Si52212/Si52208/Si52204/Si52202 Data Sheet 12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator The Si52212/08/04/02 are the industry's highest performance and lowest power PCI Express clock generator family for 1.5-1.8 V PCIe Gen1/2/3/4 and SRIS applications. The Si52212, Si52208, and Si52204 can source twelve, eight, and four 100 MHz PCIe differential clock outputs, respectively, plus one 25 MHz LVCMOS reference clock output. The Si52202 can source two 100 MHz PCIe clock outputs only. All differential clock outputs are compliant to PCIe Gen1/2/3/4 common clock and separate reference clock architectures specifications. The Si52212/08/04/02 feature individual hardware control pins for enabling and disabling each output, spread spectrum enable/disable for EMI reduction, and frequency select to select 133 MHz or 200 MHz differential output frequencies. These features can also be controlled via I2C. The small footprint and low power consumption make this family of PCIe clock generators ideal for industrial and consumer applications. For more information about PCI-Express, Silicon Labs' complete PCIe portfolio, application notes, and design tools, including the Silicon Labs PCIe Clock Jitter Tool for PCIExpress compliance, please visit the Silicon Labs PCI Express Learning Center. Applications * Servers * Storage * Data Centers * PCIe Add-on Cards * Network Interface Cards (NIC) * Graphics Adapter Cards * Multi-function Printers * Digital Single-Lens Reflex (DSLR) Cameras * Digital Still Cameras * Digital Video Cameras * Docking Stations silabs.com | Building a more connected world. This information applies to a product under development. Its characteristics and specifications are subject to change without notice. KEY FEATURES OR KEY POINTS * 12/8/4/2-output low-power, push-pull HCSL compatible PCI-Express Gen 1, Gen 2, Gen 3, Gen 4 and SRIS-compliant outputs * Low jitter: 0.4 ps max * Individual hardware control pins and I2C controls for Output Enable, Spread Spectrum Enable and Frequency Select * Triangular spread spectrum for EMI reduction, down spread 0.25% or 0.5% * Internal 100 or 85 line matching * Adjustable output slew rate * Power down (PWRDNb) function supports Wake-on LAN (except Si52202) * One non-spread, LVMCOS reference clock output (except Si52202) * Frequency Select to select 133 MHz or 200 MHz (except Si52202) * 25 MHz crystal input or clock input * I2C support with readback capabilities * Extended temperature: -40 to 85 C * 1.5-1.8 V power supply, with separate VDD and VDD_IO * Small QFN packages * Pb-free, RoHS-6 compliant Preliminary Rev. 0.7 Si52212/Si52208/Si52204/Si52202 Data Sheet Feature List 1. Feature List * 12/8/4/2-output 100 MHz PCIe Gen1/2/3/4 and SRIS compliant clock generator, with push-pull HCSL output drivers * High port count with push-pull HCSL outputs to support highly integrated solution, eliminating external resistors for the HCSL output drivers * Low jitter of 0.4 ps max to meet PCIe Gen4 specifications with design margin * Low power consumption. * Lowest power consumption in the industry for a 2-output PCIe clock generator * Individual hardware control pins and I2C controls for Output Enable, Spread Spectrum Enable and Frequency Select * Output Enable function easily disables unused outputs for power saving * Spread Enable function to turn on/off spread spectrum and to select spread levels, either down spread 0.25% or 0.5% * Frequency Select function to select output frequency of 100 MHz, 133 MHz, or 200 MHz (except Si52202 where the output frequency is limited to 100 MHz. Please contact Silicon Labs for 133 MHz or 200 MHz in Si52202) * All above functions are controlled by individual hardware pins or I2C * Internal 100 or 85 line matching * Eliminates external line matching resistor to reduce board space * Adjustable slew rate to improve signal quality for different applications and board designs * Power down (PWRDNb) function supports Wake-on LAN (except Si52202) * One non-spread, 25 MHz LVMCOS reference clock output (except Si52202) * A buffered 25 MHz LVCMOS clock output to drive ASICS or SoCs on board * 25 MHz reference input * Supports a standard crystal or clock input for flexibility * I2C support with readback capabilities * 1.5-1.8 V power supply with separate VDD and VDD_IO * Temperature range: -40 C to 85 C * Small QFN packages to optimize board space. Smallest 2-output PCIe clock generator in the industry * 64-pin QFN (9 x 9 mm) : 12-output * 48-pin QFN (6 x 6 mm) : 8-output * 32-pin QFN (5 x 5 mm) : 4-output * 20-pin QFN (3 x 3 mm) : 2-output * Pb-free, RoHS-6 compliant silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 2 Si52212/Si52208/Si52204/Si52202 Data Sheet Ordering Guide 2. Ordering Guide Table 2.1. Si522x Ordering Guide Number of Outputs Internal Termination 100 12-output 85 100 8-output 85 100 4-output 85 100 2-output 85 Part Number Package Type Temperature Si52212-A01AGM 64-QFN Extended, -40 to 85 C Si52212-A01AGMR 64-QFN - Tape and Reel Extended, -40 to 85 C Si52212-A02AGM 64-QFN Extended, -40 to 85 C Si52212-A02AGMR 64-QFN - Tape and Reel Extended, -40 to 85 C Si52208-A01AGM 48-QFN Extended, -40 to 85 C Si52208-A01AGMR 48-QFN - Tape and Reel Extended, -40 to 85 C Si52208-A02AGM 48-QFN Extended, -40 to 85 C Si52208-A02AGMR 48-QFN - Tape and Reel Extended, -40 to 85 C Si52204-A01AGM 32-QFN Extended, -40 to 85 C Si52204-A01AGMR 32-QFN - Tape and Reel Extended, -40 to 85 C Si52204-A02AGM 32-QFN Extended, -40 to 85 C Si52204-A02AGMR 32-QFN - Tape and Reel Extended, -40 to 85 C Si52202-A01AGM 20-QFN Extended, -40 to 85 C Si52202-A01AGMR 20-QFN - Tape and Reel Extended, -40 to 85 C Si52202-A02AGM 20-QFN Extended, -40 to 85 C Si52202-A02AGMR 20-QFN - Tape and Reel Extended, -40 to 85 C 2.1 Technical Support Table 2.2. Technical Support URLs Frequently Asked Questions www.silabs.com/Si522xx-FAQ PCIe Clock Jitter Tool www.silabs.com/products/timing/pci-express-learning-center PCIe Learning Center www.silabs.com/products/timing/pci-express-learning-center Development Kit www.silabs.com/products/development-tools/timing/clock/si52204-evb-evaluation-kit.html silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 3 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Functional Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1 Crystal Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . .19 5.2 Crystal Loading . . . . . . . . . . . . . . . . . . . . . . . . . . .19 5.3 Calculating Load Capacitors . . . . . . . . . . . . . . . . . . . . . . . . .20 5.4 PWRGD/PWRDNb (Power Down) Pin . . . . . . . . . . . . . . . . . . . . . .21 5.5 PWRDNb (Power Down) Assertion . . . . . . . . . . . . . . . . . . . . . . .21 5.6 PWRDNb (Power Down) Deassertion . . . . . . . . . . . . . . . . . . . . . .21 5.7 OEb Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.8 OEb Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.9 OEb Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.10 FS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 . . . 6. Test and Measurement Setup 7. PCIe Clock Jitter Tool . . . . . . . . . . . . . . . . . . . . . . . . 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 8.2 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 8.3 Block Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 8.4 Block Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 8.5 Byte Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 8.6 Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 8.7 Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 8.8 Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 8.9 Register Tables. . . 8.9.1 Si52212 Registers 8.9.2 Si52208 Registers 8.9.3 Si52204 Registers 8.9.4 Si52202 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 .31 .34 .37 .40 9. Pin Descriptions . 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.1 Si52212 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .43 9.2 Si52208 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .46 silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 4 9.3 Si52204 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .49 9.4 Si52202 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .51 10. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 10.1 Si52212 Package . . . . . . . . . . . . . . . . . . . . . . . . . . .53 10.2 Si52212 Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .54 10.3 Si52208 Package . . . . . . . . . . . . . . . . . . . . . . . . . . .56 10.4 Si52208 Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .57 10.5 Si52204 Package . . . . . . . . . . . . . . . . . . . . . . . . . . .59 10.6 Si52204 Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .61 10.7 Si52202 Package . . . . . . . . . . . . . . . . . . . . . . . . . . .62 10.8 Si52202 Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .64 10.9 Si52212 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . .66 10.10 Si52208 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .67 10.11 Si52204 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .68 10.12 Si52202 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .69 11. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.1 Revision 0.7 . . . . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . .70 Preliminary Rev. 0.7 | 5 Si52212/Si52208/Si52204/Si52202 Data Sheet Functional Block Diagrams 3. Functional Block Diagrams Si52212 XIN/CLKIN REF XOUT FS SCLK SDA PWRGD/PWRDNb SS_EN PLL (SSC) Divider DIFF[11:0] Control & Memory OEb[11:0] Figure 3.1. Si52212 Block Diagram 12-output, 64-QFN Si52208 XIN/CLKIN REF XOUT FS SCLK SDA PWRGD/PWRDNb SS_EN PLL (SSC) Divider DIFF[7:0] Control & Memory OEb[7:0] Figure 3.2. Si52208 Block Diagram 8-output, 48-QFN Si52204 XIN/CLKIN REF XOUT FS SCLK SDA PWRGD/PWRDNb SS_EN PLL (SSC) Divider DIFF[3:0] Control & Memory OEb[3:0] Figure 3.3. Si52204 Block Diagram 4-output, 32-QFN silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 6 Si52212/Si52208/Si52204/Si52202 Data Sheet Functional Block Diagrams Si52202 PLL (SSC) XIN/CLKIN XOUT SCLK SDA PWRGD/PWRDNb SS_EN Divider DIFF[1:0] Control & Memory OEb[1:0] Figure 3.4. Si52202 Block Diagram 2-output, 20-QFN silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 7 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications 4. Electrical Specifications Table 4.1. DC Electrical Specifications (VDD = 1.5 V 5%) Parameter Symbol Test Condition Min Typ Max Unit VDD core 1.5 V 5% 1.425 1.5 1.575 V VDDIO Supply voltage for differential Low Power outputs 0.9975 1.05-1.5 1.575 V 1.5 V Input High Voltage VIH Control input pins, except SDATA, SCLK 0.75 VDD -- VDD + 0.3 V 1.5V Input Mid Voltage VIM Tri-level control input pins, except SDATA, SCLK 0.4 VDD 0.5 VDD 0.6 VDD V 1.5 V Input Low Voltage VIL Control input pins, except SDATA,SCLK -0.3 -- 0.25 VDD V Input High Voltage VIHI2C SDATA, SCLK 1.14 -- 3.3 V Input Low Voltage VILI2C SDATA, SCLK -- -- 0.6 V IPULLUP At VOL 4 -- IIN Single-ended inputs, VIN = GND, VIN = VDD -5 -- 5 uA IINP Single-ended inputs, VIN = 0 V, inputs with internal pull-up resistors VIN = VDD, inputs with internal pull-down resistors -200 -- 200 uA CIN 1.5 -- 5 pF COUT -- -- 6 pF LIN -- -- 7 nH 1.5 V Operating Voltage Output Supply Voltage SDATA, SCLK Sink Current Input current Input Pin Capacitance Output Pin Capacitance Pin Inductance mA Si52212 Current Consumption (VDD = 1.5 V 5%) Power Down Current PWRGD/PWRDNb = "0" Byte 2, bit 2 = 0 Wake-on LAN Current PWRGD_PWRDNb = "0" Byte 2, bit 2 = 1 IDD_PD_total All outputs off -- 1.3 mA IDD_PD VDD, except VDDA and VDD_IO, all outputs off -- 0.4 mA IDD_APD VDDA, all outputs off -- 0.6 mA IDD_IOPD VDD_IO, all outputs off -- 0.3 mA IDD_WOL VDD, except VDDA and VDD_IO, all differential outputs off, REF running -- 4.0 mA IDD_AWOL VDDA, all differential outputs off, REF running -- 0.6 mA IDD_IOWOL VDD_IO, all differential outputs off, REF running -- 0.3 mA silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 8 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Parameter Dynamic Supply Current Symbol Test Condition Min Typ Max Unit IDD_1.5V_Total All outputs enabled. Differential clocks with 5" traces and 2 pF load. -- 82 mA IDD_OP VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz -- 17 mA IDD_AOP VDDA, all differential outputs active at 100 MHz -- 7 mA IDD_IOOP VDD_IO, all differential outputs active at 100 MHz -- 58 mA Si52208 Current Consumption (VDD = 1.5 V 5%) Power Down Current PWRGD/PWRDNb = "0" Byte 2, bit 2 = 0 Wake-on LAN Current PWRGD_PWRDNb = "0" Byte 2, bit 2 = 1 Dynamic Supply Current IDD_PD_total All outputs off -- 1.3 mA IDD_PD VDD, except VDDA and VDD_IO, all outputs off -- 0.4 mA IDD_APD VDDA, all outputs off -- 0.6 mA IDD_IOPD VDD_IO, all outputs off -- 0.3 mA IDD_WOL VDD, except VDDA and VDD_IO, all differential outputs off, REF running -- 4.0 mA IDD_AWOL VDDA, all differential outputs off, REF running -- 0.6 mA IDD_IOWOL VDD_IO, all differential outputs off, REF running -- 0.3 mA IDD_1.5V_Total All outputs enabled. Differential clocks with 5" traces and 2 pF load. -- 63 mA IDD_OP VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz -- 17 mA IDD_AOP VDDA, all differential outputs active at 100 MHz -- 7 mA IDD_IOOP VDD_IO, all differential outputs active at 100 MHz -- 39 mA Si52204 Current Consumption (VDD = 1.5 V 5%) Power Down Current PWRGD/PWRDNb = "0" Byte 2, bit 2 = 0 Wake-on LAN Current PWRGD_PWRDNb = "0" Byte 2, bit 2 = 1 IDD_PD_total All outputs off -- 1.3 mA IDD_PD VDD, except VDDA and VDD_IO, all outputs off -- 0.4 mA IDD_APD VDDA, all outputs off -- 0.6 mA IDD_IOPD VDD_IO, all outputs off -- 0.3 mA IDD_WOL VDD, except VDDA and VDD_IO, all differential outputs off, REF running -- 4.0 mA IDD_AWOL VDDA, all differential outputs off, REF running -- 0.6 mA IDD_IOWOL VDD_IO, all differential outputs off, REF running -- 0.3 mA silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 9 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Parameter Dynamic Supply Current Symbol Test Condition Min Typ Max Unit IDD_1.5V_Total All outputs enabled. Differential clocks with 5" traces and 2 pF load. -- 44 mA IDD_OP VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz -- 17 mA IDD_AOP VDDA, all differential outputs active at 100 MHz -- 7 mA IDD_IOOP VDD_IO, all differential outputs active at 100 MHz -- 20 mA Si52202 Current Consumption (VDD = 1.5 V 5%) Power Down Current PWRGD/PWRDNb = "0" Byte 2, bit 2 = 0 Wake-on LAN Current PWRGD_PWRDNb = "0" Byte 2, bit 2 = 1 Dynamic Supply Current IDD_PD_total All outputs off -- 1.3 mA IDD_PD VDD, except VDDA and VDD_IO, all outputs off -- 0.4 mA IDD_APD VDDA, all outputs off -- 0.3 mA IDD_IOPD VDD_IO, all outputs off -- 0.6 mA IDD_WOL VDD, except VDDA and VDD_IO, all differential outputs off, REF running -- 4.0 mA IDD_AWOL VDDA, all differential outputs off, REF running -- 0.6 mA IDD_IOWOL VDD_IO, all differential outputs off, REF running -- 0.3 mA IDD_1.5V_Total All outputs enabled. Differential clocks with 5" traces and 2 pF load. -- 34 mA IDD_OP VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz -- 17 mA IDD_AOP VDDA, all differential outputs active at 100 MHz -- 7 mA IDD_IOOP VDD_IO, all differential outputs active at 100 MHz -- 10 mA silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 10 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Table 4.2. DC Electrical Specifications (VDD = 1.8 V 5%) Parameter Symbol Test Condition Min Typ Max Unit VDD core 1.8 V 5% 1.71 1.8 1.89 V VDDIO Supply voltage for differential Low Power outputs 0.9975 1.05-1.8 1.9 V 1.8 V Input High Voltage VIH Control input pins, except SDATA, SCLK 0.75 VDD -- VDD+0.3 V 1.8 V Input Mid Voltage VIM Tri-level control input pins, except SDATA, SCLK 0.4 VDD 0.5 VDD 0.6 VDD V 1.8 V Input Low Voltage VIL Control input pins, except SDATA,SCLK -0.3 -- 0.25 VDD V Input High Voltage VIHI2C SDATA, SCLK 1.11 -- 3.3 V Input Low Voltage VILI2C SDATA, SCLK -- -- 0.6 V IPULLUP At VOL 4 -- IIN Single-ended inputs, VIN = GND, VIN = VDD -5 -- 5 uA IINP Single-ended inputs, VIN = 0V, inputs with internal pull-up resistors VIN = VDD, inputs with internal pull-down resistors -200 -- 200 uA CIN 1.5 -- 5 