1© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
One world. One KEMET
Benets
Rectangular case
• Widerangeoftemperaturefrom−25°Cto+70°C(alltypes
exceptFMR)and−40°Cto+85°C(FMRtype)
Maintenance free
3.5 VDC, 5.5 VDC, and 6.5 VDC
• Highlyreliableagainstliquidleakage
Lead-free and RoHS Compliant
• Leadscanbetransversemounted
Overview
FMSeriesSupercapacitors,alsoknownasElectricDouble-
LayerCapacitors(EDLCs),areintendedforhighenergy
storage applications.
Applications
Supercapacitors have characteristics ranging from
traditionalcapacitorsandbatteries.Asaresult,
supercapacitorscanbeusedlikeasecondarybattery
whenappliedinaDCcircuit.Thesedevicesarebestsuited
for use in low voltage DC hold-up applications such as
embeddedmicroprocessorsystemswithashmemory.
Supercapacitors
FM Series
Part Number System
FM 0H 223 Z F TP 16
Series Maximum
Operating Voltage CapacitanceCode(F) Capacitance
Tolerance Environmental TapeType Height
(excludinglead)
FM
FME
FML
FMR
FMC
0V = 3.5 VDC
0H = 5.5 VDC
0J = 6.5 VDC
First two digits
representsignicant
gures.Thirddigit
speciesnumberof
zeros.
Z=−20/+80% F = Lead-free TP=AMMO
L1 = Transverse
mounting
Blank = Bulk
16 = 16 mm
18 = 18 mm
Blank = Bulk
2© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Dimensions – Millimeters
A ±0.5
5 ±10.4 ±0.1
D1 ±0.1 D2 ±0.1
B ±0.5
5 ±0.5
T ±0.5
Part Number A B T D1D2
FM0H103ZF
11.5
10.5
5.0
0.5
0.4
FM0H223ZF
11.5
10.5
5.0
0.5
0.4
FM0H473ZF
11.5
10.5
5.0
0.5
0.4
FM0H104ZF
11.5
10.5
6.5
0.5
0.4
FM0H224ZF
11.5
10.5
6.5
0.5
0.4
FM0V473ZF
11.5
10.5
5.0
0.5
0.4
FM0V104ZF
11.5
10.5
5.0
0.5
0.4
FM0V224ZF
11.5
10.5
6.5
0.5
0.4
FM0J473ZF
11.5
10.5
6.5
0.5
0.4
FME0H223ZF
11.5
10.5
5.0
0.5
0.4
FME0H473ZF
11.5
10.5
5.0
0.5
0.4
FML0H333ZF
11.5
10.5
5.0
0.5
0.4
FMR0H473ZF
11.5
10.5
6.5
0.5
0.4
FMR0H104ZF
11.5
10.5
6.5
0.5
0.4
FMR0V104ZF
11.5
10.5
6.5
0.5
0.4
FMC0H473ZF
11.5
10.5
5.0
0.5
0.4
FMC0H104ZF
11.5
10.5
6.5
0.5
0.4
FMC0H334ZF
15.0
14.0
9.0
0.6
0.6
Lead Terminal Forming
L=2.2 to 5mm
Lead length designation For transverse mounting <L1>
Add “L1” to the end of bulk part number for transverse mounting option
3© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Performance Characteristics
Supercapacitorsshouldnotbeusedforapplicationssuchasrippleabsorptionbecauseoftheirhighinternalresistance
(severalhundredmΩtoahundredΩ)comparedtoaluminumelectrolyticcapacitors.Thus,itsmainusewouldbe
similartothatofsecondarybatterysuchaspowerback-upinDCcircuit.Thefollowinglistshowsthecharacteristicsof
supercapacitorsascomparedtoaluminumelectrolyticcapacitorsforpowerback-upandsecondarybatteries.
Secondary Battery Capacitor
NiCd Lithium Ion AluminumElectrolytic Supercapacitor
Back-upability
Eco-hazard Cd
Operating Temperature Range 20to+60°C 20to+50°C −55to+105°C −40to+85°C(FR,FT)
Charge Time few hours few hours few seconds few seconds
Charge/Discharge Life Time approximately500times
approximately500to1,000
times
limitless(*1) limitless(*1)
Restrictions on
Charge/Discharge yes yes none none
Flow Soldering notapplicable notapplicable applicable applicable
AutomaticMounting notapplicable notapplicable applicable applicable
(FMandFCseries)
SafetyRisks leakage, explosion leakage,combustion,
explosion, ignition heat-up, explosion gasemission(*2)
(*1) Aluminum electrolytic capacitors and supercapacitors have limited lifetime. However, when used under proper conditions, both can operate within a
predetermined lifetime.
(*2) There is no harm as it is a mere leak of water vapor which transitioned from water contained in the electrolyte (diluted sulfuric acid). However,
application of abnormal voltage surge exceeding maximum operating voltage may result in leakage and explosion.
Typical Applications
Intended Use (Guideline) Power Supply (Guideline) Application Examples of Equipment Series
Longtimeback-up 500μAandbelow CMOS microcomputer,
IC for clocks
CMOS microcomputer,
staticRAM/DTS
FM series
Environmental Compliance
AllKEMETsupercapacitorsareRoHSCompliant.
