AOT1N60
600V,1.3A N-Channel MOSFET
General Description Product Summary
V
DS
I
D
(at V
GS
=10V) 1.3A
R
DS(ON)
(at V
GS
=10V) < 9
100% UIS Tested
100% R
g
Tested
For Halogen Free add "L" suffix to part number:
AOT1N60L
Symbol
V
DS
V
GS
I
DM
I
AR
E
AR
E
AS
Peak diode recovery dv/dt dv/dt
T
J
, T
STG
T
L
Symbol
R
θ
JA
R
θCS
R
θJC
1.3
0.9
41.7
5
2
0.5
Units
°C/W55
-
65
3
Junction and Storage Temperature Range
Maximum Junction-to-Ambient
A,D
Power Dissipation
B
P
D
T
C
=25°C
Thermal Characteristics
300
-55 to 150
0.3
Avalanche Current
C
15
Single plused avalanche energy
G
30
1
Repetitive avalanche energy
C
V±30Gate-Source Voltage
T
C
=100°C A
4Pulsed Drain Current
C
Continuous Drain
Current
T
C
=25°C I
D
The AOT1N60 have been fabricated using an advanced
high voltage MOSFET process that is designed to deliver
high levels of performance and robustness in popular AC-
DC applications.By providing low R
DS(on)
, C
iss
and C
rss
along with guaranteed avalanche capability these parts
can be adopted quickly into new and existing offline power
supply designs.
V
UnitsParameter
Absolute Maximum Ratings T
A
=25°C unless otherwise noted
700V@150
Drain-Source Voltage 600
Maximum
Maximum Case-to-sink
A
Maximum Junction-to-Case
mJ
°C/W
°C/W
Derate above 25
o
C
Parameter Typical Maximum
purpose, 1/8" from case for 5 seconds
A
W
W/
o
C
°C
mJ
V/ns
°C
Top View
TO-220
GD
S
G
D
S
Rev4: July 2010 www.aosmd.com Page 1 of 5
AOT1N60
Symbol Min Typ Max Units
600
700
BV
DSS
/
∆TJ
0.6 V/
o
C
1
10
I
GSS
Gate-Body leakage current 100 nΑ
V
GS(th)
Gate Threshold Voltage 3 4.1 4.5 V
R
DS(ON)
7.5 9
g
FS
0.9 S
V
SD
0.65 1 V
I
S
Maximum Body-Diode Continuous Current 1 A
I
SM
4 A
C
iss
100 130 160 pF
C
oss
11 14.5 17.5 pF
C
rss
1.4 1.8 2.2 pF
R
g
2.8 3.5 5.3
Q
g
6.1 8 nC
Q
gs
1.3 2 nC
Q
gd
3.1 4 nC
t
D(on)
10 12 ns
t
r
6.7 8 ns
t
D(off)
20 25 ns
t
f
11.5 15 ns
t
rr
114 137 ns
Q
rr
0.63 0.76 µC
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
µA
V
DS
=0V, V
GS
=±30V
V
Drain-Source Breakdown Voltage I
D
=250µA, V
GS
=0V, T
J
=25°C
I
D
=250µA, V
GS
=0V, T
J
=150°C
BV
DSS
Body Diode Reverse Recovery Charge I
F
=1A,dI/dt=100A/µs,V
DS
=100V
Maximum Body-Diode Pulsed Current
Input Capacitance
Output Capacitance
Turn-On DelayTime
DYNAMIC PARAMETERS
Turn-On Rise Time
Diode Forward Voltage
Turn-Off DelayTime
V
GS
=10V, V
DS
=300V, I
D
=1A,
R
G
=25
Gate resistance V
GS
=0V, V
DS
=0V, f=1MHz
Turn-Off Fall Time
Total Gate Charge
V
GS
=10V, V
DS
=480V, I
D
=1A
Gate Source Charge
Gate Drain Charge
V
DS
=5V
I
D
=250µA
V
DS
=480V, T
J
=125°C
Breakdown Voltage Temperature
Coefficient
I
DSS
Zero Gate Voltage Drain Current V
DS
=600V, V
GS
=0V
I
D
=250µA, V
GS
=0V
Electrical Characteristics (T
J
=25°C unless otherwise noted)
STATIC PARAMETERS
Parameter Conditions
Body Diode Reverse Recovery Time
Static Drain-Source On-Resistance V
GS
=10V, I
D
=0.65A
Reverse Transfer Capacitance
I
F
=1A,dI/dt=100A/µs,V
DS
=100V
V
GS
=0V, V
DS
=25V, f=1MHz
SWITCHING PARAMETERS
I
S
=1A,V
GS
=0V
V
DS
=40V, I
D
=0.65A
Forward Transconductance
A. The value of R
θJA
is measured with the device in a still air environment with T
A
=25°C.
