500 MHz Dual DCL
ADATE206
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2006–2008 Analog Devices, Inc. All rights reserved.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
FEATURES
Driver, comparator, and active load
500 MHz toggle rate
Inhibit mode function
Dynamic clamps
Operating voltage range: −1.5 V to 6.5 V
Output voltage swing: 200 mV to 8 V
Four range adjustable slew rate
True/complement data mode bit
100-lead TQFP package, exposed pad
Low per channel power
1.4 W with load off
1.75 W with load programmed at 20 mA nominal
Low leakage (<10 nA) in High-Z mode
Driver
50 Ω output resistance
1 ns minimum pulse width for a 3 V step
Load: −35 mA to +35 mA maximum current range
APPLICATIONS
Automatic test equipment
Semiconductor test systems
Board test systems
Instrumentation and characterization equipment
GENERAL DESCRIPTION
The ADATE206 is a complete, single-chip solution that
performs the pin electronics functions of driver, comparator,
and active load (DCL) for ATE applications. The active load can
be powered down if not used.
The driver is a proprietary design that features three active
modes: data high mode, data low mode, and term mode, as
well as an inhibit state. The driver has low leakage (<10 nA) in
High-Z mode. The output voltage range is −1.5 V to +6.5 V to
accommodate a wide variety of test devices.
The ADATE206 supports four programmable Tr/Tf times for
applications where slower edge rates are required. The edge rate
selection is done via two static digital CMOS select bits. The
input data to the driver can be inverted using a single CMOS
logic bit. This feature can be used for system calibration or
applications where complement input data is needed.
FUNCTIONAL BLOCK DIAGRAM
V
CC
(18, 19, 57, 58, 77, 78, 89, 98, 99)
DRIVER
1x
COMP_H
IOL
IOH
TEMP
GNDREF
VIOH
VIOL
VCOM
CVL
COMP_L_N
COMP_H_N
COMP_H_P
CVH
LDEN
VTEN
DR_EN_N
DR_EN_N_T
DR_EN_P_T
DR_EN_P
DR_DATA_N
DR_DATA_N_T
DR_DATA_P_T
DR_DATA_P
DR_INV
VIH
VIL
VIT
COMP_L_P
CLLM
DUT
CLAMPH
CLAMPL
TEMP SENSOR
(5 DIODES)
LOGIC
LOAD
LOGIC
7
69
8
68
9
67
6
70
81
95
88
11
66
10
65
22
54
23
53
24
52
25
51
26
50
27
49
28
48
29
47
15
61
14
62
4
72
3
73
2
74
31
45
91
85
32
44
13
63
COMP_L
34
42
35
41
90
86
1
75
NC
(30, 46)
SHIELDS
(80, 82, 94, 96)
ADATE206
05738-001
VEE
(16, 17, 33, 43, 59, 60, 84, 87, 92)
GND
(5, 12, 20, 21, 36, 40, 55, 56, 64, 71, 76, 79, 83, 93, 97,100)
Figure 1.
OBSOLETE
ADATE206
Rev. A | Page 2 of 16
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Table of Contents .............................................................................. 2
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings ............................................................8
ESD Caution...................................................................................8
Pin Configuration and Function Descriptions ..............................9
Typical Performace Characteristics ............................................. 12
Theory of Operation ...................................................................... 15
Outline Dimensions ....................................................................... 16
Ordering Guide .......................................................................... 16
REVISION HISTORY
10/08— Rev. 0 to Rev. A
Changes to the VCOM Buffer Offset Parameter, Table 1 ............ 7
1/06— Revision 0: Initial Version
OBSOLETE
ADATE206
Rev. A | Page 3 of 16
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VCC = 10.0 V, VEE = 5.0 V, TJ = 75°C, unless otherwise noted.
Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
DRIVER
Single-Ended Logic Input Characteristics
(VTEN, DRV_INV)
Threshold Voltage CMOS_VDD/2 V
Voltage Range 0 5.5 V
Bias Current −10 +10 μA VIN = 0 V, 3.3 V
Single-Ended Logic Input Characteristics
(SLEW0, SLEW1)
Threshold Voltage CMOS_VDD/2 V
Voltage Range 0 5.5 V
Bias Current −10 +600 (@ 3.3 V) +800 μA VIN = 0 V, 3.3 V
Bias Current 1 mA VIN = 5.5 V
Differential Logic Input Characteristics
(DR_DATA_N, DR_DATA_P, DR_EN_N,
DR_EN_P)
Voltage Range −2.0 +3.5 V
Differential Voltage with LVPECL Levels ±250 ±300 mV
Bias Current −10 +2 +10 μA VIN = 3.24 V, 3.495 V
VIH, VIL Reference Inputs
Input Bias Current −10 −2 +10 μA Maximum value bias of
reference sweep
VIT Reference Inputs
Input Bias Current −25 +12 +25 μA Maximum value bias of
reference sweep
DC Output Characteristics
Logic Range, VIL, VIH, VIT −1.5 +6.5 V
Amplitude [VH to VL] 8 V
Output Resistance 47.5 52.5 Ω
PSRR, Drive or Term Mode 10 mV/V VCC, VEE ±1%
Static Current Limit −125 ±110 +125 mA Output to −1.5 V, VH = 6.5 V,
VT = 0 V
Absolute Accuracy—VIH, VIL, VIT
VIH Offset −100 +30 +100 mV Data = H, VH = 0 V, VL = −1.5 V,
VT = 3 V
VIH Gain Error 0.98 1.02 V/V Data = H, VH = 0 V to 5 V,
VL = −1.5 V, VT = 3 V
VIH Linearity Error −15 +5 +15 mV Data = VH relative to line
between 0 V to 5 V; full range of
VIH = −1.4 V to +6.5 V
VIL Offset −100 +30 +100 mV
VIL Gain Error 0.98 1.02 V/V Data = L, VL = 0 V to 5 V,
VH = 6.5 V, VT = 3 V
VIL Linearity Error −15 +5 +15 mV Data = VH relative to line
between 0 V to 5 V; full range of
VIH = −1.4 V to +6.5 V
VIT Offset −100 +30 +100 mV Data = VT, VT = 0 V, VL = 0 V,
VH = 3 V
VIT Gain Error 0.98 1.02 V/V Data = VT, VT = 0 V to 5 V,
VL = 0 V, VH = 3 V
OBSOLETE
ADATE206
Rev. A | Page 4 of 16
Parameter Min Typ Max Unit Test Conditions/Comments
VIT Linearity Error −15 +5 +15 mV Data = VH relative to line
between 0 V to 5 V; full range of
VIH = −1.4 V to +6.5 V
Offset Tempco 80 μV/°C 65°C to 105°C
Driver Interaction
VH Interaction to VL −2 +2 mV VIH = 5.0 V; VIL = −1.5 V, +4.7 V,
+4.8 V, +4.9 V
VH Interaction to VT −2 +2 mV VIH = 3.0 V; VIT = −1.5 V, +2.9 V,
+3.1 V, +6.5 V
VL Interaction to VH −2 +2 mV VIL = 0.0 V; VIH = 0.1 V, 0.2 V,
0.3 V, 6.5 V
VL Interaction to VT −2 +2 mV VIL = 0.0 V; VIT = −1.5 V, −0.1 V,
+0.1 V, +6.5 V
VT Interaction to VH −2 +2 mV VIT = 1.5 V, VIL = −1.0 V;
VIH = −0.8 V, +1.4 V, +1.6 V,
+6.5 V
VT Interaction to VL −2 +2 mV VIT = 1.5 V, VIH = 6.0 V; IL = −1.5
V, +1.4 V, +1.6 V, +5.8 V
Rise/Fall Times at Device Under Testing (DUT)
0.2 V Swing: Rise/Fall Time 300 ps Terminated 20% to 80%,
VIH = 400 mV, VIL = 0 V, VIT = 0 V
0.5 V Swing: Rise/Fall Time 350 ps Terminated 10% to 90%,
VIH = 1.0 V, VIL = 0 V, VIT = 0 V
1 V Swing: Rise/Fall Time 500 ps Terminated 10% to 90%,
VIH = 2.0 V, VIL = 0 V, VIT = 0 V
3 V Swing: Rise/Fall Time 650 ps Unterminated 10% to 90%,
VIH = 3.0 V, VIL = 0 V, VIT = 0 V
3 V Swing: Rise/Fall Time 350 450 550 ps Terminated 20% to 80%,
VIH = 3.0 V, VIL = 0 V, VIT = 0 V
using DUT comparator
5 V Swing: Rise/Fall Time 1.1 ns Unterminated 10% to 90%,
