-
formance specifications.
Remote Sensing
Remote Sensing
The AV60C half-brick converters can remotely
sense both lines of its output which moves the
effective output voltage regulation point from
the output of the unit to the point of connection
of the remote sense pins. This feature automat-
ically adjusts the real output voltage of the
series in order to compensate for voltage drops
in distribution and maintain a regulated voltage
at the point of load.
When the converter is supporting loads far
away, or is used with undersized cabling, sig-
nificant voltage drop can occur at the load. The
best defense against such drops is to locate the
load close to the converter and to ensure ade-
quately sized cabling is used. When this is not
possible, the converter can compensate for a
drop of up to 0.25V per lead, or a total of 0.5V,
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-16-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
through use of the sense leads.
When used, the + and - sense leads must be
connected from the converter to the point of
load as shown in Figure 9 using twisted pair
wire. The converter will then regulate its output
voltage at the point where the leads are con-
nected. Care should be taken not to reverse the
sense leads. If reversed, the converter will trig-
ger OVP protection and turn off.When not used,
the +Sense lead must be connected with +Vo
and -Sense with -Vo. Also note that the output
voltage and the remote sense voltage offset
must be less than the minimum overvoltage trip
point. Note that at elevated output voltages
the maximum power rating of the module
remains the same, and the output current
capability will decrease correspondingly.
Output T
Output Trimming
rimming
Users can increase or decrease the output volt-
age set point of a module by connecting an
external resistor between the TRIM pin and
either the SENSE (+ ) or SENSE ( - ) pins. The
trim resistor should be positioned close to the
module. If not using the trim feature, leave
the TRIM pin open.
Trimming up by more than 10% of the nominal
output may damage the converter. Trimming
down more than 10% can cause the converter
to regulate improperly. Trim down and trim up
circuits and the corresponding configuration are
shown in Figure 10 and Figure 11.
+Vout
-Vout
Load
+Sense
-Sense
Twisted Pair +S
-S
Fig.9 Sense Connections
% Change In Output Voltage (y)
Adjustment Resistor Value (k)
0
20
40
60
80
100
120
140
160
180
200
012345678910
Vo(100+y)
Radj-up = (100+2y)
1.26y
y
-
+Vin
-Vin
CNT
Case
+Vout
-Vout
Sense(+)
Trim
Sense(–)
R
adj-up
R
LOAD
Where y is the adjusting percentage of the voltage.
0 < y < 10
Radj-up is in k.
Fig.10 Trim Up Circuit and Curves
Radj-down =
where y is the adjusting percentage of the voltage.
0 < y < 10
Radj-down is in k.
R
adj-down
R
LOAD
100
y- 2
+Vin
-Vin
CNT
Case
+Vout
-Vout
Sense(+)
Trim
Sense()
% Change In Output Voltage (y)
Adjustment Resistor Value (k)
0
10
20
30
40
50
60
70
80
90
100
012345678910
Fig.11 Trimming Down Circuit and Curves
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-17-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Output Over-V
Output Over-Voltage Protection
oltage Protection
The over-voltage protection has a separate
feedback loop which activates when the output
voltage is between 3.9V-5V. When an over-volt-
age condition occurs, a “ turn off ” signal was
sent to the input of the module, and shut off the
output. The module will restart after power on
again.
Output Over-Current Protection
Output Over-Current Protection
AV60C half-brick series DC/DC converters fea-
ture foldback current limiting as part of their
Overcurrent Protection (OCP) circuits. When
output current exceeds 110 to 140% of rated
current, such as during a short circuit condition,
the output will shutdown immediately, and can
tolerate short circuit conditions indefinitely.
When the overcurrent condition is removed, the
converter will automatically restart.
Output Filters
Output Filters
When the load is sensitive to ripple and noise,
an output filter can be added to minimize the
effects. A simple output filter to reduce output
ripple and noise can be made by connecting a
capacitor across the output as shown in Figure
12. The recommended value for C1 is
2,200µF/10V and C2 and C3 is 4700pF.
Extra care should be taken when long leads or
traces are used to provide power to the load.
Long lead lengths increase the chance for
noise to appear on the lines. Under these con-
ditions C2 can be added across the load as
shown in Figure 13. The recommended compo-
nent for C2 is 2200µF/10V capacitor and con-
necting a 0.1µFceramic capacitor C1 in parallel.