B. The power dissipation P
D
is based on T
J(MAX)
=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature T
J(MAX)
=150°C, Ratings are based on low frequency and duty cycles to keep initial T
J
=25°C.
D. The R
θJA
is the sum of the thermal impedence from junction to case R
θJC
and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of T
J(MAX)
=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, I
AS
=1A, V
DD
=150V, R
G
=25, Starting T
J
=25°C
Rev4: July 2010 www.aosmd.com Page 2 of 5
AOT1N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
40
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
0.0 0.2 0.4 0.6 0.8 1.0 1.2
V
SD
(Volts)
Figure 6: Body-Diode Characteristics (Note E)
I
S
(A)
25°C
125°C
0
0.5
1
1.5
2
0 5 10 15 20 25 30
V
DS
(Volts)
Fig 1: On-Region Characteristics
I
D
(A)
V
GS
=5.5V
6V
10V
6.5V
0.1
1
10
2 4 6 8 10
V
GS
(Volts)
Figure 2: Transfer Characteristics
I
D
(A)
-55°C
V
DS
=40V
25°C
125°C
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
0 0.5 1 1.5 2 2.5
I
D
(A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
R
DS(ON)
()
V
GS
=10V
0
0.5
1
1.5
2
2.5
-100 -50 0 50 100 150 200
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
Normalized On-Resistance
V
GS
=10V
I
D
=0.65A
0.8
0.9
1
1.1
1.2
-100 -50 0 50 100 150 200
T
J
(°C)
Figure 5:Break Down vs. Junction Temperature
BV
DSS
(Normalized)
Rev4: July 2010 www.aosmd.com Page 3 of 5
AOT1N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
0
3
6
9
12
15
0 2 4 6 8
Q
g
(nC)
Figure 7: Gate-Charge Characteristics
V
GS
(Volts)
V
DS
=480V
I
D
=1A
1
10
100
1000
0.1 1 10 100
V
DS
(Volts)
Figure 8: Capacitance Characteristics
Capacitance (pF)
C
iss
C
oss
C
rss
0.01
0.1
1
10
1 10 100 1000
V
DS
(Volts)
I
D
(Amps)
Figure 9: Maximum Forward Biased Safe
Operating Area for AOT1N60 (Note F)
10µs
10ms
1ms
DC
R
DS(ON)
limited
T
J(Max)
=150°C
T
C
=25°C
100
µ
s
0
0
1
1
1
2
0 25 50 75 100 125 150
T
CASE
(°C)
Figure 10: Current De-rating (Note B)
Current rating I
D
(A)
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1 10 100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance for AOT1N60 (Note F)
Z
θJC
Normalized Transient
Thermal Resistance
D=T
on
/T
T
J,PK
=T
C
+P
DM
.Z
θJC
.R
θJC
R
θ
JC
=3°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
T
on
T
P
D
Single Pulse
Rev4: July 2010 www.aosmd.com Page 4 of 5
AOT1N60
-
+
VDC
Ig
Vds
DUT
-
+
VDC
Vgs
Vgs
10V
Qg
Qgs Qgd
Charge
Gate Charge Test Circuit & Waveform
-
+
VDC
DUT Vdd
Vgs
Vds
Vgs
RL
Rg
Vgs
Vds
10%
90%
Resistive Switching Test Circuit & Waveforms
t t
r
d(on)
t
on
t
d(off)
t
f
t
off
Vdd
Vgs
Id
Vgs
Rg
DUT
-
+
VDC
L
Vgs
Vds
Id
Vgs
BV
I
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
Ig
Vgs
-
+
VDC
DUT
L
Vds
Vgs
Vds
Isd
Isd
Diode Recovery Test Circuit & Waveforms
Vds -
Vds +
I
F
AR
DSS
2
E = 1/2 LI
dI/dt
I
RM
rr
Vdd
Vdd
Q = - Idt
t
rr
AR
AR
Rev4: July 2010 www.aosmd.com Page 5 of 5