EOL Data Sheet
16 Mbit Dual-Bank Flash Memory
SST36VF1601C / SST36VF1602C
3
©2006 Silicon Storage Technology, Inc. S71249-07-EOL 02/08
Chip-Erase Operation
The devices provide a Chip-Erase operation, which allows
the user to erase all sectors/blocks to the “1” state. This is
useful when a device must be quickly erased.
The Chip-Erase operation is initiated by executing a six-
byte command sequence with Chip-Erase command (10H)
at address 555H in the last byte sequence. The Erase
operation begins with the rising edge of the sixth WE# or
CE#, whichever occurs first. During the Erase operation,
the only valid Read is Toggle Bit or Data# Polling. Any com-
mands issued during the Chip-Erase operation are
ignored. See Table 5 for the command sequence, Figure
12 for timing diagram, and Figure 27 for the flowchart.
When WP# is low, any attempt to Chip-Erase will be
ignored.
Erase-Suspend/Erase-Resume Operations
The Erase-Suspend operation temporarily suspends a
Sector- or Block-Erase operation thus allowing data to be
read from any memory location, or program data into any
sector/block that is not suspended for an Erase operation.
The operation is executed by issuing a one-byte command
sequence with Erase-Suspend command (B0H). The
device automatically enters read mode within 20 µs after
the Erase-Suspend command had been issued. Valid data
can be read from any sector or block that is not suspended
from an Erase operation. Reading at address location
within erase-suspended sectors/blocks will output DQ2 tog-
gling and DQ6 at “1”. While in Erase-Suspend mode, a Pro-
gram operation is allowed except for the sector or block
selected for Erase-Suspend. To resume Sector-Erase or
Block-Erase operation which has been suspended, the
system must issue an Erase-Resume command. The
operation is executed by issuing a one-byte command
sequence with Erase Resume command (30H) at any
address in the one-byte sequence.
Write Operation Status Detection
These devices provide one hardware and two software
means to detect the completion of a Write (Program or
Erase) cycle in order to optimize the system Write cycle
time. The hardware detection uses the Ready/Busy# (RY/
BY#) output pin. The software detection includes two sta-
tus bits: Data# Polling (DQ7) and Toggle Bit (DQ6). The
End-of-Write detection mode is enabled after the rising
edge of WE#, which initiates the internal Program or Erase
operation.
The actual completion of the nonvolatile write is asynchro-
nous with the system; therefore, either a Ready/Busy# (RY/
BY#), a Data# Polling (DQ7), or Toggle Bit (DQ6) Read may
be simultaneous with the completion of the Write cycle. If
this occurs, the system may get an erroneous result, i.e.,
valid data may appear to conflict with either DQ7 or DQ6. In
order to prevent spurious rejection if an erroneous result
occurs, the software routine should include a loop to read
the accessed location an additional two (2) times. If both
Reads are valid, then the Write cycle has completed, other-
wise the rejection is valid.
Ready/Busy# (RY/BY#)
The devices include a Ready/Busy# (RY/BY#) output sig-
nal. RY/BY# is an open drain output pin that indicates
whether an Erase or Program operation is in progress.
Since RY/BY# is an open drain output, it allows several
devices to be tied in parallel to VDD via an external pull-up
resistor. After the rising edge of the final WE# pulse in the
command sequence, the RY/BY# status is valid.
When RY/BY# is actively pulled low, it indicates that an
Erase or Program operation is in progress. When RY/BY#
is high (Ready), the devices may be read or left in standby
mode.
Byte/Word (BYTE#)
The device includes a BYTE# pin to control whether the
device data I/O pins operate x8 or x16. If the BYTE# pin is
at logic “1” (VIH) the device is in x16 data configuration: all
data I/0 pins DQ0-DQ15 are active and controlled by CE#
and OE#.
If the BYTE# pin is at logic “0”, the device is in x8 data con-
figuration: only data I/O pins DQ0-DQ7 are active and con-
trolled by CE# and OE#. The remaining data pins DQ8-
DQ14 are at Hi-Z, while pin DQ15 is used as the address
input A-1 for the Least Significant Bit of the address bus.
Data# Polling (DQ7)
When the devices are in an internal Program operation, any
attempt to read DQ7 will produce the complement of the
true data. Once the Program operation is completed, DQ7
will produce true data. During internal Erase operation, any
attempt to read DQ7 will produce a ‘0’. Once the internal
Erase operation is completed, DQ7 will produce a ‘1’. The
Data# Polling is valid after the rising edge of fourth WE# (or
CE#) pulse for Program operation. For Sector-, Block-, or
Chip-Erase, the Data# Polling is valid after the rising edge
of sixth WE# (or CE#) pulse. See Figure 10 for Data# Poll-
ing (DQ7) timing diagram and Figure 24 for a flowchart.
http://store.iiic.cc/