RoHS Compliant
4© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Table 1 – Ratings & Part Number Reference
Part Number
Maximum
Operating
Voltage (VDC)
Nominal Capacitance Maximum ESR
at 1 kHz (Ω)
Maximum
Current at 30
Minutes (mA)
Voltage Holding
Characteristic
Minimum (V)
Weight (g)
Charge
System (F)
Discharge
System (F)
FM0V473ZF
3.5
0.047
0.06
200
0.042
1.3
FMR0V104ZF 3.5 0.10 50 0.090 1.6
FM0V104ZF
3.5
0.10
0.13
100
0.090
1.3
FM0V224ZF
3.5
0.22
0.30
100
0.20
1.6
FM0H103ZF 5.5 0.01 0.014 300 0.015 4.2 1.3
FME0H223ZF 5.5 0.022 0.028 40 0.033 1.3
FM0H223ZF 5.5 0.022 0.028 200 0.033 4.2 1.3
FML0H333ZF
5.5
0.033
6.5
0.050
1.3
FME0H473ZF
5.5
0.047
0.06
20
0.071
1.3
FMC0H473ZF 5.5 0.047 0.06 100 0.071 4.2 1.3
FM0H473ZF 5.5 0.047 0.06 200 0.071 4.2 1.3
FMR0H473ZF 5.5 0.047 0.062 200 0.071 4.2 1.6
FMR0H104ZF
5.5
0.10
50
0.15
4.2
1.6
FMC0H104ZF
5.5
0.10
0.13
50
0.15
4.2
1.6
FM0H104ZF 5.5 0.10 0.13 100 0.15 4.2 1.6
FM0H224ZF 5.5 0.22 100 0.33 4.2 1.6
FMC0H334ZF 5.5 0.33 25 0.50 4.2 3.5
FM0J473ZF
6.5
0.047
0.062
200
0.071
1.6
5© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Specications – All Types Except FMR
Item FM 5.5 V Type, 3.5 V Type,
6.5 V Type, FMC Type FML Type, FME Type Test Conditions
(conforming to JIS C 5160-1)
CategoryTemperatureRange −25°Cto+70°C −25°Cto+70°C
Maximum Operating Voltage 5.5 VDC, 3.5 VDC, 6.5 VDC 5.5 VDC
Capacitance RefertoTable1 RefertoTable1 Refer to “Measurement Conditions
CapacitanceAllowance +80%,−20% +80%,−20% Refer to “Measurement Conditions
ESR RefertoTable1 RefertoTable1 Measuredat1kHz,10mA;Seealso
“Measurement Conditions”
Current(30minutesvalue) RefertoTable1 RefertoTable1 Refer to “Measurement Conditions”
Surge
Capacitance >90%ofinitialratings >90%ofinitialratings
Surge voltage:
Charge:
Discharge:
Numberofcycles:
Series resistance:
Discharge
resistance:
Temperature:
4.0V(3.5Vtype)
6.3V(5.5Vtype)
7.4V(6.5Vtype)
30 seconds
9 minutes 30 seconds
1,000
0.010F1,500Ω
0.022F 560Ω
0.033F 510Ω
0.047F 300Ω
0.068F 240Ω
0.10F 150Ω
0.22F 56Ω
0.33F 51Ω
0Ω
70±2°C
ESR ≤120%ofinitialratings ≤120%ofinitialratings
Current(30
minutes value) ≤120%ofinitialratings ≤120%ofinitialratings
Appearance Noobviousabnormality Noobviousabnormality
Characteristics
in Different
Temperature
Capacitance Phase
2
≥50%of
initial value Phase
2
≥50%of
initial value Conforms to 4.17
Phase 1:
Phase 2:
Phase 4:
Phase 5:
Phase 6:
+25±2°C
−25±2°C
+25±2°C
+70±2°C
+25±2°C
ESR ≤400%of
initial value
≤400%orless
than initial value
Capacitance Phase
3
Phase
3
ESR
Capacitance
Phase
5
≤200%of
initial value
Phase
5
≤200%of
initial value
ESR Satisfyinitial
ratings
Satisfyinitial
ratings
Current(30
minutes value) ≤1.5CV(mA) ≤1.5CV(mA)
Capacitance
Phase
6
Within±20%of
initial value
Phase
6
Within±20%
of initial value
ESR Satisfyinitial
ratings
Satisfyinitial
ratings
Current(30
minutes value)
Satisfyinitial
ratings
Satisfyinitial
ratings
Vibration
Resistance
Capacitance
Satisfyinitialratings Satisfyinitialratings
Conforms to 4.13
Frequency:
Testing Time:
10 to 55 Hz
6 hours
ESR
Current(30
minutes value)
Appearance Noobviousabnormality Noobviousabnormality
Solderability Over3/4oftheterminalshouldbe
coveredbythenewsolder
Over3/4oftheterminalshouldbe
coveredbythenewsolder
Conforms to 4.11
Solder temp:
Dipping time:
+245±5°C
5±0.5 seconds
1.6mmfromthebottomshouldbedipped.
6© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Specications – All Types Except FMR cont’d
Item FM 5.5 V Type, 3.5 V Type,
6.5 V Type, FMC Type FML Type, FME Type Test Conditions
(conforming to JIS C 5160-1)
Solder Heat
Resistance
Capacitance
Satisfyinitialratings Satisfyinitialratings
Conforms to 4.10
Solder temp:
Dipping time:
+260±10°C
10±1 seconds
ESR
Current(30
minutes value)
Appearance Noobviousabnormality Noobviousabnormality 1.6mmfromthebottomshouldbedipped.
Temperature
Cycle
Capacitance
Satisfyinitialratings Satisfyinitialratings
Conforms to 4.12
Temperature
Condition:
Numberofcycles:
−25
°C»
Room
temperature»+70
°C
»Roomtemperature
5cycles
ESR
Current(30
minutes value)
Appearance Noobviousabnormality Noobviousabnormality
High
Temperature
and High
Humidity
Resistance
Capacitance Within±20%ofinitialvalue Within±20%ofinitialvalue Conforms to 4.14
Temperature:
Relativehumidity:
Testing time:
+40±2°C
90to95%RH
240±8 hours
ESR ≤120%ofinitialratings ≤120%ofinitialratings
Current(30
minutes value) ≤120%ofinitialratings ≤120%ofinitialratings
Appearance Noobviousabnormality Noobviousabnormality
High
Temperature
Load
Capacitance Within±30%ofinitialvalue Within±30%ofinitialvalue Conforms to 4.15
Temperature:
Voltage applied:
Series protection
resistance:
Testing time:
+70±2°C
Maximum operating
voltage
0Ω
1,000+48(+48/−0)
hours
ESR <200%ofinitialratings <200%ofinitialratings
Current(30
minutes value) <200%ofinitialratings <200%ofinitialratings
Appearance Noobviousabnormality Noobviousabnormality
Self Discharge Characteristics
(VoltageHoldingCharacteristics)
5.5Vtype: Voltage
betweenterminal
leads > 4.2 V
3.5Vtype: Notspecied
6.5Vtype: Notspecied
Charging condition
Voltage applied:
Series resistance:
Charging time:
5.0VDC(Terminalat
thecasesidemustbe
negative)
0Ω
24 hours
Storage
Letstandfor24hoursinconditiondescribed
belowwithterminalsopened.