VIH = 5.0 V, VIL = 0 V, VIT = 0 V
Minimum Pulse Width at DUT
500 mV Swing1
500 ps
Terminated, VIH = 1.0 V, VIL = 0 V,
VIT = 0 V
1.5 V Swing1
800 ps
Terminated, VIH = 3.0 V, VIL = 0 V,
VIT = 0 V
Toggle Rate @ 3 V 500 MHz Unterminated, 50/50 dc
measured frequency when
amplitude drops 10%
Dynamic Performance, Drive (VH and VL)
Propagation Delay Time2
1.4 ns
Terminated, VIH = 3.0 V,
VIL = 0.0 V, VIT = 0.0 V
Propagation Delay Tempco2
2.0 ps/°C
Terminated, VIH = 3.0 V,
VIL = 0.0 V, VIT = 0.0 V,
65°C to 85°C
Delay Matching, Edge-to-Edge 20 ps
Delay Change vs. Pulse Width2
30 ps
Terminated, VIH = 3.0 V,
VIL = 0.0 V, VIT = 0.0 V, 1μs
period, pulse width = 50 ns
to 1 ns
Delay Change vs. Duty Cycle2
5 ps
Terminated, VIH = 3.0 V,
VIL = 0.0 V, VIT = 0.0 V, 1 μs
period; 10%, 50%, and 90% duty
cycle
OBSOLETE
ADATE206
Rev. A | Page 5 of 16
Parameter Min Typ Max Unit Test Conditions/Comments
Settling Time to 15 mV 8 ns Terminated, VIH = 3 V,
VIL = 0.0 V, VIT = 0.0 V
Settling Time to 4 mV 32 ns Terminated, VIH = 3 V, VIL = 0.0 V,
VIT = 0.0 V
Rise and Fall Time Temperature Coefficient
500 mV Swing 2 ps/°C Terminated 10% to 90%,
VIH = 1.0 V, VIL = 0.0 V,
VIT = 0.0 V, 65°C to 85°C
1 V Swing 2 ps/°C Terminated 10% to 90%,
VIH = 2.0 V, VIL = 0.0 V,
VIT = 0.0 V, 65°C to 85°C
3 V Swing 2 ps/°C Unterminated 10% to 90%,
VIH = 3.0 V, VIL = 0.0 V,
VIT = 0.0 V, 65°C to 85°C
5 V Swing 2 ps/°C Unterminated 10% to 90%,
VIH = 5.0 V, VIL = 0.0 V,
VIT = 0.0 V, 65°C to 85°C
Overshoot and Preshoot 200 mV swing 1 % Terminated, VIH = 400 mV
Overshoot and Preshoot 1 V swing 1 % Terminated, VIH = 2 V
Overshoot and Preshoot 3 V swing 2 % Unterminated
Overshoot and Preshoot 5 V swing 2 % Unterminated
Dynamic Performance, Inhibit
Delay Time, Active High to Inhibit3
3.1 ns
Terminated, VIH = 3.0 V,
VIL = −1.0 V
Delay Time, Active Low to Inhibit3
2.1 ns
VH = 3.0 V, VL = −1.0 V,
terminated 50 Ω
Delay Time, Inhibit to Active High3
2.5 ns
Terminated, VIH = 3.0 V,
VIL = −1.0 V
Delay Time, Inhibit to Active Low3
3.9 ns
Terminated, VIH = 3.0 V,
VIL = −1.0 V
I/O Spike 350 mV Terminated, VIH = 0.0 V,
VIL = 0.0 V, VIT = 0.0 V
CLAMPS
VCPH, VCPL Clamp Inputs
VCPH Voltage Range CLAMPL 6.8 V
VCPL Voltage Range −1.8 CLAMPH V
Input Bias Current −50 −2 +50 μA Maximum value bias of
reference sweep = −1.8 V to
+6.8 V
Absolute Accuracy VCPH, VCPL
VCPH Offset −100 +55 +100 mV Driver = INH, VCPH = 0 V
VCPH Gain Error 1 V/V
VCPH Linearity Error +10 mV Driver = INH, relative to line
between 0 V to 4.5 V,
VCPH = −1.5 V to +6.5 V,
VCPL = −1.8 V
VCPL Offset −100 +55 +100 mV Driver = INH, VCPL = 0 V
VCPL Gain Error 1 V/V
VCPL Linearity Error +10 mV Driver = INH, relative to line
between 0 V to 4.5 V,
VCPL = −1.5 V to +6.5 V,
VCPH = 6.5 V
COMPARATOR DC SPECIFICATIONS4
DC Input Characteristics (VOH, VOL)
Bias Current −10 +5 +10 μA VOH and VOL = −1.5 V to +6.5 V
Voltage Range −1.5 +6.5 V
Differential Voltage −8.0 +8.0 V
OBSOLETE
ADATE206
Rev. A | Page 6 of 16
Parameter Min Typ Max Unit Test Conditions/Comments
Offset −15 +15 mV Common mode = 0 V
Gain Error 1 % FSR VIN = −1.5 V to +6.5 V
