AOT1N60
Symbol Min Typ Max Units
600
700
BV
DSS
0.6 V/
o
C
1
10
I
GSS
Gate-Body leakage current 100 nΑ
V
GS(th)
Gate Threshold Voltage 3 4.1 4.5 V
R
DS(ON)
7.5 9 Ω
g
FS
0.9 S
V
SD
0.65 1 V
I
S
Maximum Body-Diode Continuous Current 1 A
I
SM
4 A
C
iss
100 130 160 pF
C
oss
11 14.5 17.5 pF
C
rss
1.4 1.8 2.2 pF
R
g
2.8 3.5 5.3 Ω
Q
g
6.1 8 nC
Q
gs
1.3 2 nC
Q
gd
3.1 4 nC
t
D(on)
10 12 ns
t
r
6.7 8 ns
t
D(off)
20 25 ns
t
f
11.5 15 ns
t
rr
114 137 ns
Q
rr
0.63 0.76 µC
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
µA
V
DS
=0V, V
GS
=±30V
V
Drain-Source Breakdown Voltage I
D
=250µA, V
GS
=0V, T
J
=25°C
I
D
=250µA, V
GS
=0V, T
J
=150°C
BV
DSS
Body Diode Reverse Recovery Charge I
F
=1A,dI/dt=100A/µs,V
DS
=100V
Maximum Body-Diode Pulsed Current
Input Capacitance
Output Capacitance
Turn-On DelayTime
DYNAMIC PARAMETERS
Turn-On Rise Time
Diode Forward Voltage
Turn-Off DelayTime
V
GS
=10V, V
DS
=300V, I
D
=1A,
R
G
=25Ω
Gate resistance V
GS
=0V, V
DS
=0V, f=1MHz
Turn-Off Fall Time
Total Gate Charge
V
GS
=10V, V
DS
=480V, I
D
=1A
Gate Source Charge
Gate Drain Charge
V
DS
=5V
I
D
=250µA
V
DS
=480V, T
J
=125°C
Breakdown Voltage Temperature
Coefficient
I
DSS
Zero Gate Voltage Drain Current V
DS
=600V, V
GS
=0V
I
D
=250µA, V
GS
=0V
Electrical Characteristics (T
J
=25°C unless otherwise noted)
STATIC PARAMETERS
Parameter Conditions
Body Diode Reverse Recovery Time
Static Drain-Source On-Resistance V
GS
=10V, I
D
=0.65A
Reverse Transfer Capacitance
I
F
=1A,dI/dt=100A/µs,V
DS
=100V
V
GS
=0V, V
DS
=25V, f=1MHz
SWITCHING PARAMETERS
I
S
=1A,V
GS
=0V
V
DS
=40V, I
D
=0.65A
Forward Transconductance
A. The value of R
θJA
is measured with the device in a still air environment with T
A
=25°C.
B. The power dissipation P
D
is based on T
J(MAX)
=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature T
J(MAX)
=150°C, Ratings are based on low frequency and duty cycles to keep initial T
J
=25°C.
D. The R
θJA
is the sum of the thermal impedence from junction to case R
θJC
and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of T
J(MAX)
=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, I
AS
=1A, V
DD
=150V, R
G
=25Ω, Starting T
J
=25°C
Rev4: July 2010 www.aosmd.com Page 2 of 5