Ambient
temperature:
Relativehumidity:
<25°C
<70%RH
7© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Item FMR Type Test Conditions
(conforming to JIS C 5160-1)
CategoryTemperatureRange 40°Cto+85°C
Maximum Operating Voltage 5.5 VDC, 3.5 VDC
Capacitance RefertoTable1 Refer to “Measurement Conditions”
CapacitanceAllowance +80%,−20% Refer to “Measurement Conditions”
ESR RefertoTable1 Measuredat1kHz,10mA;Seealso
“Measurement Conditions”
Current(30minutesvalue) RefertoTable1 Refer to “Measurement Conditions
Surge
Capacitance Morethan90%ofinitialratings Surge voltage:
Charge:
Discharge:
Numberofcycles:
Series resistance:
Discharge
resistance:
Temperature:
4.0V(3.5Vtype)
6.3V(5.5Vtype)
30 seconds
9 minutes 30 seconds
1,000
0.047F 300Ω
0.10F 150Ω
0Ω
85±2°C
ESR Nottoexceed120%ofinitialratings
Current(30minutesvalue) Nottoexceed120%ofinitialratings
Appearance Noobviousabnormality
Characteristics in
Different Temperature
Capacitance Phase 2 50%higherthaninitialvalue Conforms to 4.17
Phase 1:
Phase 2:
Phase 3:
Phase 4:
Phase 5:
Phase 6:
+25±2°C
−25±2°C
−40±2°C
+25±2°C
+70±C
+25±2°C
ESR 400%orlessthaninitialvalue
Capacitance Phase 3 30%orhigherthaninitialvalue
ESR 700%orlessthaninitialvalue
Capacitance
Phase 5
200%orlessthaninitialvalue
ESR Satisfyinitialratings
Current(30minutesvalue) 1.5CV(mA)orbelow
Capacitance
Phase 6
Within±20%ofinitialvalue
ESR Satisfyinitialratings
Current(30minutesvalue) Satisfyinitialratings
LeadStrength(tensile) No terminal damage Conforms to 4.9
VibrationResistance
Capacitance
Satisfyinitialratings
Conforms to 4.13
Frequency:
Testing Time:
10 to 55 Hz
6 hours
ESR
Current(30minutesvalue)
Appearance Noobviousabnormality
Solderability Over3/4oftheterminalshouldbecoveredbythenew
solder
Conforms to 4.11
Solder temp:
Dipping time:
+245±5°C
5±0.5 seconds
1.6mmfromthebottomshouldbedipped.
Solder Heat Resistance
Capacitance
Satisfyinitialratings
Conforms to 4.10
Solder temp:
Dipping time:
+260±10°C
10±1 seconds
ESR
Current(30minutesvalue)
Appearance Noobviousabnormality 1.6mmfromthebottomshouldbedipped.
TemperatureCycle
Capacitance
Satisfyinitialratings
Conforms to 4.12
Temperature
Condition:
Numberofcycles:
−40
°C
»Room
temperature»+85°
C
»
Room temperature
5cycles
ESR
Current(30minutesvalue)
Appearance Noobviousabnormality
Specications – FMR Type
8© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Specications – FMR Type contd
Marking
5.5V 473
A1
E
+
Nominal capacitance
E: FME type marking
L: FML type marking
R: FMR type marking
C: FMC type marking
Negative polarity identification
Date code
Polarity
Maximum operating
voltage
Item FMR Type Test Conditions
(conforming to JIS C 5160-1)
High Temperature and
HighHumidityResistance
Capacitance Within±20%ofinitialvalue Conforms to 4.14
Temperature:
Relativehumidity:
Testing time:
+40±2°C
90to95%RH
240±8 hours
ESR Nottoexceed120%ofinitialratings
Current(30minutesvalue) Nottoexceed120%ofinitialratings
Appearance Noobviousabnormality
High Temperature Load
Capacitance Within±30%ofinitialvalue Conforms to 4.15
Temperature:
Voltage applied:
Series protection
resistance:
Testing time:
+85±2°C
Maximum operating
voltage
0Ω
1,000+48(+48/−0)
hours
ESR Below200%ofinitialratings
Current(30minutesvalue) Below200%ofinitialratings
Appearance Noobviousabnormality
Self Discharge Characteristics
(VoltageHoldingCharacteristics)
5.5Vtype: Voltagebetweenterminalleads
higher than 4.2 V
Charging condition
Voltage applied:
Series resistance:
Charging time:
5.0VDC(Terminalat
thecasesidemustbe
negative)
0Ω
24 hours
3.5Vtype: Notspecied
Storage
Letstandfor24hoursinconditiondescribed
belowwithterminalsopened.
Ambient
temperature:
Relativehumidity:
Lowerthan25°C
Lowerthan70%RH
9© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Packaging Quantities
Part Number Bulk Quantity per Box
Straight Lead
Bulk Quantity per Box
L1 Lead Option Ammo Pack Quantity
FM0H103ZF
1,000 pieces
1,000 pieces
1,000 pieces
FM0H223ZF
1,000 pieces
1,000 pieces
1,000 pieces
FM0H473ZF
1,000 pieces
1,000 pieces
1,000 pieces
FM0H104ZF
1,000 pieces
800 pieces
1,000 pieces
FM0H224ZF
1,000 pieces
800 pieces
1,000 pieces
FM0V473ZF
1,000 pieces
1,000 pieces
1,000 pieces
FM0V104ZF
1,000 pieces
1,000 pieces
1,000 pieces
FM0V224ZF
1,000 pieces
1,000 pieces
1,000 pieces
FM0J473ZF
1,000 pieces
1,000 pieces
1,000 pieces
FME0H223ZF
1,000 pieces
1,000 pieces
1,000 pieces
FME0H473ZF
1,000 pieces
1,000 pieces
1,000 pieces
FML0H333ZF
1,000 pieces
1,000 pieces
1,000 pieces
FMR0H473ZF
1,000 pieces
1,000 pieces
1,000 pieces
FMR0H104ZF
1,000 pieces
1,000 pieces
1,000 pieces
FMR0V104ZF
1,000 pieces
1,000 pieces
1,000 pieces
FMC0H473ZF
1,000 pieces
1,000 pieces
1,000 pieces
FMC0H104ZF
1,000 pieces
1,000 pieces
1,000 pieces
FMC0H334ZF
400 pieces
300 pieces
400 pieces
10© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Ammo Pack Taping Format (Except FMC0H334ZFTP)
+ +
P2
b
P1F W4
P0D0
c
t3
t2
t1
h
P
W1
W0
W
H
L
a
W2
Ammo Pack Taping Specications (Except FMC0H334ZFTP)
Item Symbol Dimensions (mm)
Component Height a11.5±0.5
Component Width b10.5±0.5
Component Thickness cReferto“Dimensions”table
Lead-Wire Width W
4
0.5±0.1
Lead-Wire Thickness t
3
0.4±0.1
Component Pitch P12.7±1.0
Sprocket Hole Pitch P
0
12.0.3
Sprocket Hole Center to Lead Center P
1
3.85±0.7
Sprocket Hole Center to Component Center P
2
6.35±0.7
Lead Spacing F5.0±0.5
ComponentAlignment(side/side) ∆h 2.0 Maximum
Carrier Tape Width W18.0+1.0/−0.5
Hold-Down Tape Width W
0
12.5 Minimum
Sprocket Hole Position W
1
9.0±0.5
Hold-Down Tape Position W
2
3.0 Maximum
HeighttoSeatingPlane(leadlength) H16.0±0.5/18.0±0.5
Sprocket Hole Diameter D
0
ø 4.0±0.2
Carrier Tape Thickness t
1
0.7±0.2
TotalThickness(CarrierTape,Hold-DownTapeand
Lead) t21.5 Maximum
Cut Out Length L 11.0 Maximum
11© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Ammo Pack Taping Format (FMC0H334ZFTP)
+ +
P2
b
P1F W4
P0D0
c
t3
t2
t1
h
P
W1
W0
W
H
L
a
W2
Ammo Pack Taping Specications (FMC0H334ZFTP)
Item Symbol Dimensions (mm)
Component Height a15.0±0.5
Component Width b14.0±0.5
Component Thickness c9.0±0.5
Lead-Wire Width W
4
0.6±0.1
Lead-Wire Thickness t
3
0.6±0.1
Component Pitch P25.4±1.0
Sprocket Hole Pitch P
0
12.0.3
Sprocket Hole Center to Lead Center P
1
3.85±0.7
Sprocket Hole Center to Component Center P
2
6.35±0.7
Lead Spacing F5.0±0.5
ComponentAlignment(side/side) ∆h 2.0 Maximum
Carrier Tape Width W18.0+1.0/−0.5
Hold-Down Tape Width W
0
12.5 Minimum
Sprocket Hole Position W
1
9.0±0.5
Hold-Down Tape Position W
2
3.0 Maximum
HeighttoSeatingPlane(leadlength) H16.0±0.5/18.0±0.5
Sprocket Hole Diameter D
0
ø 4.0±0.2
Carrier Tape Thickness t
1
0.67±0.2
TotalThickness(CarrierTape,Hold-DownTapeand
Lead) t21.7 Maximum
Cut Out Length L 11.0 Maximum
12© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
List of Plating & Sleeve Type
Bychangingthesolderplatingfromleadedsoldertolead-freesolderandtheoutertubematerialofcan-casedconventional
supercapacitorfrompolyvinylchloridetopolyethyleneterephthalate(PET),oursupercapacitorisnowevenfriendliertothe
environment.