Linearity Error 3 mV VIN = −1.5 V to +6.5 V
Single-Ended Logic Input Characteristics
Threshold Voltage (CLLM) CMOS_VDD/2 V
Voltage Range 0 5.5 V
Bias Current −10 +160 +200 μA VIN = 0 V, 3.3 V
Bias Current 260 μA VIN = 5.5 V
Digital Output Characteristics
(VOH, VOL Levels)
Logic 1 3.1 3.26 3.4 V Terminated 50 Ω to 3.3 V
Logic 0 2.7 2.86 3.1 V Terminated 50 Ω to 3.3 V
Differential Levels 350 400 450 mV Terminated 50 Ω to 3.3 V
COMPARATOR AC SPECIFICATIONS
Propagation Delay
Input to Output 500 ps VIN = 3 V p-p, 2 V/ns
Propagation Delay Tempco 1.0 ps/°C VIN = 3 V p-p, 2 V/ns
Propagation Delay Change with Respect to
PD vs. Duty Cycle 40 ps VIN = 0 V to 3 V, 2 V/ns, driver in
VTERM, VIT = 0 V, period = 10 ns;
dc = 1 ns, 5 ns, 9 ns
Slew Rate: 1 V/ns, 2 V/ns, 3 V/ns 30 ps VIN = 0 V to 3 V, driver in VTERM,
VIT = 0 V
Amplitude: 500 mV, 1.0 V, 3.0 V 30 ps VIN = 0 V to 500 mV, 0 V to 1 V, 0 V
to 3 V, 2 V/ns, driver in VTERM,
VIT = 0 V
Equivalent Input Rise Time 225 ps VIN = 0 V to 1 V, <50 ps, 20% to
80% rise time, driver in VTERM =
0 V
Pulse-Width Linearity 20 ps VIN = 0 V to 3 V, 2 V/ns; pulse
width = 3 ns, 4 ns, 5 ns, 10 ns;
driver in VTERM, VIT = 0 V
Settling Time 5.5 ns Settling to ±8 mV, VIN = 0 V to
3 V, driver in VTERM, VIT = 0 V
Minimum Pulse Width 1 ns 2 V terminated, 1 V at the
comparator, driver in VTERM,
VIT = 0 V, 1 μs period, pulse
width = 50 ns to 1 ns
Hysteresis 6 mV
VIN = 100 mV, sweep CVL and
CVH
Comparator Propagation Delay Matching,
HCOMP to LCOMP
50 ps
HCOMP rise to LCOMP rise,
HCOMP fall to LCOMP fall
LOAD DC SPECIFICATIONS
Single-Ended Logic Input Characteristics
Threshold Voltage (LDEN) CMOS_VDD/2 V
Voltage Range 0 5.5 V
Bias Current −10 +10 μA VIN = 0 V, 3.3 V
Input Characteristics
VIOL Current Program Range 0.0 3.5 V VDUT = −1.5 V, +6.5 V;
IOL = 0 mA to 35 mA
VIOH Current Program Range 0.0 3.5 V VDUT = −1.5 V, +6.5 V;
IOH = 0 mA to 35 mA
VIOH, VIOL Input Bias Current −10 +10 μA VIOL = 0 V, 3.5 V;
VIOH = 0 V, 3.5 V
VDUT Range −1.5 +6.5 V |VDUTVCOM| > 1.0 V
OBSOLETE
ADATE206
Rev. A | Page 7 of 16
Parameter Min Typ Max Unit Test Conditions/Comments
VDUT Range −1.5 +6.5 V VDUT − VCOM > 1.0 V;
IOH = 0 mA to 35 mA
VDUT Range −1.5 +6.5 V VCOM − VDUT > 1.0 V;
IOL = 0 mA to 35 mA
Output characteristics
Gain 9.5 10 10.5 mA/V
Slope of line between 5 mA and
30 mA
Load Offset, IOH, IOLT −200 +200 μA
IOH and IOL programmed at
20 mV (200 μA)
Load Nonlinearity, IOH, IOLT −50 +50 μA
Relative to a line from 5 mA to
30 mA; IOL, IOH from 200 μA to
35 mA
Output Current Tempco, IOH, IOLT ±3 μA/C Measured at IOH, IOL = 30 mA
VCOM Buffer (Through Bridge)
VCOM Buffer Offset −50 +3 +50 mV IOL, IOH = 20 mA, VCOM = 0 V
VCOM Buffer Bias Current −10 +1 +10 μA VCOM = −1.5 V to +6.5 V
VCOM Buffer Gain 0.99 1 1.01 V/V IOL, IOH = 20 mA,
VCOM = −1.5 V to +6.5 V
VCOM Buffer Linearity Error −10 +1 +10 mV IOL, IOH = 20 mA,
VCOM = −1.5 V to +6.5 V, relative
to a line at 0 V and 5 V
Dynamic Performance
Propagation Delay—IMAX to INHIBIT 2.3 ns VTT = 2 V, VCOM = 4 V/0 V,
IOL = 20 mA, IOH = 20 mA
INHIBIT to IMAX 2.3 ns
VTT = 2 V, VCOM = 4 V/0 V,