Decoupling
Decoupling
Noise on the power distribution system is not
always created by the converter. High speed
analog or digital loads with dynamic power
demands can cause noise to cross the power
inductor back onto the input lines. Noise can be
reduced by decoupling the load. In most cases,
connecting a 10µF tantalum capacitor in paral-
lel with a 0.1µF ceramic capacitor across the
load will decouple it. The capacitors should be
connected as close to the load as possible.
Ground Loops
Ground Loops
Ground loops occur when different circuits are
given multiple paths to common or earth
ground, as shown in Figure 14. Multiple ground
points can slightly different potential and cause
current flow through the circuit from one point to
another. This can result in additional noise in all
the circuits. To eliminate the problem, circuits
should be designed with a single ground con-
nection as shown in Figure 15.
+Vout
-Vout
Load
C1C2
0.1µF
Fig.13 Output Ripple Filter For a Distant
Load
+Vout
-Vout
Load
C1
C2
C3
Fig.12 Output Ripple Filter
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
+Vout
-Vout
Load Load
RLine
RLine RLine
RLine
RLine
RLine
Ground
Loop
Fig.14 Ground Loops
Fig.15 Single Point Ground
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-18-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Parallel Power Distribution
Parallel Power Distribution
Figure 16 shows a typical parallel power distri-
bution design. Such designs, sometimes called
daisy chains, can be used for very low output
currents, but are not normally recommended.
The voltage across loads far from the source
can vary greatly depending on the IR drops
along the leads and changes in the loads clos-
er to the source. Dynamic load conditions
increase the potential problems.
Radial Power Distribution
Radial Power Distribution
Radial power distribution is the preferred
method of providing power to the load. Figure
17 shows how individual loads are connected
directly to the power source. This arrangement
requires additional power leads, but it avoids
the voltage variation problems associated with
the parallel power distribution technique.
Mixed Distribution
Mixed Distribution
In the real world a combination of parallel and
radial power distribution is often used. Dynamic
and high current loads are connected using a
radial design, while static and low current loads
can be connected in parallel. This combined
approach minimizes the drawbacks of a parallel
design when a purely radial design is not feasi-
ble.
Redundant Operation
Redundant Operation
A common requirement in high reliability sys-
tems is to provide redundant power supplies.
The easiest way to do this is to place two con-
verters in parallel, providing fault tolerance but
not load sharing. Oring diodes should be used
to ensure that failure of one converter will not
cause failure of the second. Figure 19 shows
such an arrangement. Upon application of
power, one of the converters will provide a
slightly higher output voltage and will support
the full load demand. The second converter will
see a zero load condition and will “idle”. If the
first converter should fail, the second converter
will support the full load. When designing
redundant converter circuits, Shottky diodes
should be used to minimize the forward voltage
drop. The voltage drop across the Shottky
diodes must also be considered when deter-
mining load voltage requirements.
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig.17 Radial Power Distribution
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2
RL3
RG1 RG2
RG3
RL = Lead Resistance
RG = Ground Lead Resistance
Load 4
RL4
RG4
Fig.18 Mixed Power Distribution
+Vout
-Vout
+Vout
-Vout
Load
Fig.19 Redundant Operation
Load 1 Load 2 Load 3
+Vout
-Vout
RL1 RL2 RL3
RG1 RG2 RG3
I1 + I2 + I3I2 + I3I3
RL = Lead Resistance
RG = Ground Lead Resistance
Fig.16 Parallel Power Distribution
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-19-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Thermal Management
Thermal Management
T
Technologies
echnologies
AV60C half-brick series 50 W to 150 W mod-
ules feature high efficiency and the 3.3V output
units have typical efficiency of 81% at full load.
With less heat dissipation and temperature-
resistant components such as ceramic capaci-
tors, these modules exhibit good behavior dur-
ing prolonged exposure to high temperatures.
Maintaining the operating case temperature
(Tc) within the specified range help keep inter-
nal-component temperatures within their speci-
fications which in turn help keep MTBF from
falling below the specified rating. Proper cool-
ing of the power modules is also necessary for
reliable and consistent operation.