a.Iron+copperbase+lead-freesolderplating(Sn-1Cu)
b.SUSnickelbase+copperbase+reowlead-freesolderplating(100%Sn,reowprocessed)
Series Part Number Plating Sleeve
FM AllFMSeries aNotubeused
Recommended Pb-free solder : Sn/3.5Ag/0.75Cu
Sn/3.0Ag/0.5Cu
Sn/0.7Cu
Sn/2.5Ag/1.0Bi/0.5Cu
13© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Measurement Conditions
Capacitance (Charge System)
Capacitanceiscalculatedfromexpression(9)bymeasuringthechargetimeconstant(τ)ofthecapacitor(C).Priorto
measurement,thecapacitorisdischargedbyshortingbothpinsofthedeviceforatleast30minutes.Inaddition,usethepolarity
indicator on the device to determine correct orientation of capacitor for charging.
Eo: 3.0(V) Productwithmaximumoperatingvoltageof3.5V
5.0(V) Productwithmaximumoperatingvoltageof5.5V
6.0(V) Productwithmaximumoperatingvoltageof6.5V
10.0(V)Productwithmaximumoperatingvoltageof11V
12.0(V)Productwithmaximumoperatingvoltageof12V
τ: TimefromstartofcharginguntilVcbecomes0.632Eo(V)
(seconds)
Rc: Seetablebelow(Ω).
Charge Resistor Selection Guide
Cap FA FE FS FY FR FM, FME
FMR, FML FMC FG
FGR FGH FT FC, FCS HV
FYD FYH FYL
0.010 F
5,000Ω
5,000Ω
5,000Ω
0.022 F
1,000Ω
1,000Ω
2,000Ω
2,000Ω
2,000Ω
2,000Ω
2,000Ω
2,000Ω
Discharge
0.033 F
Discharge
0.047 F
1,000Ω
1,000Ω
1,000Ω
2,000Ω
1,000Ω
2,000Ω
1,000Ω
2,000Ω
1,000Ω
2,000Ω
0.10 F
510Ω
510Ω
510Ω
1,000Ω
510Ω
1,000Ω
1,000Ω
1,000Ω
1,000Ω
Discharge
510Ω
Discharge
0.22 F 200Ω 200Ω 200Ω 510Ω 510Ω 510Ω
0H: Discharge
0V:1000Ω
1,000Ω Discharge 200Ω Discharge
0.33 F
Discharge
0.47 F
100Ω
100Ω
100Ω
200Ω
200Ω
200Ω
1,000Ω
Discharge
100Ω
Discharge
1.0 F
51Ω
51Ω
100Ω
100Ω
100Ω
100Ω
510Ω
Discharge
100Ω
Discharge
Discharge
1.4 F
200Ω
1.5 F
51Ω
510Ω
2.2 F
100Ω
200Ω
51Ω
2.7 F
Discharge
3.3 F
51Ω
4.7 F
100Ω
Discharge
5.0 F
100Ω
5.6 F
20Ω
10.0 F
Discharge
22.0 F
Discharge
50.0 F
Discharge
100.0 F
Discharge
200.0 F
Discharge
*Capacitance values according to the constant current discharge method.
*HV Series capacitance is measured by discharge system
Vc
Rc
Switch
C+
Eo
Capacitance:
C =
τ
(F) (9)
Rc
14© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Measurement Conditions cont’d
Capacitance (Discharge System)
Asshowninthediagrambelow,chargingisperformedforadurationof30minutesoncethevoltageofthecapacitor
terminal reaches 5.5 V. Then, use a constant current load device and measure the time for the terminal voltage to drop
from3.0to2.5Vupondischargeat0.22mAper0.22F,forexample,andcalculatethestaticcapacitanceaccordingtothe
equationshownbelow.
Note: The current value is 1 mA discharged per 1 F.
Capacitance (Discharge System – 3.5 V)
Asshowninthediagrambelow,chargingisperformedforadurationof30minutesoncethevoltageofthecapacitor
terminal reaches 3.5 V. Then, use a constant current load device and measure the time for the terminal voltage to drop from
1.8to1.5Vupondischargeat1.0mAper1.0F,forexample,andcalculatethestaticcapacitanceaccordingtotheequation
shownbelow.
Capacitance (Discharge System – HV Series)
Asshowninthediagrambelow,chargingisperformedforadurationof30minutesoncethevoltageofthecapacitor
terminal reaches maximum operating voltage. Then, use a constant current load device and measure the time for the
terminalvoltagetodropfrom2.0to1.5Vupondischargeat1.0mAper1.0F,andcalculatethestaticcapacitanceaccording
totheequationshownbelow.