IOL = 20 mA, IOH = 20 mA
TOTAL FUNCTION
Output Leakage Current −1.5 +0.28 +1.5 μA Driver = INH, VDUT swept from
−1.5 V to +6.5 V
Output Leakage Current, Low Leakage Mode −200 +10 +200 nA Driver = INH, VDUT swept from
−1.5 V to +6.5 V
Output Capacitance 2 pF
Power Supplies5
Total Supply Range 15.5 V
Positive Supply, VCC 9.75 10.0 10.25 V
Negative Supply, VEE −5.25 −5.0 −4.75 V
Positive Supply Current, VCC 190 210 245 mA
Load enabled at 20 mA, driver is
set to VIL = 0 V
Negative Supply Current, VEE 240 270 300 mA
Load enabled at 20 mA, driver is
set to VIL = 0 V
Total Power Dissipation 2.5 3.5 4 W Load enabled at 20 mA, driver is
set to VIL = 0 V
Positive Supply Current Load Disabled, VCC 145 165 200 mA
Load enabled at 0 mA, driver is
set to VIL = 0 V
Negative Supply Current Load Disabled, VEE 190 220 250 mA Load enabled at 0 mA, driver is
set to VIL = 0 V
Total Power Dissipation 1.8 2.8 3.3 W Load enabled at 0 mA, driver is
set to VIL = 0 V
Temperature Sensor Gain Factor 10 mV/°C Five diodes in series
1 1 μs period, pulse width = 50 ns to 500 ps, pulse width measured when amplitude drops 10%.
2 Measured at 50% of input amp to 50% of output amp.
3 tPD measured from the 50% of enable signal to 50% of output.
4 The low leakage mode of the comparator, controlled by VLLM input, reduces the leakage due to the comparator input. The comparator operates in this mode, but its
bandwidth is compromised and is not guaranteed.
5 Under no circumstances should the input voltages exceed the supply voltages.
OBSOLETE
ADATE206
Rev. A | Page 8 of 16
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
Maximum Current for VCC 245 mA
Maximum Current for VEE 300 mA
Positive Supply Voltage (VCC to GND) +10.5 V
Negative Supply Voltage (VEE to GND) −5.5 V
Operating Temperature (Junction) +150°C
Storage Temperature Range −65°C to +150°C
ESD (Human Body Model) ±1500 V
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
OBSOLETE
ADATE206
Rev. A | Page 9 of 16
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
74
GNDREF_2
73
VIOH_2
72
VIOL_2
69
VIT_2
70
D_INV_2
71
GND
75
VCOM_2
68
VIL_2
67
VIH_2
66
CLAMPH_2
64
GND
63
CLLM_2
62
LDEN_2
61
VTEN_2
60
VEE
59
VEE
58
VCC
57
VCC
56
GND
55
GND
54
DR_DATA_P_2
53
DR_DATA_P_T_2
52
DR_DATA_N_T_2
51
DR_DATA_N_2
65
CLAMPL_2
PIN 1
100
GND
99
VCC
98
VCC
97
GND
96
GND/SHIELDS
95
DUT_1
94
GND/SHIELDS
93
GND
92
VEE
91
CVH_1
90
CVL_1
89
VCC
88
TEMP
87
VEE
86
CVL_2
85
CVH_2
84
VEE
83
GND
82
GND/SHIELDS
81
DUT_2
80
GND/SHIELDS
79
GND
78
VCC
77
VCC
76
GND
26
DR_EN_P_1
27
DR_EN_P_T_1
28
1DR_EN_N_T_
29
DR_EN_N_1
30
NC
31
COMP_H_P_1
32
COMP_H_N_1
33
VEE
34
COMP_L_P_1
35
COMP_L_N_1
36
DGN
37
1SLEW
38
DCMOS_VD
39
0SLEW
40
DGN
41
COMP_L_N_2
42
COMP_L_P_2
43
VEE
44
COMP_H_N_2
45
COMP_H_P_2
46
NC
47
DR_EN_N_2
48
2DR_EN_N_T_
49
DR_EN_P_T_2
50
DR_EN_P_2
2
GNDREF_1
3
VIOH_1
4
VIOL_1
7
VIT_1
6
D_INV_1
5
GND
1
VCOM_1
8
VIL_1
9
VIH_1
10
CLAMPL_1
12
GND
13
CLLM_1
14
LDEN_1
15
VTEN_1
16
VEE
17
VEE
18
VCC
19
VCC
20
GND
21
GND
22
DR_DATA_P_1
23
DR_DATA_P_T_1
24
DR_DATA_N_T_1
25
DR_DATA_N_1
11
CLAMPH_1
ADATE206
TOP VIEW
(Not to Scale)