Basic Thermal Management
Basic Thermal Management
Measuring the case temperature of the module
(Tc) as the method shown in Figure 20 can ver-
ify the proper cooling. Figure 20 shows the
metal surface of the module and the pin loca-
tions. The module should work under 90°C for
the reliability of operation and TCmust not
exceed 100 °C while operating in the final sys-
tem configuration. The measurement can be
made with a surface probe after the module has
reached thermal equilibrium. If a heat sink is
mounted to the case, make the measurement
as close as possible to the indicated position. It
makes the assumption that the final system
configuration exists and can be used for a test
environment.
The following text and graphs show guidelines
to predict the thermal performance of the mod-
ule for typical configurations that include heat
sinks in natural or forced airflow environments.
Note that Tc of module must always be checked
in the final system configuration to verify proper
operational due to the variation in test condi-
tions.
Thermal management acts to transfer the heat
dissipated by the module to the surrounding
environment. The amount of power dissipated
by the module as heat (PD) is got by the equa-
tion below:
PD= PI˘ PO
where : PIis input power;
POis output power;
PD is dissipated power.
Also, module efficiency (η) is defined as the fol-
lowing equation:
η= PO / PI
If eliminating the input power term, from two
above equations can yield the equation below:
PD = PO(1-η )/η
The module power dissipation then can be cal-
culated through the equation.
Because each power module output voltage
has a different power dissipation curve, a plot of
power dissipation versus output current over
three different line voltages is given in each
module-specific data sheet. The typical power
dissipation curve of AV60C half-brick series
3.3V output are shown as figure 21 to figure 24.
29.0 (1.14)
30.5 (1.2)
CNT
Case
+Sense
Trim
– Sense
+Vin
MEASURE CASE
TEMPERATURE HERE
Base-plate side View
Dimensions: millimeters (inches)
-Vin
+Vout
-Vout
Fig.20 Case Temperature Measurement
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-20-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Module Derating
Module Derating
Experiment Setup
Experiment Setup
From the experimental set up shown in figure
25, the derating curves as figure 26 can be
drawn. Note that the PWB ( printed-wiring
board ) and the module must be mounted verti-
cally. The passage has a rectangular cross-
section. The clearance between the facing
PWB and the top of the module is kept 13 mm
(0.5 in.) constantly.
Convection W
Convection Without Heat Sinks
ithout Heat Sinks
Heat transfer can be enhanced by increasing
the airflow over the module. Figure 26 shows
the maximum power that can be dissipated by
the module.
In the test, natural convection airflow was mea-
sured at 0.05 m/s to 0.1 m/s (10 ft./min. to 20
ft./min.). The 0.5 m/s to 4.0 m/s (100 ft./min. to
800 ft./min.) curves are tested with externally
adjustable fans. The appropriate airflow for a
given operating condition can be determined
through figure 26.
3
6
9
12
15
18
0 2 4 6 8 10 12 14 16 18 20
OUTPUT CURRENT(A)
POWER DISSIPATION(W)
36V
48V
75V
2.5
4.5
6.5
8.5
10.5
12.5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OUTPUT CURRENT(A)
POWER DISSIPATION(W)
36V
48V
75V
5
10
15
20
25
0 3 6 9 12 15 18 21 24 27 30
OUTPUT CURRENT(A)
POWER DISSIPATION(W)
36V
48V
75V
Fig.22 AV60C-048L-033F15N Power Dissipation
Fig.23 AV60C-048L-033F20N Power Dissipation
Fig.24 AV60C-048L-033F30N Power Dissipation
Dimensions: millimeters (inches).
facing PWB
PWB
Module
50.8(2.0)
Air velocity and
Ambient Temperature
Testing Point
Air flow
13(0.5)
Fig.25 Experiment Set Up
2.4
3
3.6
4.2
4.8
5.4
6
6.6
7.2
7.8
8.4
9
012345678910
OUTPUT CURRENT(A)
POWER DISSIPATION(W)
36V
48V
75V
Fig.21 AV60C-048L-033F10N Power Dissipation
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-21-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Example 1. How to calculate the minimum
airflow required to maintain a desired Tc?
If a AV60C-048L-033F30N module operates
with a 48V line voltage, a 25 A output current,
and a 40 °C maximum ambient temperature,
What is the minimum airflow necessary for the
operating?