pF COUT -- -- 6 pF LIN -- -- 7 nH 1.8 V Operating Voltage Output Supply Voltage SDATA, SCLK Sink Current Input current Input Pin Capacitance Output Pin Capacitance Pin Inductance mA Si52212 Current Consumption (VDD = 1.8 V 5%) Power Down Current PWRGD/PWRDNb = "0" Byte 2, bit 3 = 0 Wake-on LAN Current PWRGD/PWRDNb = "0" Byte 2, bit 3 = 1 IDD_PD_total All outputs off -- 1.4 mA IDD_PD VDD, except VDDA and VDD_IO, all outputs off -- 0.5 mA IDD_APD VDDA, all outputs off -- 0.6 mA IDD_IOPD VDD_IO, all outputs off -- 0.3 mA IDD_WOL VDD, except VDDA and VDD_IO, all differential outputs off, REF running -- 4.5 mA IDD_AWOL VDDA, all differential outputs off, REF running -- 0.7 mA IDD_IOWOL VDD_IO, all differential outputs off, REF running -- 0.5 mA silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 11 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Parameter Dynamic Supply Current Symbol Test Condition Min Typ Max Unit IDD_1.8V_Total All outputs enabled. Differential clocks with 5" traces and 2 pF load. -- 84 mA IDD_OP VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz -- 19 mA IDD_AOP VDDA, all differential outputs active at 100 MHz -- 7 mA IDD_IOOP VDD_IO, all differential outputs active at 100 MHz -- 58 mA Si52208 Current Consumption (VDD = 1.8 V 5%) Power Down Current PWRGD/PWRDNb = ''0" Byte 2, bit 3 = 0 Wake-on LAN Current PWRGD/PWRDNb = "0" Byte 2, bit 3 = 1 Dynamic Supply Current IDD_PD_total All outputs off -- 1.4 mA IDD_PD VDD, except VDDA and VDD_IO, all outputs off -- 0.5 mA IDD_APD VDDA, all outputs off -- 0.6 mA IDD_IOPD VDD_IO, all outputs off -- 0.3 mA IDD_WOL VDD, except VDDA and VDD_IO, all differential outputs off, REF running -- 4.5 mA IDD_AWOL VDDA, all differential outputs off, REF running -- 0.7 mA IDD_IOWOL VDD_IO, all differential outputs off, REF running -- 0.5 mA IDD_1.8V_Total All outputs enabled. Differential clocks with 5" traces and 2 pF load. -- 65 mA IDD_OP VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz -- 19 mA IDD_AOP VDDA, all differential outputs active at 100 MHz -- 7 mA IDD_IOOP VDD_IO, all differential outputs active at 100 MHz -- 39 mA Si52204 Current Consumption (VDD = 1.8 V 5%) Power Down Current PWRGD/PWRDNb = "0" Byte 2, bit 3 = 0 Wake-on LAN Current PWRGD/PWRDNb = ''0" Byte 2, bit 3 = 1 IDD_PD_total All outputs off -- 1.4 mA IDD_PD VDD, except VDDA and VDD_IO, all outputs off -- 0.5 mA IDD_APD VDDA, all outputs off -- 0.6 mA IDD_IOPD VDD_IO, all outputs off -- 0.3 mA IDD_WOL VDD, except VDDA and VDD_IO, all differential outputs off, REF running -- 4.5 mA IDD_AWOL VDDA, all differential outputs off, REF running -- 0.7 mA IDD_IOWOL VDD_IO, all differential outputs off, REF running -- 0.5 mA silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 12 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Parameter Dynamic Supply Current Symbol Test Condition Min Typ Max Unit IDD_1.8V_Total All outputs enabled. Differential clocks with 5" traces and 2 pF load. -- 46 mA IDD_OP VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz -- 19 mA IDD_AOP VDDA, all differential outputs active at 100 MHz -- 7 mA IDD_IOOP VDD_IO, all differential outputs active at 100 MHz -- 20 mA Si52202 Current Consumption (VDD = 1.8 V 5%) Power Down Current PWRGD/PWRDNb = "0" Byte 2, bit 3 = 0 Wake-on LAN Current PWRGD/PWRDNb = ''0" Byte 2, bit 2 = 1 Dynamic Supply Current IDD_PD_total All outputs off -- 1.4 mA IDD_PD VDD, except VDDA and VDD_IO, all outputs off -- 0.5 mA IDD_APD VDDA, all outputs off -- 0.6 mA IDD_IOPD VDD_IO, all outputs off -- 0.3 mA IDD_WOL VDD, except VDDA and VDD_IO, all differential outputs off, REF running -- 4.5 mA IDD_AWOL VDDA, all differential outputs off, REF running -- 0.7 mA IDD_IOWOL VDD_IO, all differential outputs off, REF running -- 0.5 mA IDD_1.8V_Total All outputs enabled. Differential clocks with 5" traces and 2 pF load. -- 36 mA IDD_OP VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz -- 19 mA IDD_AOP VDDA, all differential outputs active at 100 MHz -- 7 mA IDD_IOOP VDD_IO, all differential outputs active at 100 MHz -- 10 mA silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 13 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Table 4.3. AC Electrical Specifications Parameter Symbol Condition Min Typ -- 25 Max Unit Clock Input CLKIN Frequency MHz TDC Measured at VDD/2 45 -- 55 % TR/TF Measured between 0.2 VDD and 0.8 VDD 0.5 -- 4 V/ns Input High Voltage VIH XIN/CLKIN pin 0.75 VDD -- Input Low Voltage VIL XIN/CLKIN pin -- -- 0.25 VDD V VCOM Common mode input voltage 300 -- 1000 mV VSWING Peak to Peak value 300 -- 1450 mV Trise Tr Rise time of single-ended control inputs -- -- 5 ns Tfall Tf Fall time of single-ended control inputs -- -- 5 ns SDATA, SCLK Rise Time TrI2C (Max VIL - 0.15) to (Min VIH + 0.15) -- -- 1000 ns SDATA, SCLK Fall Time TfI2C (Min VIH + 0.15) to (Max VIL - 0.15) -- -- 300 ns FmaxI2C Maximum SMBus operating frequency -- -- 400 kHz CLKIN Duty Cycle CLKIN Rising and Falling Slew Rate Input Common Mode Input Amplitude V Control Input Pins SMBus Operating Frequency LVCMOS - REF (VDD = 1.5 V 5%) Long Accuracy Clock Period ppm Variation from reference frequency TPERIOD 25 MHz output Trf Slew Rate 0 ppm -- 40 ns Byte 2[1:0] = 48 (Slowest), 20% to 80% of VDDREF -- 0.5 V/ns Byte 2[1:0] = 49 (Slow), 20% to 80% of VDDREF -- 0.7 V/ns Byte 2[1:0] = 4A (Fast), 20% to 80% of VDDREF -- 0.9 V/ns Byte 2[1:0] = 4B (Fastest), 20% to 80% of VDDREF -- 0.9 V/ns Duty Cycle1 TDC_REF VT = VDD/2 V 45 50 Cycle-to-Cycle Jitter TCCJ_REF VT = VDD/2 V -- 45 ps Phase Jitter RMSREF 12 kHz to 5MHz -- 0.35 ps REF Noise Floor TJ1kHz_REF 1 kHz offset -- -132 dBc REF Noise Floor TJ10kHz_REF 10 kHz offset to Nyquist -- -143 dBc silabs.com | Building a more connected world. 55 % Preliminary Rev. 0.7 | 14 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Parameter Symbol Condition Min Typ Max Unit LVCMOS - REF (VDD = 1.8 V 5%) Long Accuracy Clock Period ppm Variation from reference frequency TPERIOD 25 MHz output Trf Slew Rate 0 ppm -- 40 ns Byte 2[1:0] = 48 (Slowest), 20% to 80% of VDDREF -- 0.7 V/ns Byte 2[1:0] = 49 (Slow), 20% to 80% of VDDREF -- 1.0 V/ns Byte 2[1:0] = 4A (Fast), 20% to 80% of VDDREF -- 1.2 V/ns Byte 2[1:0] = 4B (Fastest), 20% to 80% of VDDREF -- 1.3 V/ns Duty Cycle1 TDC_REF VT = VDD/2 V 45 50 Cycle-to-Cycle Jitter TCCJ_REF VT = VDD/2 V -- 30 ps Phase Jitter RMSREF 12 kHz to 5 MHz -- 0.32 ps REF Noise Floor TJ1kHz_REF 1 kHz offset -- -132 dBc REF Noise Floor TJ10kHz_REF 10 kHz offset to Nyquist -- -145 dBc TDC Measured at 0 V differential 45 50 TSKEW Measured at 0 V differential -- 10 ps Measured differentially from 150 mV (fast setting) -- 2.3 V/ns Measured differentially from 150 mV (slow setting) -- 1.8 V/ns -- 2 % -- -- 1250 ppm/usec 55 % DIFF HCSL Duty Cycle Output-to-Output Skew Slew Rate TR/TF Slew Rate Matching Delta TR/TF Max modulation frequency df/dt Tmax-freqmodslew 55 % Voltage High VHIGH 600 -- 850 mV Voltage Low VLOW -150 -- 150 mV Max Voltage VMAX -- 750 1150 mV Min Voltage VMIN -300 0 Crossing Point Voltage VOX Absolute crossing point voltage at 0.7 V Swing 250 -- VOX_DELTA Variation of VOX over all rising clock edges -- 35 FMOD 30 31.5 TSTABLE -- 1 Crossing Point Voltage (var) Modulation Frequency mV 550 mV mV 33 kHz Enable/Disable and Setup Clock Stabilization from Power-up silabs.com | Building a more connected world. ms Preliminary Rev. 0.7 | 15 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Parameter Symbol Condition Min Typ OE_b Latency TOEBLAT Differential outputs start after OE_b assertion Differential outputs stop after OE_b deassertion -- 2 clocks TPDb Differential outputs enable after PD_b de-assertion -- 490 s PD_b Latency to differential outputs enable Max Unit Note: 1. This is for XTAL mode only. For CLKIN mode, there would be a duty cycle distortion spec of 0.5 ns. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 16 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Table 4.4. PCIe and Intel QPI Jitter Specifications Parameter Max Jitter Limit Symbol Condition Min Typ Unit Cycle to Cycle Jitter JCCJ Measured at 0 V differential -- 23 PCIe Gen 1 Pk-Pk Jitter JPk-Pk PCIe Gen 1 0 21 86 ps (pk-pk) 10 kHz < F < 1.5 MHz 0 0.9 3 ps (RMS) 1.5 MHz < F < Nyquist 0 1.4 3.1 ps (RMS) DIFF HCSL PCIe Gen 2 Phase Jitter ps (pk-pk) JRMSGEN2 PCIe Gen 3 Phase Jitter JRMSGEN3 Includes PLL BW 2-4 MHz, CDR = 10 MHz -- 0.3 0.4 1.0 ps (RMS) PCIe Gen 3 SRIS1 Phase Jitter JRMSGen3_SRIS Includes PLL BW 2-4 MHz, CDR = 10 MHz -- 0.39 0.5 0.7 ps (RMS) PCIe Gen 4 Phase Jitter JRMSGen4 Includes PLL BW 2-4 MHz, CDR = 10 MHz -- 0.3 0.4 0.5 ps (RMS) PCIe Gen 4 SRIS1 Phase Jitter JRMSGen4_SRIS Includes PLL BW 2-4 MHz, CDR = 10 MHz -- 0.41 0.5 0.5 ps (RMS) Intel QPI Specifications for 100 MHz and 133 MHz Intel QPI and SMI REFCLK accummulated jitter2, 3, 4 JRMSQPI_SMI 8 Gb/s, 100 MHz, 12UI -- 0.13 ps (RMS) Intel QPI and SMI REFCLK accummulated jitter2, 3, 4 JRMSQPI_SMI 9.6 Gb/s, 100 MHz, 12UI -- 0.11 ps (RMS) Intel QPI and SMI REFCLK accummulated jitter2, 3, 4 JRMSQPI_SMI 4.8 Gb/s, 133 MHz, 12UI, 17.04M -- 0.4 ps (RMS) Intel QPI and SMI REFCLK accummulated jitter2, 3, 4 JRMSQPI_SMI 4.8 Gb/s, 133 MHz, 12UI, 7.8M -- 0.2 ps (RMS) Intel QPI and SMI REFCLK accummulated jitter2, 3, 4 JRMSQPI_SMI 6.4 Gb/s, 133 MHz, 12UI, 17.04M -- 0.3 ps (RMS) Intel QPI & SMI REFCLK accummulated jitter2, 3, 4 JRMSQPI_SMI 6.4 Gb/s, 133 MHz, 12UI, 7.8M -- 0.15 ps (RMS) Note: 1. The SRIS jitter limit is the system RefClk simulation budget divided by sqrt (2) for equal allocation of uncorrelated jitter between two clocks. 2. Post processed evaluation through Intel supplied Matlab scripts 3. Measuring on 100 MHz output using the template file in the PCIe Jitter Tool 4. Measuring on 100 MHz, 133 MHz outputs using the template file in the PCIe Jitter Tool. Visit www.pcisig.com for complete PCIe specifications. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 17 Si52212/Si52208/Si52204/Si52202 Data Sheet Electrical Specifications Table 4.5. Absolute Maximum Conditions Parameter Symbol Test Condition Min Typ Max Unit VDD_1.8V Functional -- -- 2.5 V VIN Relative to VSS -0.5 -- VDD + 0.5 V Input High Voltage I2C VIH_I2C SDATA and SCLK -- 3.6 V Temperature, Storage TS Non-functional -65 -- 150 Celsius Temperature, Operating Ambient TA Functional -40 -- 85 Celsius Temperature, Junction TJ Functional -- -- 150 Celsius Dissipation, Junction to Case JC JEDEC (JESD 51) -- -- 22 Celsius/W Dissipation, Junction to Ambient JA JEDEC (JESD 51) -- -- 30 Celsius/W ESDHBM JEDEC (JESD 22-A114) -2000 -- 2000 V UL-94 UL (Class) Main Supply Voltage Input Voltage ESD Protection (Human Body Model) Flammability Rating V-0 Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 18 Si52212/Si52208/Si52204/Si52202 Data Sheet Functional Description 5. Functional Description 5.1 Crystal Recommendations The clock device requires a parallel resonance crystal. Table 5.1. Crystal Recommendations Frequency (Fund) Cut Loading Load Cap Shunt Cap (max) Motional (max) Tolerance (max) Stability (max) Aging (max) 25 MHz AT Parallel 8-15 pF 5 pF 0.016 pF 35 ppm 30 ppm 5 ppm 5.2 Crystal Loading Crystal loading is critical in achieving low ppm performance. To realize low ppm performance, use the total capacitance the crystal sees to calculate the appropriate capacitive loading (CL). The figure below shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors are in series with the crystal. Figure 5.1. Crystal Capacitive Clarification silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 19 Si52212/Si52208/Si52204/Si52202 Data Sheet Functional Description 5.3 Calculating Load Capacitors In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate the crystal loading correctly. Again, the capacitance on each side is in series with the crystal. The total capacitance on both sides is twice the specified crystal load capacitance (CL). Trim capacitors are calculated to provide equal capacitive loading on both sides. Figure 5.2. Crystal Loading Example Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2: Load Capacitance (each side) Ce = 2 x CL - (Cs + Ci) Total Capacitance (as seen by the crystal) CLe = * * * * * ( 1 1 1 + Ce + Cs1 + Ci1 Ce2 + Cs2 + Ci2 ) CL: Crystal load capacitance CLe: Actual loading seen by crystal using standard value trim capacitors Ce: External trim capacitors Cs: Stray capacitance (terraced) Ci : Internal capacitance (lead frame, bond wires, etc.) silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 20 Si52212/Si52208/Si52204/Si52202 Data Sheet Functional Description 5.4 PWRGD/PWRDNb (Power Down) Pin The PWRGD/PWRDNb pin is a dual-function pin. During initial power up, the pin functions as the PWRGD pin. Upon the first power up, if the PWRGD pin is low, the outputs will be disabled, but the crystal oscillator and I2C logics will be active. Once the PWRGD pin has been sampled high by the clock chip, the pin assumes a PWRDNb functionality. When the pin has assumed a PWRDNb functionality and is pulled low, the device will be placed in power down mode. The PWRGD/PWRDNb pin is required to be driven at all times. The assertion and dessertion of PWRDNb is asynchronous. Tstable <1.8 ms PWRDWN DIF DIF Tdrive_Pwrdn# <300 s; > 200 mV Figure 5.3. Differential (CLOCK-CLOCK) Measurement Points (Tperiod, Duty Cycle, Jitter) 5.5 PWRDNb (Power Down) Assertion The PDB pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. All outputs will be driven low in power down mode. In power down mode, all outputs, the crystal oscillator, and the I2C logic are disabled. PWRDWN DIF DIF Figure 5.4. PWRDNb Assertion 5.6 PWRDNb (Power Down) Deassertion When a valid rising edge on PWRGD/PWRDNb pin is applied, all outputs are enabled in a glitch-free manner within two to six output clock cycles. 5.7 OEb Pin The OEb pin is an active low input used to enable and disable the output clock. To enable the output clock, the OEb pin needs to be logic low, and I2C OE bit needs to be logic high. By default, the OEb pin is set to logic low, and I2C OE bit is set to logic high.There are two methods to disable the output clock: the OEb pin is pulled to a logic high, or the I2C OEb bit is set to a logic low. The OEb pin is required to be driven at all times. 5.8 OEb Assertion The OEb pin is an active low input used for synchronous stopping and starting the respective output clock while the rest of the clock generator continues to function. The assertion of the OEb function is achieved by pulling the OEb pin low while the I2C OE bit is high, which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles. 5.9 OEb Deassertion The OEb function is deasserted by pulling high or writing the I2C OE bit to a logic low. The corresponding output is stopped cleanly and the final output state is driven low. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 21 Si52212/Si52208/Si52204/Si52202 Data Sheet Functional Description 5.10 FS Pin The FS pin will select 0 = 100 MHz, mid = 200 MHz, 1 = 133 MHz. This is a tri-state pin, and this pin has a weak internal pull-down of approximately 100 k. The default output frequency is 100 MHz. The following figure shows the recommended configurations for tri-state. VDD R1 VDD 1k R1 FS Pin R2 MCU Static Option The user can NP either R1, R2, or neither to constantly maintain low, high, or mid levels, respectively. FS Pin With Tri-State Outputs Outputs 0, High Z and VDD 1k 1k R2 1k Tri-State Dynamic Option The user can use an MCU with strong Tri-State outputs to drive the FS pin. 1 k-ohm resistors should be adequate for most MCU drivers; however, the resistance can be increased to compensate for a weaker driver. Increasing the resistors will increase noise levels on the FS pin line. MCU With Tri-State Outputs FS Pin Outputs 0, VDD/2 and VDD 3-Level Dynamic Option An MCU with a 3-level output capability can be directly connected to the FS Pin. Figure 5.5. Si522xx FS Tri-State Pin Circuit Configuration Suggestions silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 22 Si52212/Si52208/Si52204/Si52202 Data Sheet Test and Measurement Setup 6. Test and Measurement Setup The following diagrams show the test load configuration for the differential clock signals. Measurement Point L1 OUT+ 50 2 pF L1 = 5" OUT- Measurement Point L1 50 2 pF Figure 6.1. 