36 Super Capacitors Vol.13
9. Measurement Conditions
V
C
R
C
E
O
Swich
C
+
EO: 3.0 (V) Product with maximum operating voltage
3.5 V
5.0 (V) Product with maximum operating voltage
5.5 V
6.0 (V) Product with maximum operating voltage
6.5 V
10.0 (V) Product with maximum operating voltage
11 V
12.0 (V) Product with maximum operating voltage
12 V
τ: Time from start of charging until Vc becomes
0.632E0 (V) (sec)
RC: See table below ().
Capacitance: C = (F) (9)
τ
RC
Capacitance (Discharge System)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the condensor terminal
reaches 5.5 V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 3.0 to 2.5 V upon
discharge at 0.22 mA for 0.22 F, for example, and calculate the static capacitance according to the equation shown below.
Note: The current value is 1 mA discharged per 1F.
A
VC R
5.5V
SW 0.22mA(I)
30 min. T1 T2
V1 : 2.5V
V1 : 3.0V
5.5V
V1
V2
Voltage
Duration (sec.)
Table 3 Capacitance measurement
CapactanceC (F)
I×(T2T1)
V1V2
(1) Capacitance ( Charge System )
Capacitance is calculated from expression (9) by measuring the charge time constant (τ) of the capacitor (C). Prior to
measurement, short between both pins of the capacitor for 30 minutes or more to let it discharge. In addition, follow the indication
of the product when determining the polarity of the capacitor during charging.
FA FE FS FY FR FM, FME
FMR, FML FMC FG
FGR FGH FT FC,
FCS
FYD FYH FYL
0.010F 5000 5000 5000 –––
0.022F 1000 1000 2000 2000 2000 2000 2000 2000
Discharge
0.033F Discharge
0.047F 1000 1000 1000 2000 1000 2000 1000 2000 1000 2000 –––
0.10F 510 510 510 1000 510 1000 1000 1000 1000
Discharge
510
Discharge
0.22F 200 200 200 510 510 510
0H: Discharge
0V: 1000
1000
Discharge
200
Discharge
0.33F
Discharge
––––
0.47F 100 100 100 200 200 200 1000
Discharge
100
Discharge
1.0F 51 51 100 100 100 100 510
Discharge
100
Discharge
1.4F 200 ––– –––––
1.5F 51 510 –––
2.2F 100 200 51
3.3F 51
4.7F 100 –––
5.0F 100 –––– –––––
5.6F 20
*Capacitance values according to the constant current discharge method.
*HV series capacitance is measured by discharge system.
Super Capacitors Vol.13 37
Capacitance (Discharge System:3.5V)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches 3.5V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 1.8 to 1.5V upon
discharge at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Capacitance (Discharge System:HVseries)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches
Max. operating voltage.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 2.0 to 1.5V upon discharge
at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Equivalent series resistance (ESR)
ESR shall be calculated from the equation below.
Current (at 30 minutes after charging)
Current shall be calculated from the equation below.
Prior to measurement, both lead terminals must be short-circuited for a minimum of 30 minutes.
The lead terminal connected to the metal can case is connected to the negative side of the power supply.
Eo 2.5Vdc (HVseries 50F)
2.7Vdc (HVseries except 50F)
3.0Vdc (3.5V type)
5.0Vdc (5.5V type)
Rc 1000Ω (0.010F, 0.022F, 0.047F)
100Ω (0.10F, 0.22F, 0.47F)
10Ω (1.0F, 1.5F, 2.2F, 4.7F)
2.2Ω (HVseries)
Self-discharge characteristic (0H: 5.5V products)
The self-discharge characteristic is measured by charging a voltage of 5.0 Vdc (charge protection resistance: 0Ω) according
to the capacitor polarity for 24 hours, then releasing between the pins for 24 hours and measuring the pin-to-pin voltage.
The test should be carried out in an environment with an ambient temperature of 25 or below and relative humidity of 70%
RH or below.
A
VC R
3.5V
SW
30 minutes
T1T2
V2 : 1.5V
V1 : 1.8V
3.5V
(V)
V1
V2
Time (sec.)
A
VC R
3.5V
SW
V2 : 1.5V
V1 : 2.0V
3.5V
(V)
V1
V2
Time (sec.)
30 minutes
T1T2
C (F)
I×(T
2
T
1
)
V1V2
C (F)
I×(T2T1)
V1V2
Current (A)
VR
RC
ESR (Ω)
VC
0.01 C
10mA
VC
f:1kHz
C
SW
RC
E
O
VR
Super Capacitors Vol.13 37
Capacitance (Discharge System:3.5V)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches 3.5V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 1.8 to 1.5V upon
discharge at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Capacitance (Discharge System:HVseries)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches
Max. operating voltage.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 2.0 to 1.5V upon discharge
at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Equivalent series resistance (ESR)
ESR shall be calculated from the equation below.
Current (at 30 minutes after charging)
Current shall be calculated from the equation below.
Prior to measurement, both lead terminals must be short-circuited for a minimum of 30 minutes.
The lead terminal connected to the metal can case is connected to the negative side of the power supply.
Eo 2.5Vdc (HVseries 50F)
2.7Vdc (HVseries except 50F)
3.0Vdc (3.5V type)
5.0Vdc (5.5V type)
Rc 1000Ω (0.010F, 0.022F, 0.047F)
100Ω (0.10F, 0.22F, 0.47F)
10Ω (1.0F, 1.5F, 2.2F, 4.7F)
2.2Ω (HVseries)
Self-discharge characteristic (0H: 5.5V products)
The self-discharge characteristic is measured by charging a voltage of 5.0 Vdc (charge protection resistance: 0Ω) according
to the capacitor polarity for 24 hours, then releasing between the pins for 24 hours and measuring the pin-to-pin voltage.
The test should be carried out in an environment with an ambient temperature of 25 or below and relative humidity of 70%
RH or below.
A
VC R
3.5V
SW
30 minutes
T1T2
V2 : 1.5V
V1 : 1.8V
3.5V
(V)
V1
V2
Time (sec.)
A
VC R
3.5V
SW
V2 : 1.5V
V1 : 2.0V
3.5V
(V)
V1
V2
Time (sec.)
30 minutes
T1T2
C (F)
I×(T2T1)
V1V2
C (F)
I×(T2T1)
V1V2
Current (A)
VR
RC
ESR (Ω)
VC
0.01 C
10mA
VC
f:1kHz
C
SW
RC
E
O
VR
Super Capacitors Vol.13 37
Capacitance (Discharge System:3.5V)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches 3.5V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 1.8 to 1.5V upon
discharge at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Capacitance (Discharge System:HVseries)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches
Max. operating voltage.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 2.0 to 1.5V upon discharge
at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Equivalent series resistance (ESR)
ESR shall be calculated from the equation below.
Current (at 30 minutes after charging)
Current shall be calculated from the equation below.