Determine PD( referenced Fig.24 ) with con-
dition:
Vin = 48 V
lO= 25 A
Get: PD= 19 W
And with TA= 40 °C
Determine airflow ( Fig.26):
v = 3 m/s (600 ft./min.)
Example 2. How to calculate the maximum
output power of a module in a certain con-
vection and a max. TA?
What is the maximum power output for a
AV60C-048L-033F30N operating at following
conditions:
Vin = 48 V
v = 3.0 m/s (600 ft./min.)
TA= 40 °C
Determine PD( Fig.26 )
PD= 21 W
Determine IO(Fig.24):
IO= 26 A
Calculate PO:
PO= (VO) x (IO) = 3.3 x 26 = 85.8 W
Although the two examples above use 100 ° C
as the maximum case temperature, for
extremely high reliability applications, one may
design to a lower case temperature as shown in
Example 4 on page 23.
Heat Sink Configuration
Heat Sink Configuration
Several standard heat sinks are available for
the AV60C half-brick series 50 W to 150 W
modules as shown in Figure 27 to Figure 29.
Dimensions: millimeters (inches).
57.9 (2.28)
61
(2.4)
WDL10040
WDL02540
WDL05040
1/4 IN.
1/2 IN.
1 IN.
Fig.28 Longitudinal Fins Heat Sink
Dimensions: millimeters (inches).
WDT10040
61 (2.4)
WDT02540
WDT05040
57.9
(2.28)
1/4 IN.
1/2 IN.
1 IN.
Fig.29 Transverse Fins Heat Sink
89.1(3.51)
57.0
(2.24) 11.8
(0.465)
4.9 (0.193)
Dimensions: millimeters (inches).
Fig.27 Non Standard Heatsink
010203040 100
0
35
Ambient Temperature, TA (°C)
Power Dissipation P
D
(W)
25
20
10
90
80706050
4.0 m/s
(800 ft./min.)
1.0 m/s
(200 ft./min.)
2.0 m/s
(400 ft./min.)
3.0 m/s
(600 ft./min.)
5
15
30
0.5 m/s
(100 ft./min.)
Natural Convection
(10-20 ft./min.)
Fig.26. Forced Convection Power Derating
without Heat Sink
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-22-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
The heat sinks mount to the top surface of the
module with screws torqued to 0.56 N-m (5 in.-
lb). A thermally conductive dry pad or thermal
grease is placed between the case and the
heat sink to minimize contact resistance (typi-
cally 0.1°C/W to 0.3°C/W) and temperature dif-
ferential.
Nomenclature for heat sink configurations is as
follows:
WDxyyy40
where:
x = fin orientation: longitudinal (L) or trans
verse (T)
yyy = heat sink height (in 100ths of inch)
For example, WDT5040 is a heat sink that is
transverse mounted (see Figure 29) for a 61
mm x 57.9 mm (2.4 in.x 2.28 in.) module with a
heat sink height of 0.5 in.
Heatsink Mounting Advice
Heatsink Mounting Advice
A crucial part of the thermal design strategy is
the thermal interface between the baseplate of
the module and the heatsink. Inadequate mea-
sures taken here will quickly negate any other
attempts to control the baseplate temperature.
For example, using a conventional dry insulator
can result in a case-heatsink thermal imped-
ance of >0.5°C/W, while use one of the rec-
ommended interface methods (silicon grease
or thermal pads available from Astec) can
result in a case-heatsink thermal impedance
around 0.1°C/W.
Natural Convection with Heat Sink
Natural Convection with Heat Sink
The power derating for a module with the heat
sinks ( shown as figure 27 to figure 29) in nat-
ural convection is shown in figure 31. In this
test, natural convection generates airflow about
0.05 m/s to 0.1 m/s ( 10ft./min to 20ft./min ).
Figure 31 can be used for heat-sink selection in
natural convection environment.
Example 3. How to select a heat sink?
What heat sink would be appropriate for a
AV60C-048L-033F30N in a natural convection
environment at nominal line, 3/4 load, and max-
imum ambient temperature of 40°C?