05738-002
Figure 2. Pin Configuration
OBSOLETE
ADATE206
Rev. A | Page 10 of 16
Table 3. Pin Function Descriptions
Pin No. Mnemonic Description
1 VCOM_1 Commutation Reference Voltage.
2 GNDREF_1 Reference GND for VIOL, VIOH.
3 VIOH_1 Program Voltage for IOH (Sink).
4 VIOL_1 Program Voltage for IOL (Source).
5, 12, 20, 21, 36,
40, 55, 56, 64, 71,
76, 79, 83, 93, 97,
100
GND Device Ground.
6 D_INV_1 Driver Invert.
7 VIT_1 Driver Term Voltage Reference.
8 VIL_1 Driver Low Voltage Reference.
9 VIH_1 Driver High Voltage Reference.
10 CLAMPL_1 Low Clamp.
11 CLAMPH_1 High Clamp.
13 CLLM_1 Comparator Low Leakage Mode.
14 LDEN_1 Determines Whether LD Responds to DR_EN_1 or is Disabled (see Table 4).
15 VTEN_1
Low Speed Control Signal. When high, DR_EN_1 forces driver output to VIT. Otherwise, DR_EN_1
forces driver to high impedance (see Table 4).
16, 17, 33, 43, 59,
60, 84, 87, 92
VEE Negative Power Supply.
18 19, 57, 58, 77,
78, 89, 98, 99
VCC Positive Power Supply.
22 DR_DATA_P_1 High Speed Data Inputs. Sets high/low state of driver output (see Table 4).
23 DR_DATA_P_T_1
Termination Resistor for HS Inputs. Opposite end of each 50 Ω termination resistor goes to the
appropriate signal.
24 DR_DATA_N_T_1
Termination Resistors for HS Inputs. Opposite end of each 50 Ω termination resistor goes to the
appropriate signal.
25 DR_DATA_N_1 Complement of DR_DATA_P_1.
26 DR_EN_P_1
High Speed Enable Inputs. Multifunction depending on status of VTEN_1 and LDEN_1. Causes driver
to enter/leave inhibit; driver to enter/leave termination mode; load to leave/enter inhibit
(see Table 4).
27 DR_EN_P_T_1
Termination Resistor for HS Inputs. Opposite end of each 50 Ω termination resistor goes to the
appropriate signal.
28 DR_EN_N_T_1
Termination Resistor for HS Inputs. Opposite end of each 50 Ω termination resistor goes to the
appropriate signal.
29 DR_EN_N_1 Complement of DR_EN_P_1.
30, 46 NC No Connect.
31 COMP_H_P_1 High Comparator Output.
32 COMP_H_N_1 Complement of COMP_H_P_1.
34 COMP_L_P_1 Low Comparator Output.
35 COMP_L_N_1 Complement of COMP_L_P_1.
37, 39 SLEW1, SLEW0 Logic Signals Controlling Driver Slew Rates for Both Drivers. 00 codes for maximum slew voltage; 11
codes for minimum slew voltage.
38 CMOS_VDD CMOS Supply (Internal ÷ 2 = Single-Ended Logic Reference).
41 COMP_L_N_2 Complement of COMP_L_P_1.
42 COMP_L_P_2 Low Comparator Output.
44 COMP_H_N_2 Complement of COMP_H_P_1.
45 COMP_H_P_2 High Comparator Output.
OBSOLETE
ADATE206
Rev. A | Page 11 of 16
Pin No. Mnemonic Description
47 DR_EN_N_2 Complement of DR_EN_P_2.
48 DR_EN_N_T_2 Complement of DR_EN_P_T_2.
49 DR_EN_P_T_2
Termination Resistor for HS Inputs. Opposite end of each 50 Ω termination resistor goes to the
appropriate signal.
50 DR_EN_P_2
High Speed Enable Input. Multifunction depending on status of VTEN_2 and LDEN_2. Causes driver
to enter/leave inhibit; driver to enter/leave termination mode; load to leave/enter inhibit
(see Table 4).
51 DR_DATA_N_2 Complement of DR_DATA_P_2.
52 DR_DATA_N_T_2 Complement of DR_DATA_P_T_2.
53 DR_DATA_P_T_2
Termination Resistor for HS Inputs. Opposite end of each 50 Ω termination resistor goes to the
appropriate signal.