0.7 V Differential Load Configuration Figure 6.2. Differential Output Signals (for AC Parameters Measurement) silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 23 Si52212/Si52208/Si52204/Si52202 Data Sheet Test and Measurement Setup Figure 6.3. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement) silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 24 Si52212/Si52208/Si52204/Si52202 Data Sheet PCIe Clock Jitter Tool 7. PCIe Clock Jitter Tool The PCIe Clock Jitter Tool is designed to enable users to quickly and easily take jitter measurements for PCIe Gen1/2/3/4 and SRNS/ SRIS. This software removes all the guesswork for PCIe Gen1/2/3/4 and SRNS/SRIS jitter measurements and margins in board designs. This software tool will provide accurate results in just a few clicks, and is provided in an executable format to support various common input waveform files, such as .csv, .wfm, and .bin. The easy-to-use GUI and helpful tips guide users through each step. Release notes and other documentation are also included in the software package. Download it for free at http://www.silabs.com/pcie-learningcenter. Figure 7.1. PCIe Clock Jitter Tool silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 25 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers 8. Control Registers 8.1 I2C Interface To enhance the flexibility and function of the clock synthesizer, an I2C interface is provided. Through the I2C interface, various device functions, such as individual clock output buffers, are individually enabled or disabled. The registers associated with the I2C interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required. 8.2 Block Read/Write The clock driver I2C protocol accepts block write and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. The block write and block read protocol is outlined in Table 8.2 Block Read and Block Write Protocol on page 29. 8.3 Block Read After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The slave acknowledges the register index in the command byte. The master sends a repeat start function. After the slave acknowledges this, the slave sends the number of bytes it wants to transfer (>0 and <33). The master acknowledges each byte except the last and sends a stop function. 1 7 T Slave 1 1 7 1 1 8 Wr A Command Code A r Slave Command starT Condition 8 Data Byte 1 A Register # to read MSB = 0 8 1 Data Byte 0 A Block Read Protocol 1 1 Rd A repeat starT Acknowledge 8 Data Byte 1 1 1 N P Master to Slave to Not acknowledge stoP Condition Figure 8.1. Block Read Protocol silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 26 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers 8.4 Block Write After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will be compatible with existing block mode slave devices. The next byte of a write must be the count of bytes that the master will transfer to the slave device. The byte count must be greater than zero and less than 33. Following this byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte received. The transfer is terminated after the slave sends the Ack and the master sends a stop function. 1 7 1 1 T Slave Address Wr A 1 A 8 Command Register # to write MSB = 0 Command bit starT Condition Master to Slave to Acknowledge 1 8 1 8 1 1 8 Byte Count = 2 A Data Byte 0 A Data Byte 1 A P Block Write Protocol stoP Condition Figure 8.2. Block Write Protocol 8.5 Byte Read/Write Reading or writing a register in an SMBus slave device in byte mode always involves specifying the register number. Refer to Table 8.3 Byte Read and Byte Write Protocol on page 30 for byte read and byte write protocol. 8.6 Byte Read The standard byte read is as shown in the figure below. It is an extension of the byte write. The write start condition is repeated; then, the slave device starts sending data, and the master acknowledges it until the last byte is sent. The master terminates the transfer with a NAK, then a stop condition. For byte operation, the MSB bit of the command byte must be set. For block operations, the MSB bit must be reset. If the bit is not set, the next byte must be the byte transfer count. 1 7 T Slave 1 1 8 A Command Wr Command starT Condition Register # to read MSB bit = 1 1 1 7 r A Slave 1 1 A Rd 8 Data Byte 0 repeat starT Acknowledge Byte Read Protocol Master to 1 1 N P Not ack stoP Condition Slave to Figure 8.3. Byte Read Protocol silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 27 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers 8.7 Byte Write The figure below illustrates a simple, typical byte write. For byte operation, the MSB bit of the command byte must be set. For block operations, the MSB bit must be reset. If the bit is not set, the next byte must be the byte transfer count. The count can be between 1 and 32. It is not allowed to be zero or to exceed 32. 1 7 T Slave Command starT Condition 1 1 8 Wr A Command Register # to write MSB bit = 1 1 A 8 Data Byte 0 1 1 A P Acknowledge Byte Write Protocol stoP Condition Master to Slave to Figure 8.4. Byte Write Protocol silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 28 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers 8.8 Data Protocol The clock driver I2C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/ read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The block write and block read protocol is outlined in Table 8.2 Block Read and Block Write Protocol on page 29 while Table 8.3 Byte Read and Byte Write Protocol on page 30 outlines byte write and byte read protocol. Table 8.1. SA State on First Application of PWRGD/PWRDNb Description SA Address State of SA on first application of PWRGD/PWRDNb 0 1101001 1 1101010 Table 8.2. Block Read and Block Write Protocol Block Write Protocol Block Read Protocol Bit Description Bit Description 1 Start 1 Start 8:2 Slave address--7 bits 8:2 Slave address-7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 Command Code--8 bits 18:11 Command Code-8 bits 19 Acknowledge from slave 19 Acknowledge from slave 27:20 Byte Count--8 bits 20 Repeat start 28 Acknowledge from slave 27:21 Slave address-7 bits 36:29 Data byte 1-8 bits 28 Read = 1 37 Acknowledge from slave 29 Acknowledge from slave 45:38 Data byte 2-8 bits 37:30 Byte Count from slave-8 bits 46 Acknowledge from slave 38 Acknowledge .... Data Byte/Slave Acknowledges 46:39 Data byte 1 from slave-8 bits .... Data Byte N-8 bits 47 Acknowledge .... Acknowledge from slave 55:48 Data byte 2 from slave-8 bits .... Stop 56 Acknowledge .... Data bytes from slave/Acknowledge .... Data Byte N from slave-8 bits .... NOT Acknowledge .... Stop silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 29 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Table 8.3. Byte Read and Byte Write Protocol Byte Write Protocol Byte Read Protocol Bit Description Bit Description 1 Start 1 Start 8:2 Slave address-7 bits 8:2 Slave address-7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 Command Code-8 bits 18:11 Command Code-8 bits 19 Acknowledge from slave 19 Acknowledge from slave 27:20 Data byte-8 bits 20 Repeated start 28 Acknowledge from slave 27:21 Slave address-7 bits 29 Stop 28 Read 29 Acknowledge from slave 37:30 Data from slave-8 bits 38 NOT Acknowledge 39 Stop silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 30 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers 8.9 Register Tables 8.9.1 Si52212 Registers Table 8.4. Control Register 0. Byte 0 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 DIFF7_OE Disabled Enabled RW 1 Output enable for DIFF[7] 6 DIFF6_OE Disabled Enabled RW 1 Output enable for DIFF[6] 5 DIFF5_OE Disabled Enabled RW 1 Output enable for DIFF[5] 4 DIFF4_OE Disabled Enabled RW 1 Output enable for DIFF[4] 3 DIFF3_OE Disabled Enabled RW 1 Output enable for DIFF[3] 2 DIFF2_OE Disabled Enabled RW 1 Output enable for DIFF[2] 1 DIFF1_OE Disabled Enabled RW 1 Output enable for DIFF[1] 0 DIFF0_OE Disabled Enabled RW 1 Output enable for