Determine PD( referenced Fig.24) with condi-
tion:Vin = 48 V
IO= 3/4 (30) = 23 A
TA= 40 °C
Get: PD= 18 W
Determine Heat Sink (Fig.31.):
1 in. allows up to TA = 48 °C
Fig.30 Heat Sink Mounting
010203040 90100
0
20
25
30
Ambient Temperature, TA (°C)
Power dissipation P
D
(W)
15
10
5
50 60 70 80
1 in. heat sink
1/2 in. heat sink
1/4 in. heat sink
NO heat sink
Fig.31 Heat Sink Power Derating Curves,
Natural Convection
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-23-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Basic Thermal Model
Basic Thermal Model
There is another approach to analyze module
thermal performance, to model the overall ther-
mal resistance of the module. This presentation
method is especially useful when considering
heat sinks. The following equation can be used
to calculate the total thermal resistance .
RCA =TC, max / PD
Where RCA is the module thermal resistance.
TC, max is the maximum case temperature
rise.
PD is the module power dissipation.
In this model, PD, TC, max, and RCA are equals
to current flow, voltage drop, and electrical
resistance, respectively, in Ohm's law, as
shown in Figure 32. Also, TC, max is defined as
the difference between the module case tem-
perature (TC) and the inlet ambient temperature
(TA).
TC, max = TC˘ TA
Where TCis the module case temperature.
TA is the inlet ambient temperature.
For AV60C half-brick series 50W to 150W 3.3V
output converters, the module's thermal resis-
tance values versus air velocity have been
determined experimentally and shown in figure
33. The highest values on each curve repre-
sents the point of natural convection.
Figure 33 is used for determining thermal per-
formance under various conditions of airflow
and heat sink configurations.
Example 4. How to determine the allowable
minimum airflow to heat sink combinations
necessary for a module under a desired Tc
and a certain condition?
Although the maximum case temperature for
the AV60C half-brick series converters is
100°C, you can improve module reliability by
limiting Tc,max to a lower value. How to
decide? For example, what is the allowable
minimum airflow for AV60C-048L-050F30N
heat sink combinations at desired Tc of 80 °C?
The working condition is as following:
VI= 48 V, IO= 25 A, TA= 40 °C
Determine PD( Fig.24 )
PD= 19 W
Then solve RCA:
RCA = TC, max / PD
RCA = (TCTA)/ PD
RCA = (80 40)/ 19 = 2°C/W
Determine air velocity from figure 33:
If no heat sink:
v > 3.0 m/s (600 ft./min.)
If 1/4 in. heat sink:
v = 3.0 m/s (600 ft./min.)
If 1/2 in. heat sink:
v = 2.0 m/s (400 ft./min.)
If 1 in. heat sink:
v = 1.2 m/s (240 ft./min.)
BMPM
PD
BMPM
Thermal
Resistance
Fig.32 Basic Thermal Resistance Model
0 0.5(100) 1.0(200) 1.5(300) 2.0(400) 2.5(500) 3.0(600)
0
1
5
6
7
8
Air Velocity m/s (ft./min.)
4
3
2
Case-Ambient Thermal Resistance
R
CA
(°C/W)
1 in. heat sink
1/2 in. heat sink
1/4 in. heat sink
NO heat sink
Fig.33 Case-to-Ambient Thermal
Resistance Curves; Either Orientation
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-24-
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Example 5. How to determine case tempera-
ture ( Tc ) for the various heat sink configu-
rations at certain air velocity?
What is the allowable Tc for AV60C-048L-
033F30N heat sink configurations at desired air
velocity of 2.0 m/s, and it is operating at a 48 V
line voltage, a 25 A output current, a 40 °C
maximum ambient temperature?
Determine PD( Fig.24 ) with condition:
Vin = 48 V
IO= 25 A
TA= 40 °C
v = 2.0 m/s (400 ft./min.)
Get: PD= 19 W
Determine TC:TC= (RCA x PD) + TA
Determine the corresponding thermal resis-
tances ( RCA ) from Figure 33:
No heat sink: RCA = 3.8 °C/W
TC= (3.8 x 19) + 40 = 112 °C
1/4 in. heat sink: RCA = 2.8 °C/W
TC= (2.8 x 19) + 40 = 93 °C
1/2 in. heat sink: RCA = 2.0 °C/W
TC= (2.0 x 19) + 40 = 78 °C
1 in. heat sink: RCA = 1.2 °C/W
TC= (1.2 x 19) + 40 = 63 °C
In this configuration, the heat sink would have
to be at least 1/4 in. high so that the power
module does not exceed the maximum case
temperature of 100°C.