54 DR_DATA_P_2 High Speed Data Input. Sets high/low state of driver output (see Table 4).
61 VTEN_2
Low Speed Control Signal. When high, DR_EN_2 forces driver output to VT; otherwise, DR_EN_2
forces driver to high impedance (see Table 4).
62 LDEN_2 Determines Whether LD Responds to DR_EN_2 or is Disabled (see Table 4).
63 CLLM_2 Comp Low Leakage Mode.
65 CLAMPL_2 Low Clamp.
66 CLAMPH_2 High Clamp.
67 VIH_2 Driver High Voltage Reference.
68 VIL_2 Driver Low Voltage Reference.
69 VIT_2 Driver Term Voltage Reference.
70 D_INV_2 Driver Invert.
72 VIOL_2 Program Voltage for IOL (Source).
73 VIOH_2 Program Voltage for IOH (Sink).
74 GNDREF_2 Reference GND for VIOL, VIOH.
75 VCOM_2 Commutation Reference Voltage.
80, 82, 94, 96 GND/SHIELDS Device Ground or Pin Shield.
81 DUT_2 Output/Input Pin.
85 CVH_2 Window High Reference Level.
86 CVL_2 Window Low Reference Level.
88 TEMP Temperature Sense, Five Diode String, Reference to GND.
90 CVL_1 Window Low Reference Level.
91 CVH_1 Window High Reference Level.
95 DUT_1 Output/Input Pin.
OBSOLETE
ADATE206
Rev. A | Page 12 of 16
TYPICAL PERFORMACE CHARACTERISTICS
2400
2200
2000
1800
1600
1400
1200
1000
800
600
400
200
0
05738-003
200mV/DI
0 2 4 6 10 12 14 16818
V
2ns/DIV
VIL = 0V
TERMINATION = 50
VIH = 5V
VIH = 3V
VIH = 1V
Figure 3. Driver Large Signal Response
240
220
200
180
160
140
120
100
80
60
40
20
0
05738-004
20mV/DI
0 2 4 6 10 12 14 16818
V
2ns/DIV
VIL = 0V
TERMINATION = 50
VIH = 500mV
VIH = 200mV
VIH = 100mV
Figure 4. Driver Small Signal Response
TRAILING FALL EDGE
TRAILING RISE EDGE
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
05738-005
10ps/DI
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
V
2.5ns/DIV
Figure 5. Driver Trailing Edge Timing Error vs. Pulse Width
5
3
2
1
4
0
–1
–3
–2
–6
–4
–5
–2 –1 0 1 3 4 5 627
05738-006
LINEARITY ERROR (mV)
V
DUT
(V)
DRIVER = VIH
Figure 6. Driver VIH Linearity vs. Output
6
4
3
2
5
1
0
–2
–1
–5
–3
–4
–2 –1 0 1 3 4 5 627
05738-007
LINEARITY ERROR (mV)
V
DUT
(V)
DRIVER = VIL
Figure 7. Driver VIL Linearity vs. Output
8
4
2
6
0
–4
–2
–8
–6
–2 –1 0 1 3 4 5 627
05738-008
LINEARITY ERROR (mV)
V
DUT
(V)
DRIVER = VTERM
Figure 8. Driver VTERM Linearity vs. Output
OBSOLETE
ADATE206
Rev. A | Page 13 of 16
1.0004
1.0003
1.0002
1.0001
1.0000
0.9999
0.9998
0.9997
0.9996
0.9995
05738-009
GAIN (V/V)
60 70 90 10080 110
TEMPERATURE (°C)
Figure 9. Driver Gain vs. Temperature
2.0
1.5
1.0
0.5
0
–0.5
–1.0
–1.5
05738-010
OFFSET (mV)
60 70 90 10080 110
TEMPERATURE (°C)
Figure 10. Driver Offset vs. Temperature
240
220
200
180
160
140
120
100
80
60
40
20mV/DIV
20
02 4 6 8 10 12 14 16 18 20
05738-011
t
BASE
(2ns/DIV)
Figure 11. Comparator Differential Output Response
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0–2 –1 0 1 3 54627
05738-012
OFFSET (mV)
COMMON-MODE VOLTAGE (V)
Figure 12. Comparator Offset vs. Common-Mode Voltage
1050
1100
950
1000
900
850
750
800
700
650
600
550
450
500
350
400
300
250
150
200
100
50
–50
0
–100
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
8000
7500
8000
8500
9000
9500
0
05738-016
50mV/DI
V
500ps/DIV
V
IN
= 0V TO 1V
<50ps
20% TO 80% RISE TIME
DRIVER IN VTERM = 0V
Figure 13. Comparator Schmoo at 1 ns Rise and Fall Time
1050
1100
950
1000
900
850
750
800
700
650
600
550
450
500
350
400
300
250
150
200
100
50
–50
0
–100
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