Prior to measurement, both lead terminals must be short-circuited for a minimum of 30 minutes.
The lead terminal connected to the metal can case is connected to the negative side of the power supply.
Eo 2.5Vdc (HVseries 50F)
2.7Vdc (HVseries except 50F)
3.0Vdc (3.5V type)
5.0Vdc (5.5V type)
Rc 1000Ω (0.010F, 0.022F, 0.047F)
100Ω (0.10F, 0.22F, 0.47F)
10Ω (1.0F, 1.5F, 2.2F, 4.7F)
2.2Ω (HVseries)
Self-discharge characteristic (0H: 5.5V products)
The self-discharge characteristic is measured by charging a voltage of 5.0 Vdc (charge protection resistance: 0Ω) according
to the capacitor polarity for 24 hours, then releasing between the pins for 24 hours and measuring the pin-to-pin voltage.
The test should be carried out in an environment with an ambient temperature of 25 or below and relative humidity of 70%
RH or below.
A
VC R
3.5V
SW
30 minutes
T1T2
V2 : 1.5V
V1 : 1.8V
3.5V
(V)
V1
V2
Time (sec.)
A
VC R
3.5V
SW
V2 : 1.5V
V1 : 2.0V
3.5V
(V)
V1
V2
Time (sec.)
30 minutes
T1T2
C (F)
I×(T2T1)
V1V2
C (F)
I×(T
2
T
1
)
V1V2
Current (A)
VR
RC
ESR (Ω)
VC
0.01 C
10mA
VC
f:1kHz
C
SW
RC
E
O
VR
Super Capacitors Vol.13 37
Capacitance (Discharge System:3.5V)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches 3.5V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 1.8 to 1.5V upon
discharge at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Capacitance (Discharge System:HVseries)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches
Max. operating voltage.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 2.0 to 1.5V upon discharge
at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Equivalent series resistance (ESR)
ESR shall be calculated from the equation below.
Current (at 30 minutes after charging)
Current shall be calculated from the equation below.
Prior to measurement, both lead terminals must be short-circuited for a minimum of 30 minutes.
The lead terminal connected to the metal can case is connected to the negative side of the power supply.
Eo 2.5Vdc (HVseries 50F)
2.7Vdc (HVseries except 50F)
3.0Vdc (3.5V type)
5.0Vdc (5.5V type)
Rc 1000Ω (0.010F, 0.022F, 0.047F)
100Ω (0.10F, 0.22F, 0.47F)
10Ω (1.0F, 1.5F, 2.2F, 4.7F)
2.2Ω (HVseries)
Self-discharge characteristic (0H: 5.5V products)
The self-discharge characteristic is measured by charging a voltage of 5.0 Vdc (charge protection resistance: 0Ω) according
to the capacitor polarity for 24 hours, then releasing between the pins for 24 hours and measuring the pin-to-pin voltage.
The test should be carried out in an environment with an ambient temperature of 25 or below and relative humidity of 70%
RH or below.
A
VC R
3.5V
SW
30 minutes
T1T2
V2 : 1.5V
V1 : 1.8V
3.5V
(V)
V1
V2
Time (sec.)
A
VC R
3.5V
SW
V2 : 1.5V
V1 : 2.0V
3.5V
(V)
V1
V2
Time (sec.)
30 minutes
T1T2
C (F)
I×(T2T1)
V1V2
C (F)
I×(T2T1)
V1V2
Current (A)
VR
RC
ESR (Ω)
VC
0.01 C
10mA
VC
f:1kHz
C
SW
RC
E
O
VR
Super Capacitors Vol.13 37
Capacitance (Discharge System:3.5V)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches 3.5V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 1.8 to 1.5V upon
discharge at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Capacitance (Discharge System:HVseries)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches
Max. operating voltage.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 2.0 to 1.5V upon discharge
at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Equivalent series resistance (ESR)
ESR shall be calculated from the equation below.
Current (at 30 minutes after charging)
Current shall be calculated from the equation below.
Prior to measurement, both lead terminals must be short-circuited for a minimum of 30 minutes.
The lead terminal connected to the metal can case is connected to the negative side of the power supply.
Eo 2.5Vdc (HVseries 50F)
2.7Vdc (HVseries except 50F)
3.0Vdc (3.5V type)
5.0Vdc (5.5V type)
Rc 1000Ω (0.010F, 0.022F, 0.047F)
100Ω (0.10F, 0.22F, 0.47F)
10Ω (1.0F, 1.5F, 2.2F, 4.7F)
2.2Ω (HVseries)
Self-discharge characteristic (0H: 5.5V products)
The self-discharge characteristic is measured by charging a voltage of 5.0 Vdc (charge protection resistance: 0Ω) according
to the capacitor polarity for 24 hours, then releasing between the pins for 24 hours and measuring the pin-to-pin voltage.
The test should be carried out in an environment with an ambient temperature of 25 or below and relative humidity of 70%
RH or below.
A
VC R
3.5V
SW
30 minutes
T1T2
V2 : 1.5V
V1 : 1.8V
3.5V
(V)
V1
V2
Time (sec.)
A
VC R
3.5V
SW
V2 : 1.5V
V1 : 2.0V
3.5V
(V)
V1
V2
Time (sec.)
30 minutes
T1T2
C (F)
I×(T
2
T
1
)
V1V2
C (F)
I×(T2T1)
V1V2
Current (A)
VR
RC
ESR (Ω)
VC
0.01 C
10mA
VC
f:1kHz
C
SW
RC
E
O
VR
15© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Measurement Conditions cont’d
Equivalent Series Resistance (ESR)
ESRshallbecalculatedfromtheequationbelow.
Current (at 30 minutes after charging)
Currentshallbecalculatedfromtheequationbelow.Priortomeasurement,bothleadterminalsmustbeshort-circuitedfor
a minimum of 30 minutes. The lead terminal connected to the metal can case is connected to the negative side of the power
supply.
Eo: 2.5VDC(HVSeries50F)
2.7VDC(HVSeriesexcept50F)
3.0VDC(3.5Vtype)
5.0VDC(5.5Vtype)
Rc: 1,000Ω(0.010F,0.022F,0.047F)
100Ω(0.10F,0.22F,0.47F)
10Ω(1.0F,1.5F,2.2F,4.7F)
2.2Ω(HVSeries)
Self-Discharge Characteristic (0H – 5.5 V Products)
Theself-dischargecharacteristicismeasuredbychargingavoltageof5.0VDC(chargeprotectionresistance:0Ω)
accordingtothecapacitorpolarityfor24hours,thenreleasingbetweenthepinsfor24hoursandmeasuringthepin-to-
pinvoltage.Thetestshouldbecarriedoutinanenvironmentwithanambienttemperatureof25°Corbelowandrelative
humidityof70%RHorbelow.
the soldering is checked.