A
AV60C Half-brick Series
V60C Half-brick Series
Mechanical Considerations
Mechanical Considerations
Installation
Installation
Although AV60C half-brick series converters
can be mounted in any orientation, free air-flow-
ing must be taken. Normally power components
are always put at the end of the airflow path or
have the separate airflow paths. This can keep
other system equipment cooler and increase
component life spans.
Soldering
Soldering
AV60C half-brick series converters are compat-
ible with standard wave soldering techniques.
When wave soldering, the converter pins
should be preheated for 20-30 seconds at
110°C, and wave soldered at 260°C for less
than 10 seconds.
When hand soldering, the iron temperature
should be maintained at 425°C and applied to
the converter pins for less than 5 seconds.
Longer exposure can cause internal damage to
the converter. Cleaning can be performed with
cleaning solvent IPA or with water.
MTBF
MTBF
The MTBF, calculated in accordance with
Bellcore TR-NWT-000332 is 2,000,000 hours.
Obtaining this MTBF in practice is entirely pos-
sible. If the ambient air temperature is expected
to exceed +25°C, then we also advise a
heatsink on the AV60C half-brick converter, ori-
ented for the best possible cooling in the air
stream.
ASTEC can supply replacements for converters
from other manufacturers, or offer custom solu-
tions. Please contact the factory for details.
USA Europe Asia
TEL: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662
FAX: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
Recommend Hole Pattern
Recommend Hole Pattern
Mechanical Chart
Mechanical Chart
AA
AAVV
VV66
6600
00CC
CC
SS
SSee
eerr
rrii
iiee
eess
ss
33
33..
..33
33VV
VV
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
HH
HHaa
aall
llff
ff-
-BB
BBrr
rrii
iicc
cckk
kk
PP
PPoo
ooww
wwee
eerr
rr
CC
CCoo
oonn
nnvv
vvee
eerr
rrtt
ttee
eerr
rrss
ss
33
3366
66
VV
VVDD
DDCC
CC
tt
ttoo
oo
77
7755
55
VV
VVDD
DDCC
CC
II
IInn
nnpp
ppuu
uutt
tt,,
,,
55
5500
00-
-11
1155
5500
00WW
WW
OO
OOuu
uutt
ttpp
ppuu
uutt
tt
-25-
Base-plate side view
Dimensions are in millimeters and (inches).
10.16
(0.400)
10.16
(0.400)
12.7 (0.50)
48.3 (1.90)
48.26
(1.900)
4.8
(0.19)
Mounting Inserts
Module Outline
5.1 (0.20)
57
.
9
(2
.
28)
Max
17.78
(0.700)
25.40
(1.000)
35.56
(1.400)
25.40
(1.000)
50.8
(2.00)
35.56
(1.400)
61.0
(2.40)
-Vout
-Vin
–Sense
Trim
+Sense
Case
CNT
+Vin +Vout
Max
-Vin
Case
CNT
+Vin +Vout
+Sense
Trim
-Sense
-Vout
5.1 (0.2)
10.16 (0.4)
15.24 (0.6)
4.8 (0.19) 48.26 (1.9)
10.16 (0.4)
10.16 (0.4)
10.16 (0.4)
7.62 (0.3)
7.62 (0.3)
7.62 (0.3)
57.9 (2.28)
61.0 (2.4)
mm (inches)
7-
12.7 (0.5)
Mounting Inserts
M3 thru hole x4
2-
φ2.0 (0.08)
only +Vo and -Vo
φ1.0 (0.04)
all pins except +Vo and -Vo
Length optional
4.8 (0.189) default
Base-plate side view
Tolerances:
Inches Millimeters
.xx !0.020 .x !0.5
.xxx !0.010 .xx !0.25
Pins
>4mm !0.02inch ( !0.5mm)
<4mm !0.01inch ( !0.25mm)
Pin Length Option
4.80mm ! 0.5mm
0.189in. ! 0.020in.