8000
7500
8000
8500
9000
9500
0
05738-017
50mV/DI
V
500ps/DIV
V
IN
= 0V TO 1V
<50ps
20% TO 80% RISE TIME
DRIVER IN VTERM = 0V
Figure 14. Comparator Schmoo at 600 ps Rise and Fall Time
OBSOLETE
ADATE206
Rev. A | Page 14 of 16
32.0
27.5
30.0
20.0
22.0
25.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
2.5ps/DI
0
–3.0 12 34 56 78910
05738-018
V
1ns/DIV
Figure 15. Comparator tPD vs. Pulse Width
40
20
10
30
0
–10
–20
I
DUT
(mA)
–30
–40–2 –1 0 1 3 4 5 627
05738-013
V
DUT
(V)
V
COM
= 1V
IOH = IOL = 35mA
Figure 16. Active Load Commutation Region
18
12
10
8
14
16
6
4
2
–2
0
–4 0 5 10 20 25 3015 35
05738-014
LINEARITY ERROR (µA)
IOL (mA)
V
COM
= 0V
IOL = 0V
V
DUT
= 2V
Figure 17. Active Load Linearity vs. IOH
14
8
6
4
10
12
2
0
–4
–2
–6 0 5 10 20 25 3015 35
05738-015
LINEARITY ERROR (µA)
IOL (mA)
V
COM
= 2V
IOH = 0V
V
DUT
= 0V
Figure 18. Active Load Linearity vs. IOL
OBSOLETE
ADATE206
Rev. A | Page 15 of 16
THEORY OF OPERATION
The ADATE206 has two general classes of logic inputs:
differential inputs for controlling functions that generally need
to be operated at high speed, and single-ended CMOS inputs
for setting operating modes or other low speed functions. The
differential inputs have a wide common-mode range that allows
them to be used with a variety of logic families. The differential
inputs can be used single-ended, with one input from each pair
of inputs tied to a fixed reference. However, this makes precise
timing more difficult to achieve.
These differential input pins provide 50 Ω input termination
resistors for use as desired. The single-ended inputs have an
input range compatible with most logic families and are high
impedance to make driving them very easy. The switching
threshold for the single-ended inputs is preset to one-half of the
voltage at the CMOS_VDD pin.
Table 4. Driver and Load Modes
LDEN
(CMOS Single-Ended)
VTEN
(CMOS Single-Ended)
DR_EN
(High Speed Differential)
DR_DATA
(High Speed Differential)
Driver
Status
Load
Status
0 0 0 X High-Z High-Z
0 0 1 0 VIL High-Z
0 0 1 1 VIH High-Z
0 1 0 X VIT High-Z
0 1 1 0 VIL High-Z
0 1 1 1 VIH High-Z
1 0 0 X High-Z ON
1 0 1 0 VIL High-Z
1 0 1 1 VIH High-Z
Table 5. Comparator Low Leakage Mode
CLLM
(CMOS Single-Ended)
Typical DUT Pin Bias Current
0 1 μA
1 10 nA
Table 6. Rise/Fall Time Selection 3 V, 10% to 90%, Unterminated
Slew1 Slew0 Tr/Tf (ns)
0 0 0.7
0 1 0.95
1 0 1.4
1 1 2.8
Table 7. Comparator Logic Function
DUT Pin Voltage
Output States
COMP_L_P COMP_L_N COMP_H_P COMP_H_N
>CVL >CVH 1 0 1 0
>CVL <CVH 1 0 0 1
<CVL >CVH 0 1 1 0
<CVL <CVH 0 1 0 1
OBSOLETE
ADATE206
Rev. A | Page 16 of 16
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD
OUTLINE DIMENSIONS
0.27
0.22
0.17
1
25
26 49
76100
75
50
14.00 BSC SQ
16.00 BSC SQ
0.50 BSC
LEAD PITCH
0.75
0.60
0.45
1.20
MAX
1
25
2650
76 100
75
51
1.05
1.00
0.95
0.20
0.09
0.08 MAX
COPLANARITY
VIEW A
SEATING
PLANE
ROTATED 90
°
CCW
0° MIN
3.5°
0.15
0.05
VIEW A
PIN 1
TOP VIEW
(PINS DOWN)
6.50
SQ
EXPOSED
PAD
BOTTOM
VIEW
(PINS UP)
Figure 19. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]
(SV-100-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model Temperature Range Package Description Package Option
ADATE206BSV −40°C to +85°C 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP] SV-100-2
©2006–2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D05738-0-10/08(A)
OBSOLETE