4. Dismantling
Thereisasmallamountofelectrolytestoredwithinthecapacitor.Donotattempttodismantleasdirectskincontactwith
theelectrolytewillcauseburning.Thisproductshouldbetreatedasindustrialwasteandnotisnottobedisposedofbyre.
Super Capacitors Vol.13 37
Capacitance (Discharge System:3.5V)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches 3.5V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 1.8 to 1.5V upon
discharge at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Capacitance (Discharge System:HVseries)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches
Max. operating voltage.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 2.0 to 1.5V upon discharge
at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Equivalent series resistance (ESR)
ESR shall be calculated from the equation below.
Current (at 30 minutes after charging)
Current shall be calculated from the equation below.
Prior to measurement, both lead terminals must be short-circuited for a minimum of 30 minutes.
The lead terminal connected to the metal can case is connected to the negative side of the power supply.
Eo 2.5Vdc (HVseries 50F)
2.7Vdc (HVseries except 50F)
3.0Vdc (3.5V type)
5.0Vdc (5.5V type)
Rc 1000Ω (0.010F, 0.022F, 0.047F)
100Ω (0.10F, 0.22F, 0.47F)
10Ω (1.0F, 1.5F, 2.2F, 4.7F)
2.2Ω (HVseries)
Self-discharge characteristic (0H: 5.5V products)
The self-discharge characteristic is measured by charging a voltage of 5.0 Vdc (charge protection resistance: 0Ω) according
to the capacitor polarity for 24 hours, then releasing between the pins for 24 hours and measuring the pin-to-pin voltage.
The test should be carried out in an environment with an ambient temperature of 25 or below and relative humidity of 70%
RH or below.
A
VC R
3.5V
SW
30 minutes
T1T2
V2 : 1.5V
V1 : 1.8V
3.5V
(V)
V1
V2
Time (sec.)
A
VC R
3.5V
SW
V2 : 1.5V
V1 : 2.0V
3.5V
(V)
V1
V2
Time (sec.)
30 minutes
T1T2
C (F)
I×(T2T1)
V1V2
C (F)
I×(T2T1)
V1V2
Current (A)
V
R
RC
ESR (Ω)
VC
0.01 C
10mA
VC
f:1kHz
C
SW
RC
E
O
VR
Super Capacitors Vol.13 37
Capacitance (Discharge System:3.5V)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches 3.5V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 1.8 to 1.5V upon
discharge at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Capacitance (Discharge System:HVseries)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches
Max. operating voltage.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 2.0 to 1.5V upon discharge
at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Equivalent series resistance (ESR)
ESR shall be calculated from the equation below.
Current (at 30 minutes after charging)
Current shall be calculated from the equation below.
Prior to measurement, both lead terminals must be short-circuited for a minimum of 30 minutes.
The lead terminal connected to the metal can case is connected to the negative side of the power supply.
Eo 2.5Vdc (HVseries 50F)
2.7Vdc (HVseries except 50F)
3.0Vdc (3.5V type)
5.0Vdc (5.5V type)
Rc 1000Ω (0.010F, 0.022F, 0.047F)
100Ω (0.10F, 0.22F, 0.47F)
10Ω (1.0F, 1.5F, 2.2F, 4.7F)
2.2Ω (HVseries)
Self-discharge characteristic (0H: 5.5V products)
The self-discharge characteristic is measured by charging a voltage of 5.0 Vdc (charge protection resistance: 0Ω) according
to the capacitor polarity for 24 hours, then releasing between the pins for 24 hours and measuring the pin-to-pin voltage.
The test should be carried out in an environment with an ambient temperature of 25 or below and relative humidity of 70%
RH or below.
A
VC R
3.5V
SW
30 minutes
T1T2
V2 : 1.5V
V1 : 1.8V
3.5V
(V)
V1
V2
Time (sec.)
A
VC R
3.5V
SW
V2 : 1.5V
V1 : 2.0V
3.5V
(V)
V1
V2
Time (sec.)
30 minutes
T1T2
C (F)
I×(T2T1)
V1V2
C (F)
I×(T2T1)
V1V2
Current (A)
VR
RC
ESR (Ω)
VC
0.01 C
10mA
VC
f:1kHz
C
SW
RC
E
O
VR
Super Capacitors Vol.13 37
Capacitance (Discharge System:3.5V)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches 3.5V.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 1.8 to 1.5V upon
discharge at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Capacitance (Discharge System:HVseries)
In the diagram below, charging is performed for a duration of 30 minutes, once the voltage of the capacitor terminal reaches
Max. operating voltage.
Then, use a constant current load device and measure the time for the terminal voltage to drop from 2.0 to 1.5V upon discharge
at 1 mA per 1F, and calculate the static capacitance according to the equation shown below.
Equivalent series resistance (ESR)
ESR shall be calculated from the equation below.
Current (at 30 minutes after charging)
Current shall be calculated from the equation below.
Prior to measurement, both lead terminals must be short-circuited for a minimum of 30 minutes.
The lead terminal connected to the metal can case is connected to the negative side of the power supply.
Eo 2.5Vdc (HVseries 50F)
2.7Vdc (HVseries except 50F)
3.0Vdc (3.5V type)
5.0Vdc (5.5V type)
Rc 1000Ω (0.010F, 0.022F, 0.047F)
100Ω (0.10F, 0.22F, 0.47F)
10Ω (1.0F, 1.5F, 2.2F, 4.7F)
2.2Ω (HVseries)
Self-discharge characteristic (0H: 5.5V products)
The self-discharge characteristic is measured by charging a voltage of 5.0 Vdc (charge protection resistance: 0Ω) according
to the capacitor polarity for 24 hours, then releasing between the pins for 24 hours and measuring the pin-to-pin voltage.
The test should be carried out in an environment with an ambient temperature of 25 or below and relative humidity of 70%
RH or below.
A
VC R
3.5V
SW
30 minutes
T1T2
V2 : 1.5V
V1 : 1.8V
3.5V
(V)
V1
V2
Time (sec.)
A
VC R
3.5V
SW
V2 : 1.5V
V1 : 2.0V
3.5V
(V)
V1
V2
Time (sec.)
30 minutes
T1T2
C (F)
I×(T2T1)
V1V2
C (F)
I×(T2T1)
V1V2
Current (A)
VR
RC
ESR (Ω)
VC
0.01 C
10mA
VC
f:1kHz
C
SW
RC
E
O
VR
16© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Notes on Using Supercapacitors or Electric Double-Layer Capacitors (EDLCs)
1. Circuitry Design
1.1Usefullife
TheFCSeriesSupercapacitor(EDLC)usesanelectrolyteinasealedcontainer.Waterintheelectrolytecanevaporate
whileinuseoverlongperiodsoftimeathightemperatures,thusreducingelectrostaticcapacitywhichinturnwillcreate
greaterinternalresistance.Thecharacteristicsofthesupercapacitorcanvarygreatlydependingontheenvironmentin
whichitisused.Basicbreakdownmodeisanopenmodeduetoincreasedinternalresistance.