3.80mm ! 0.25mm
0.150in. ! 0.010in.
5.80mm ! 0.5mm
0.228in. ! 0.02in.
2.80mm ! 0.25mm
0.110in. ! 0.010in.
Device Code Suffix
none (default) 
-6
-7
-8
PART NUMBER DESCRIPTION
ss pp
c
-0 iv L- xxx f yy h n -p-mx-Options
p = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm, 7= 5.8mm
iv = Input Voltage 8 = 2.8mm
05 = Range centered on 5V
12 = Range centered on 12V Enable Logic Polarity
24 = 18 to 36(2:1), 9 to 36V(4:1) Omit for Positive Enable Logic
36 = 20 to 60V N = Negative Enable
46 = 18V to 75V (4:1) Except: AK60C-20H, BK60C-30H
48 = Typ 36 to 75V Omit for Negative Logice
P = Positive Logic
c = Pinout compatability
A= Astec Footprint or "non Lucent" footprint H = High Efficiency (Synch rect.)
C= Ind Std, Exact Lucent drop in Omit H if Conventional Diode (low Eff)
yy = Output Current
pp = Package Type ie. 08 = 8 Amps
40 = 1" x 2" SMD
42 = 1.5" x 2" SMD f = # of Outputs
45 = 1.45" X 2.3" (1/4 Brk) F = Single Output
60 = 2.4" X 2.3" (1/2 Brk) D = Dual Output
80 = Full size 4.6" x 2.4"
72= 2.35" X 3.3 (3/4 Brk) xxx = Output Voltage
Format is XX.X (ie 1.8V = 018)
ss = Series
AA = 1/2brick Dual (Old designator)
AK = Ind Std sizes (1/4, 1/2, full) <150W mx = Options
AM/BM = Full size, astec pin out M1,M2 = .25" Height Heatsink
AL = Half size, astec pin-out M3,M4 = .5" height Heatsink
BK = Ind Std size =>150W or feature rich M5.M6 = 1.0" Height Heatsink
AV = Avansys Product
Note: For some products, they may not conform with the PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 1 of 2
NEW PART NUMBER DESCRIPTION
Acs ii V1 V2 V3Vin -e t p Mx
Output Voltage
A = 5.0V E = 7.5V
F = 3.3V B = 12V, C = 15V
G = 2.5V L = 8V, H = 24V, R = 28V
D = 2.0V / 2.1V Omit V2 and V3 if Single Output
Y = 1.8V Omit V3 if Dual Output
M = 1.5V ie for Dual Output 5 and 3.3V
K = 1.2V V1 =A, V2 = F, V3 =Omit
J = 0.9V V1 =A, V2 = F, V3 =Omit
ii = Output Current Max
ie 60 = 60 Amps Vin = Input Voltage range
300 = 250V to 450V
S = Size 48 = 36V to 75V
F = Full Brick 24 = 18V to 36V
H = Half Brick 03 = 1.8V to 5.0V
Q = Quarter Brick 08 = 5.0V to 13.0V
S = 1 X 2 18 Pin SMT PFC: Power Factor Corrected
E = 1 X 2 Thru Hole
C = (.53X1.3X.33) SMT (Austin Lite drop in) E = Enable Logic for > 15W
V = Conventional Package (2X2.56") or ( Omit this digit for Positive enable
A = SIP N = Negative Logic
W = Convent pkg (Wide 2.5X3) E = Enable Logic for < 15W
R = 1 X 1 Thru Hole Omit this digit for no enable option
A = SIP 1 = Negative Logic
T = 1.6 X 2 4 = Positive Logic
c = Construction Trim for 1W to 15W
E = Enhanced Thermals (Baseplate or adapter plate) 9 = Trim Added
I = Integrated (Full Featured) Hong Kong models
L = Low Profile (Open Frame, No case - Isolated)
P = Open Frame (SIP or SMT) non-isolated P = Pin Length
Omit this digit for Standard 5mm
6 = 3.8mm
8 = 2.8mm
7 = 5.8 mm
Mx - Factory Options
customer Specific
Note: For some products, they may not conform with the NEW PART NUMBER DESCRIPTION above absolutely.
REVISION Q ATTACHMENT I Page 2 of 2