DIFF[0] Table 8.5. Control Register 1. Byte 1 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 DIFF11_OE Disabled Enabled RW 1 Output enable for DIFF[11] 6 DIFF10_OE Disabled Enabled RW 1 Output enable for DIFF[10] 5 DIFF9_OE Disabled Enabled RW 1 Output enable for DIFF[9] 4 DIFF8_OE Disabled Enabled RW 1 Output enable for DIFF[8] 3 0 Reserved 2 Reserved 0 1 SS_EN_READ1 R 0 0 SS_EN_READ0 R 0 Spread Enable software readback 00 = -0.25%; 01 = -0.5%; 10 = OFF; 11 = -0.5% Table 8.6. Control Register 2. Byte 2 Bit Name If Bit = 0 If Bit = 1 Type Default 7 SS_EN_SW_HW_CTRL Read back Byte 1[1:0] SS control by Byte 2 [6:5] RW 0 Enable software control of spread 6 SS_EN_SW1 RW 0 5 SS_EN_SW0 RW 1 Software control of spread 00 = - 0.25%; 01 = OFF; 10 = OFF; 11 = - 0.5% 0 Reserved 1 Output Enable for REF 0 Wake-on LAN for REF. To have REF output enabled in Power Down, REF_OE needs to be enabled at the same time. 4 3 2 Reserved REF_OE REF PWRDN Disabled Enabled REF output is REF output is disabled in Pow- enabled in Power Down. er Down silabs.com | Building a more connected world. RW RW Function Preliminary Rev. 0.7 | 31 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Bit Name If Bit = 0 If Bit = 1 Type Default RW 0 RW 1 1 REF_SLR 0 Function REF Output Slew Rate Control 00 = Slowest; 01 = Slow; 10 = Fast; 11 = Fastest Table 8.7. Control Register 3. Byte 3 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 SR_SEL_DIFF7 Slow setting Fast setting RW 1 Slew rate control for DIFF7 6 SR_SEL_DIFF6 Slow setting Fast setting RW 1 Slew rate control for DIFF6 5 SR_SEL_DIFF5 Slow setting Fast setting RW 1 Slew rate control for DIFF5 4 SR_SEL_DIFF4 Slow setting Fast setting RW 1 Slew rate control for DIFF4 3 SR_SEL_DIFF3 Slow setting Fast setting RW 1 Slew rate control for DIFF3 2 SR_SEL_DIFF2 Slow setting Fast setting RW 1 Slew rate control for DIFF2 1 SR_SEL_DIFF1 Slow setting Fast setting RW 1 Slew rate control for DIFF1 0 SR_SEL_DIFF0 Slow setting Fast setting RW 1 Slew rate control for DIFF0 Table 8.8. Control Register 4. Byte 4 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 SR_SEL_DIFF11 Slow setting Fast setting RW 1 Slew rate control for DIFF11 6 SR_SEL_DIFF10 Slow setting Fast setting RW 1 Slew rate control for DIFF10 5 SR_SEL_DIFF9 Slow setting Fast setting RW 1 Slew rate control for DIFF9 4 SR_SEL_DIFF8 Slow setting Fast setting RW 1 Slew rate control for DIFF8 3 AMP RW 0 2 AMP RW 0 1 AMP RW 0 0 AMP RW 0 Controls Output Amplitude Table 8.9. Control Register 5. Byte 5 Bit Name If Bit = 0 Type Default R 0 R 0 R 0 4 R 0 3 R 1 R 0 R 0 R 0 7 6 5 2 1 Rev Code [7:4] Vendor ID[3:0] 0 silabs.com | Building a more connected world. If Bit = 1 Function Revision Code Vendor Identification Code Preliminary Rev. 0.7 | 32 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Table 8.10. Control Register 6. Byte 6 Bit Type Default 7 R 0 6 R 0 5 R 0 R 0 R 0 2 R 0 1 R 0 0 R 0 4 Name If Bit = 0 If Bit = 1 Programming ID [7:0] 3 Function Programming ID (Internal Only) Table 8.11. Control Register 7. Byte 7 Bit Name 7 If Bit = 0 Type Default Function BC R 0 Byte Count 6 BC R 0 Byte Count 5 BC R 0 Byte Count 4 BC R 0 Byte Count 3 BC R 1 Byte Count 2 BC R 0 Byte Count 1 BC R 0 Byte Count 0 BC R 0 Byte Count silabs.com | Building a more connected world. If Bit = 1 Preliminary Rev. 0.7 | 33 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers 8.9.2 Si52208 Registers Table 8.12. Control Register 0. Byte 0 Bit Name If Bit = 0 7 If Bit = 1 Type Default Function 0 Reserved Reserved 6 DIFF4_OE Disabled Enabled RW 1 Output enable for DIFF_4 5 DIFF3_OE Disabled Enabled RW 1 Output enable for DIFF_3 4 Reserved 0 Reserved 3 Reserved 0 Reserved 2 DIFF2_OE Disabled Enabled RW 1 Output enable for DIFF_2 1 DIFF1_OE Disabled Enabled RW 1 Output enable for DIFF_1 0 DIFF0_OE Disabled Enabled RW 1 Output enable for DIFF_0 Table 8.13. Control Register 1. Byte 1 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 DIFF7_OE Disabled Enabled RW 1 Output enable for DIFF_7 6 DIFF6_OE Disabled Enabled RW 1 Output enable for DIFF_6 0 Reserved 1 Output enable for DIFF_5 5 4 Reserved DIFF5_OE Disabled 3 Enabled RW 0 Reserved 2 Reserved 0 1 SS_EN_READ1 R 0 0 SS_EN_READ0 R 0 Spread Enable software readback 00 = -0.25%; 01 = -0.5%; 10 = OFF; 11 = -0.5% Table 8.14. Control Register 2. Byte 2 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 SS_EN_SW_HW_CTRL Read back Byte 1[1:0] SS control by Byte 2 [6:5] RW 0 Enable software control of spread 6 SS_EN_SW1 RW 0 5 SS_EN_SW0 RW 1 Software control of spread 00 = - 0.25%; 01 = OFF; 10 = OFF; 11 = - 0.5% 0 Reserved 1 Output Enable for REF RW 0 Wake-on LAN for REF. To have REF output enabled in Power Down, REF_OE needs to be enabled at the same time. RW 0 RW 1 4 3 2 Reserved REF_OE REF PWRDN Disabled REF output is REF output is disabled in Pow- enabled in Power Down. er Down 1 0 Enabled REF_SLR silabs.com | Building a more connected world. RW REF Output Slew Rate Control 00 = Slowest; 01 = Slow; 10 = Fast; 11 = Fastest Preliminary Rev. 0.7 | 34 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Table 8.15. Control Register 3. Byte 3 Bit Name If Bit = 0 7 If Bit = 1 Reserved Type Default Function RW 1 Reserved 6 SR_SEL_DIFF_4 Slow setting Fast setting RW 1 Slew rate control for DIFF_4 5 SR_SEL_DIFF_3 Slow setting Fast setting RW 1 Slew rate control for DIFF_3 4 Reserved RW 1 Reserved 3 Reserved RW 1 Reserved 2 SR_SEL_DIFF_2 Slow setting Fast setting RW 1 Slew rate control for DIFF_2 1 SR_SEL_DIFF_1 Slow setting Fast setting RW 1 Slew rate control for DIFF_1 0 SR_SEL_DIFF_0 Slow setting Fast setting RW 1 Slew rate control for DIFF_0 Table 8.16. Control Register 4. Byte 4 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 SR_SEL_DIFF_7 Slow setting Fast setting RW 1 Slew rate control for DIFF_7 6 SR_SEL_DIFF_6 Slow setting Fast setting RW 1 Slew rate control for DIFF_6 RW 1 Reserved RW 1 Slew rate control for DIFF_5 5 Reserved 4 SR_SEL_DIFF_5 Slow setting Fast setting 3 AMP RW 0 2 AMP RW 0 1 AMP RW 0 0 AMP RW 0 Controls Output Amplitude Table 8.17. Control Register 5. Byte 5 Bit Name If Bit = 0 Type Default R 0 R 0 R 0 4 R 0 3 R 1 R 0 R 0 R 0 7 6 5 2 1 Rev Code [7:4] Vendor ID[3:0] 0 silabs.com | Building a more connected world. If Bit = 1 Function Revision Code Vendor Identification Code Preliminary Rev. 0.7 | 35 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Table 8.18. Control Register 6. Byte 6 Bit Type Default 7 R 0 6 R 0 5 R 0 R 0 R 0 2 R 0 1 R 0 0 R 0 4 Name If Bit = 0 If Bit = 1 Programming ID [7:0] 3 Function Programming ID (Internal Only) Table 8.19. Control Register 7. Byte 7 Bit Name 7 If Bit = 0 Type Default Function BC R 0 Byte Count 6 BC R 0 Byte Count 5 BC R 0 Byte Count 4 BC R 0 Byte Count 3 BC R 1 Byte Count 2 BC R 0 Byte Count 1 BC R 0 Byte Count 0 BC R 0 Byte Count silabs.com | Building a more connected world. If Bit = 1 Preliminary Rev. 0.7 | 36 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers 8.9.3 Si52204 Registers Table 8.20. Control Register 0. Byte 0 Bit Name If Bit = 0 7 If Bit = 1 Type Default Function 0 Reserved Reserved 6 DIFF2_OE Disabled Enabled RW 1 Output enable for DIFF_2 5 DIFF1_OE Disabled Enabled RW 1 Output enable for DIFF_1 4 Reserved 0 Reserved 3 Reserved 0 Reserved RW 1 Output enable for DIFF_0 2 DIFF0_OE Disabled Enabled 1 Reserved RW 0 Reserved 0 Reserved RW 0 Reserved Default Function Table 8.21. Control Register 1. Byte 1 Bit Name If Bit = 0 If Bit = 1 Type 7 Reserved 0 Reserved 6 Reserved 0 Reserved 5 Reserved 0 Reserved 1 Output enable for DIFF_3 4 DIFF3_OE Disabled 3 Enabled RW 0 Reserved 2 0 1 SS_EN_READ1 R 0 0 SS_EN_READ0 R 0 Reserved Spread Enable software readback 00 = -0.25%; 01 = -0.5%; 10 = OFF; 11 = -0.5% Table 8.22. Control Register 2. Byte 2 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 SS_EN_SW_HW_CTRL Read back Byte 1[1:0] SS control by Byte 2 [6:5] RW 0 Enable software control of spread 6 SS_EN_SW1 RW 0 5 SS_EN_SW0 RW 1 Software control of spread 00 = - 0.25%; 01 = OFF; 10 = OFF; 11 = - 0.5% 0 Reserved 1 Output Enable for REF RW 0 Wake-on LAN for