1.2Failrateintheeld
Basedonelddata,thefailrateiscalculatedatapproximately0.006Fit.Weestimatethatunreportedfailuresareten
timesthisamount.Therefore,weassumethatthefailrateisbelow0.06Fit.
1.3Exceedingmaximumusablevoltage
Performancemaybecompromisedandinsomecasesleakageordamagemayoccurifappliedvoltageexceeds
maximum working voltage.
1.4Useofcapacitorasasmoothingcapacitor(rippleabsorption)
Assupercapacitorscontainahighlevelofinternalresistance,theyarenotrecommendedforuseassmoothing
capacitorsinelectricalcircuits.Performancemaybecompromisedand,insomecases,leakageordamagemayoccurif
asupercapacitorisusedinrippleabsorption.
1.5 Series connections
Asappliedvoltagebalancetoeachsupercapacitorislostwhenusedinseriesconnection,excessvoltagemaybe
appliedtosomesupercapacitors,whichwillnotonlynegativelyaffectitsperformancebutmayalsocauseleakage
and/ordamage.Allowamplemarginformaximumvoltageorattachacircuitforapplyingequalvoltagetoeach
supercapacitor(partialpressureresistor/voltagedivider)whenusingsupercapacitorsinseriesconnection.Also,
arrangesupercapacitorssothatthetemperaturebetweeneachcapacitorwillnotvary.
1.6CasePolarity
Thesupercapacitorismanufacturedsothattheterminalontheoutercaseisnegative(-).Alignthe(-)symbolduring
use.Eventhoughdischarginghasbeencarriedoutpriortoshipping,anyresidualelectricalchargemaynegativelyaffect
other parts.
1.7Usenexttoheatemitters
Usefullifeofthesupercapacitorwillbesignicantlyaffectedifusednearheatemittingitems(coils,powertransistors
andposistors,etc.)wherethesupercapacitoritselfmaybecomeheated.
1.8Usageenvironment
Thisdevicecannotbeusedinanyacidic,alkalineorsimilartypeofenvironment.
17© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
Notes on Using Supercapacitors or Electric Double-Layer Capacitors (EDLCs) contd
2. Mounting
2.1Mountingontoareowfurnace
ExceptfortheFCseries,itisnotpossibletomountthiscapacitorontoanIR/VPSreowfurnace.Donotimmersethe
capacitor into a soldering dip tank.
2.2 Flow soldering conditions
SeeRecommendedReowCurvesinSection–PrecautionsforUse
2.3 Installation using a soldering iron
Caremustbetakentopreventthesolderingironfromtouchingotherpartswhensoldering.Keepthetipofthesoldering
ironunder400°Candsolderingtimetowithin3seconds.Alwaysmakesurethatthetemperatureofthetipiscontrolled.
Internalcapacitorresistanceislikelytoincreaseiftheterminalsareoverheated.
2.4 Lead terminal processing
Donotattempttobendorpolishthecapacitorterminalswithsandpaper,etc.Solderingmaynotbepossibleifthe
metallic plating is removed from the top of the terminals.
2.5 Cleaning, Coating, and Potting
ExceptfortheFMseries,cleaning,coatingandpottingmustnotbecarriedout.ConsultKEMETifthistypeofprocedure
isnecessary.Terminalsshouldbedriedatlessthanthemaximumoperatingtemperatureaftercleaning.
3. Storage
3.1Temperatureandhumidity
Makesurethatthesupercapacitorisstoredaccordingtothefollowingconditions:Temperature:5–35°C(Standard
25°C),Humidity:20–70%(Standard:50%).Donotallowthebuildupofcondensationthroughsuddentemperature
change.
3.2 Environment conditions
Makesuretherearenocorrosivegassessuchassulfurdioxide,aspenetrationoftheleadterminalsispossible.Always
storethisiteminanareawithlowdustanddirtlevels.Makesurethatthepackagingwillnotbedeformedthroughheavy
loading,movementand/orknocks.Keepoutofdirectsunlightandawayfromradiation,staticelectricityandmagnetic
elds.
3.3 Maximum storage period
Thisitemmaybestoreduptooneyearfromthedateofdeliveryifstoredattheconditionsstatedabove.
18© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com S6012_FM • 3/29/2017
Supercapacitors – FM Series
KEMET Electronic Corporation Sales Of ces
Foracompletelistofourglobalsalesofces,pleasevisitwww.kemet.com/sales.
Disclaimer
Allproductspecications,statements,informationanddata(collectively,the“Information”)inthisdatasheetaresubjecttochange.Thecustomerisresponsiblefor
checkingandverifyingtheextenttowhichtheInformationcontainedinthispublicationisapplicabletoanorderatthetimetheorderisplaced.
AllInformationgivenhereinisbelievedtobeaccurateandreliable,butitispresentedwithoutguarantee,warranty,orresponsibilityofanykind,expressedorimplied.
StatementsofsuitabilityforcertainapplicationsarebasedonKEMETElectronicsCorporation’s(“KEMET)knowledgeoftypicaloperatingconditionsforsuch
applications,butarenotintendedtoconstitute–andKEMETspecicallydisclaims–anywarrantyconcerningsuitabilityforaspeciccustomerapplicationoruse.
TheInformationisintendedforuseonlybycustomerswhohavetherequisiteexperienceandcapabilitytodeterminethecorrectproductsfortheirapplication.Any
technicaladviceinferredfromthisInformationorotherwiseprovidedbyKEMETwithreferencetotheuseofKEMET’sproductsisgivengratis,andKEMETassumesno
obligationorliabilityfortheadvicegivenorresultsobtained.
AlthoughKEMETdesignsandmanufacturesitsproductstothemoststringentqualityandsafetystandards,giventhecurrentstateoftheart,isolatedcomponent
failuresmaystilloccur.Accordingly,customerapplicationswhichrequireahighdegreeofreliabilityorsafetyshouldemploysuitabledesignsorothersafeguards
(suchasinstallationofprotectivecircuitryorredundancies)inordertoensurethatthefailureofanelectricalcomponentdoesnotresultinariskofpersonalinjuryor
propertydamage.
Althoughallproduct–relatedwarnings,cautionsandnotesmustbeobserved,thecustomershouldnotassumethatallsafetymeasuresareindictedorthatother
measuresmaynotberequired.
KEMET is a registered trademark of KEMET Electronics Corporation.