REF. To have REF output enabled in Power Down, REF_OE needs to be enabled at the same time. RW 0 RW 1 4 3 2 Reserved REF_OE Disabled Enabled REF PWRDN REF output is disabled in Power Down. REF output is enabled in Power Down 1 0 REF_SLR silabs.com | Building a more connected world. RW REF Output Slew Rate Control 00 = Slowest; 01 = Slow; 10 = Fast; 11 = Fastest Preliminary Rev. 0.7 | 37 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Table 8.23. Control Register 3. Byte 3 Bit Name If Bit = 0 7 If Bit = 1 Reserved Type Default Function RW 1 Reserved 6 SR_SEL_DIFF_2 Slow setting Fast setting RW 1 Slew rate control for DIFF_2 5 SR_SEL_DIFF_1 Slow setting Fast setting RW 1 Slew rate control for DIFF_1 4 Reserved RW 1 Reserved 3 Reserved RW 1 Reserved RW 1 Slew rate control for DIFF_0 2 SR_SEL_DIFF_0 Slow setting Fast setting 1 Reserved RW 1 Reserved 0 Reserved RW 1 Reserved Type Default Function Table 8.24. Control Register 4. Byte 4 Bit Name If Bit = 0 If Bit = 1 7 Reserved RW 1 Reserved 6 Reserved RW 1 Reserved 5 Reserved RW 1 Reserved RW 1 Slew rate control for DIFF_3 4 SR_SEL_DIFF_3 Slow setting Fast setting 3 AMP RW 0 2 AMP RW 0 1 AMP RW 0 0 AMP RW 0 Controls Output Amplitude Table 8.25. Control Register 5. Byte 5 Bit Name If Bit = 0 Type Default R 0 R 0 R 0 4 R 0 3 R 1 R 0 R 0 R 0 7 6 5 2 1 Rev Code [7:4] Vendor ID[3:0] 0 silabs.com | Building a more connected world. If Bit = 1 Function Revision Code Vendor Identification Code Preliminary Rev. 0.7 | 38 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Table 8.26. Control Register 6. Byte 6 Bit Type Default 7 R 0 6 R 0 5 R 0 R 0 R 0 2 R 0 1 R 0 0 R 0 4 Name If Bit = 0 If Bit = 1 Programming ID [7:0] 3 Function Programming ID (Internal Only) Table 8.27. Control Register 7. Byte 7 Bit Name 7 If Bit = 0 Type Default Function BC R 0 Byte Count 6 BC R 0 Byte Count 5 BC R 0 Byte Count 4 BC R 0 Byte Count 3 BC R 1 Byte Count 2 BC R 0 Byte Count 1 BC R 0 Byte Count 0 BC R 0 Byte Count silabs.com | Building a more connected world. If Bit = 1 Preliminary Rev. 0.7 | 39 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers 8.9.4 Si52202 Registers Table 8.28. Control Register 0. Byte 0 Bit Name If Bit = 0 7 6 If Bit = 1 Type Default Function 0 Reserved 1 Output enable for DIFF_0 Reserved DIFF0_OE Disabled Enabled RW 5 Reserved 0 Reserved 4 Reserved 0 Reserved 3 Reserved 0 Reserved 2 Reserved 0 Reserved 1 Reserved 0 Reserved 0 Reserved 0 Reserved Default Function Table 8.29. Control Register 1. Byte 1 Bit Name If Bit = 0 If Bit = 1 Type 7 Reserved 0 Reserved 6 Reserved 0 Reserved 1 Output enable for DIFF_1 0 Reserved 5 DIFF1_OE Disabled 4 Enabled RW Reserved 3 0 Reserved 2 0 1 SS_EN_READ1 R 0 0 SS_EN_READ0 R 0 Reserved Spread Enable software readback 00 = -0.25%; 01 = -0.5%; 10 = OFF; 11 = -0.5% Table 8.30. Control Register 2. Byte 2 Bit Name If Bit = 0 If Bit = 1 Type Default Function 7 SS_EN_SW_HW_CTRL Read back Byte 1[1:0] SS control by Byte 2 [6:5] RW 0 Enable software control of spread 6 SS_EN_SW1 RW 0 5 SS_EN_SW0 RW 1 Software control of spread 00 = - 0.25%; 01 = OFF; 10 = OFF; 11 = - 0.5% 4 Reserved 0 Reserved 3 Reserved 0 Reserved 2 Reserved 0 Reserved 1 Reserved 0 Reserved 0 Reserved 1 Reserved silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 40 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Table 8.31. Control Register 3. Byte 3 Bit Name If Bit = 0 7 6 If Bit = 1 Type Default Function 1 Reserved 1 Slew rate control for DIFF_2 Reserved SR_SEL_DIFF_0 Slow setting Fast setting RW 5 Reserved 1 Reserved 4 Reserved 1 Reserved 3 Reserved 1 Reserved 2 Reserved 1 Reserved 1 Reserved 1 Reserved 0 Reserved 1 Reserved Default Function Table 8.32. Control Register 4. Byte 4 Bit Name If Bit = 0 If Bit = 1 Type 7 Reserved 1 Reserved 6 Reserved 1 Reserved 1 Slew rate control for DIFF_1 1 Reserved 5 SR_SEL_DIFF_1 Slow setting 4 Fast setting RW Reserved 3 AMP RW 0 2 AMP RW 0 1 AMP RW 0 0 AMP RW 0 Controls Output Amplitude Table 8.33. Control Register 5. Byte 5 Bit Name If Bit = 0 Type Default R 0 R 0 R 0 4 R 0 3 R 1 R 0 R 0 R 0 7 6 5 2 1 Rev Code [7:4] Vendor ID[3:0] 0 silabs.com | Building a more connected world. If Bit = 1 Function Revision Code Vendor Identification Code Preliminary Rev. 0.7 | 41 Si52212/Si52208/Si52204/Si52202 Data Sheet Control Registers Table 8.34. Control Register 6. Byte 6 Bit Type Default 7 R 0 6 R 0 5 R 0 R 0 R 0 2 R 0 1 R 0 0 R 0 4 Name If Bit = 0 If Bit = 1 Programming ID [7:0] 3 Function Programming ID (Internal Only) Table 8.35. Control Register 7. Byte 7 Bit Name 7 If Bit = 0 Type Default Function BC R 0 Byte Count 6 BC R 0 Byte Count 5 BC R 0 Byte Count 4 BC R 0 Byte Count 3 BC R 1 Byte Count 2 BC R 0 Byte Count 1 BC R 0 Byte Count 0 BC R 0 Byte Count silabs.com | Building a more connected world. If Bit = 1 Preliminary Rev. 0.7 | 42 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions 9. Pin Descriptions VDDA GNDA NC GND SS_EN PWRGD/PWRDNb GND XIN/CLKIN DIFF_9b DIFF_9 OE_9b OE_8b DIFF_8b DIFF_8 VDD_IO 54 53 52 51 49 50 VDD_IO 56 55 57 DIFF_10 59 GND VDD 60 58 OE_11b OE_10b DIFF_10b 62 61 DIFF_11b DIFF_11 63 64 9.1 Si52212 Pin Descriptions 1 48 GND 2 47 3 46 DIFF_7b DIFF_7 4 45 5 44 6 43 7 42 DIFF_6b DIFF_6 41 GND 40 Si52212 8 OE_7b OE_6b XOUT VDDX VDDR 11 38 VDD DIFF_5b DIFF_5 REF / SA 12 37 OE_5b VSSR 13 36 OE_4b SDA SCLK FS 14 35 15 34 16 33 DIFF_4b DIFF_4 GND 9 39 28 29 30 OE_3b DIFF_3 DIFF_3b VDD_IO 32 26 DIFF_2 DIFF_2b OE_2b 31 25 27 24 VDD_IO 23 22 21 DIFF_1 DIFF_1b GND VDD 20 19 18 DIFF_0 DIFF_0b OE_0b OE_1b 17 10 Figure 9.1. 64-Pin QFN Table 9.1. Si52212 64-Pin QFN Descriptions Pin # Name Type Description 1 VDDA PWR Analog Power Supply 2 GNDA PWR Analog Ground 3 NC 4 GND GND 5 SS_EN I 6 PWRGD/ PWRDNb I, PU Active low input pin asserts power down (PDb) and disables all outputs, except REF (This pin has an internal pull-up). Refer also to settings of Byte 2, Bit2 and Bit3 for REF. Settings for Bit3 (REF_OE) will take precedence for REF. 7 GND GND Ground 8 XIN/CLKIN I 25.00 MHz crystal input or 25 MHz Clock Input. 9 XOUT O 25.00 MHz crystal output. Float XOUT if using only CLKIN (Clock input). 10 VDDX PWR Power supply for crystal 11 VDDR PWR Power supply for REF output 12 REF /SA O/I 13 VSSR GND No connect silabs.com | Building a more connected world. Ground Spread spectrum enable pin. 0 = -0.25% spread, mid= Off, 1= -0.5% spread (This pin has an internal pull-up) REF = 25MHz LVCMOS output. SA = Address select for I2C. When part is powered up, SA will be latched to select SM bus address. Refer to Table 8.1 SA State on First Application of PWRGD/PWRDNb on page 29. Ground Preliminary Rev. 0.7 | 43 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions Pin # Name Type 14 SDA I/O 15 SCLK I I2C compatible SCLOCK 16 FS I Frequency select pin. 0 = 100 MHz, mid = 200 MHz, 1 = 133 MHz (This pin has an internal pull-down) 17 DIFF_0 O, DIF 0.7 V, 100 MHz differential clock 18 DIFF_0b O, DIF 0.7 V, 100 MHz differential clock 19 OE_0b I, PD Output enable for DIFF_0 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 20 OE_1b I, PD Output enable for DIFF_1 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 21 DIFF_1 O, DIF 0.7 V, 100 MHz differential clock 22 DIFF_1b O, DIF 0.7 V, 100 MHz differential clock 23 GND GND Ground 24 VDD PWR Power supply 25 VDD_IO PWR Output power supply 26 DIFF_2 O, DIF 0.7 V, 100 MHz differential clock 27 DIFF_2b O, DIF 0.7 V, 100 MHz differential clock 28 OE_2b I, PD Output enable for DIFF_2 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 29 OE_3b I, PD Output enable for DIFF_3 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 30 DIFF_3 O, DIF 0.7 V, 100 MHz differential clock 31 DIFF_3b O, DIF 0.7 V, 100 MHz differential clock 32 VDD_IO PWR Output power supply 33 GND GND Ground 34 DIFF_4 O, DIF 0.7 V, 100 MHz differential clock 35 DIFF_4b O, DIF 0.7 V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 37 OE_5b I, PD Output enable for DIFF_5 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 38 DIFF_5 O, DIF 0.7 V, 100 MHz differential clock 39 DIFF_5b O, DIF 0.7 V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND GND Ground 42 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 43 DIFF_6b O, DIF 0.7 V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_6 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 45 OE_7b I, PD Output enable for DIFF_7 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs silabs.com | Building a more connected world. Description I2C compatible SDATA Preliminary Rev. 0.7 | 44 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions Pin # Name Type 46 DIFF_7 O, DIF 0.7 V, 100 MHz differential clock 47 DIFF_7b O, DIF 0.7 V, 100 MHz differential clock 48 GND GND Ground 49 VDD_IO PWR Output power supply 50 DIFF_8 O, DIF 0.7 V, 100 MHz differential clock 51 DIFF_8b O, DIF 0.7 V, 100 MHz differential clock 52 OE_8b I, PD Output enable for DIFF_8 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 53 OE_9b I, PD Output enable for DIFF_9 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 54 DIFF_9 O, DIF 0.7 V, 100 MHz differential clock 55 DIFF_9b O, DIF 0.7 V, 100 MHz differential clock 56 VDD_IO PWR Output power supply 57 VDD PWR Power supply 58 GND GND Ground 59 DIFF_10 O, DIF 0.7 V, 100 MHz differential clock 60 DIFF_10b O, DIF 0.7 V, 100 MHz differential clock 61 OE_10b I, PD Output enable for DIFF_10 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 62 OE_11b I, PD Output enable for DIFF_11 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 63 DIFF_11 O, DIF 0.7 V, 100 MHz differential clock 64 DIFF_11b O, DIF 0.7 V, 100 MHz differential clock GND PAD GND silabs.com | Building a more connected world. Description Ground pad. This pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible. Preliminary Rev. 0.7 | 45 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions 37 DIFF_5 38 DIFF_5b 40 NC 39 OE_5b 41 VDD_IO 42 VDD 43 DIFF_6 44 DIFF_6b 45 OE_6b 46 OE_7b 47 DIFF_7 48 DIFF_7b 9.2 Si52208 Pin Descriptions VDDA 1 36 VDD_IO GNDA 2 35 NC SS_EN 3 34 OE_4b PWRGD/PWRDNb 4 33 DIFF_4b 32 DIFF_4 XIN/CLKIN 5 Si52208 XOUT 6 VDDX 31 VDD 7 VDDR 8 29 DIFF_3 REF / SA 9 28 OE_3b 30 DIFF_3b 27 NC VSSR 10 SDA 11 26 VDD_IO SCLK 12 DIFF_2b 24 DIFF_2 23 VDD_IO 22 VDD 21 DIFF_1b 20 DIFF_1 19 OE_1b 18 OE_0b 17 DIFF_0b 16 NC 14 DIFF_0 15 FS 13 25 OE_2b Figure 9.2. 48-pin QFN Pin Name Type 1 VDDA PWR Analog Power Supply 2 GNDA PWR Analog Ground 3 SS_EN I 4 PWRGD/PWRDNb I, PU 5 XIN/CLKIN I 25.00 MHz crystal input or 25 MHz Clock Input. 6 XOUT O 25.00 MHz crystal output. Float XOUT if using only CLKIN (Clock input). 7 VDDX PWR Power supply for crystal 8 VDDR PWR Power supply for REF output 9 REF /SA O/I 10 VSSR GND Power supply for crystal 11 SDA I/O I2C compatible SDATA 12 SCLK I I2C compatible SCLOCK 13 FS I Frequency select pin. 0 = 100 MHz, mid = 200 MHz, 1 = 133 MHz (This pin has an internal pull-down) 14 NC NC silabs.com | Building a more connected world. Description Spread spectrum enable pin. 0 = -0.25% spread, mid= Off, 1= -0.5% spread (This pin has an internal pull-up) Active low input pin asserts power down (PDb) and disables all outputs, except REF (This pin has an internal pull-up). Refer also to settings of Byte 2, Bit2 and Bit3 for REF. Settings for Bit3 (REF_OE) will take precedence for REF. REF = 25 MHz LVCMOS output. SA = Address select for I2C. When part is powered up, SA will be latched to select SM bus address. Refer to Table 6.1 No connect Preliminary Rev. 0.7 | 46 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions Pin Name Type 15 DIFF_0 O, DIF 0.7 V, 100 MHz differential clock 16 DIFF_0b O, DIF 0.7 V, 100 MHz differential clock 17 OE_0b I, PD Output enable for DIFF_0 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 18 OE_1b I, PD Output enable for DIFF_1 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 19 DIFF_1 O, DIF 0.7 V, 100 MHz differential clock 20 DIFF_1b O, DIF 0.7 V, 100 MHz differential clock 21 VDD PWR Power supply 22 VDD_IO PWR Output power supply 23 DIFF_2 O, DIF 0.7 V, 100 MHz differential clock 24 DIFF_2b O, DIF 0.7 V, 100 MHz differential clock 25 OE_2b I, PD Output enable for DIFF_2 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 26 VDD_IO PWR Output power supply 27 NC NC 28 OE_3b I, PD 29 DIFF_3 O, DIF 0.7 V, 100 MHz differential clock 30 DIFF_3b O, DIF 0.7 V, 100 MHz differential clock 31 VDD PWR 32 DIFF_4 O, DIF 0.7 V, 100 MHz differential clock 33 DIFF_4b O, DIF 0.7 V, 100 MHz differential clock 34 OE_4b I, PD 35 NC NC 36 VDD_IO PWR 37 DIFF_5 O, DIF 0.7 V, 100 MHz differential clock 38 DIFF_5b O, DIF 0.7 V, 100 MHz differential clock 39 OE_5b I, PD 40 NC NC 41 VDD_IO PWR Output power supply 42 VDD PWR Power supply 43 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 44 DIFF_6b O, DIF 0.7 V, 100 MHz differential clock 45 OE_6b I, PD Output enable for DIFF_6 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 46 OE_7b I, PD Output enable for DIFF_7 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs silabs.com | Building a more connected world. Description No connect Output enable for DIFF_3 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs Power supply Output enable for DIFF_4 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs No connect Output power supply Output enable for DIFF_5 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs No connect Preliminary Rev. 0.7 | 47 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions Pin Name Type 47 DIFF_7 O, DIF 0.7 V, 100 MHz differential clock 48 DIFF_7b O, DIF 0.7 V, 100 MHz differential clock GND PAD GND silabs.com | Building a more connected world. Description Ground pad. This pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible. Preliminary Rev. 0.7 | 48 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions DIFF_3b DIFF_3 25 26 NC OE_3b 28 27 NC VDD 30 29 GNDA VDDA 31 32 9.3 Si52204 Pin Descriptions SS_EN PWRGD/PWRDNb XIN/CLKIN 1 24 VDD_IO 2 23 3 22 XOUT VDDX 4 21 OE_2b DIFF_2b DIFF_2 20 NC VDDR REF / SA VSSR 6 19 VDD 7 18 8 17 DIFF_1b DIFF_1 16 15 14 12 13 11 FS DIFF_0 DIFF_0b OE_0b VDD_IO OE_1b 9 SDA SCLK 10 Si52204 5 Figure 9.3. 32-pin QFN Table 9.2. Si52204 32-pin QFN Descriptions Pin # Name Type Description 1 SS_EN I Spread spectrum enable pin. 0 = -0.25% spread; mid = Off; 1 = -0.5% spread (this pin has an internal pull-up). 2 PWRGD/ PWRDNb I, PU 3 XIN/CLKIN I 25.00 MHz crystal input or 25 MHz Clock Input. 4 XOUT O 25.00 MHz crystal output. Float XOUT if using only CLKIN (Clock input). 5 VDDX PWR Power supply for crystal 6 VDDR PWR Power supply for REF output 7 REF /SA O/I 8 VSSR GND 9 SDA I/O 10 SCLK I I2C compatible SCLOCK 11 FS I Frequency select pin. 0 = 100 MHz; mid = 200 MHz; 1 = 133 MHz (this pin has a internal pull-down) 12 DIFF_0 O, DIF 0.7 V, 100 MHz differential clock 13 DIFF_0b O, DIF 0.7 V, 100 MHz differential clock 14 OE_0b I, PD Output enable for DIFF_0 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 15 VDD_IO PWR Output power supply 16 OE_1b I, PD Output enable for DIFF_1 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 17 DIFF_1 O, DIF silabs.com | Building a more connected world. Active low input pin asserts power down (PDb) and disables all outputs, except REF (This pin has an internal pull-up). Refer also to settings of Byte 2, Bit2 and Bit3 for REF. Settings for Bit3 (REF_OE) will take precedence for REF. REF = 25 MHz LVCMOS output. SA = Address select for I2C. When part is powered up, SA will be latched to select SM bus address. Refer to Table 8.1 SA State on First Application of PWRGD/PWRDNb on page 29. Ground I2C compatible SDATA 0.7 V, 100 MHz differential clock Preliminary Rev. 0.7 | 49 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions Pin # Name Type 18 DIFF_1b O, DIF 19 VDD PWR 20 NC NC 21 DIFF_2 O, DIF 0.7 V, 100 MHz differential clock 22 DIFF_2b O, DIF 0.7 V, 100 MHz differential clock 23 OE_2b I, PD Output enable for DIFF_2 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 24 VDD_IO PWR Output power supply 25 DIFF_3 O, DIF 0.7 V, 100 MHz differential clock 26 DIFF_3b O, DIF 0.7 V, 100 MHz differential clock 27 OE_3b I, PD 28 NC NC 29 VDD PWR 30 NC NC 31 VDDA PWR Analog Power Supply 32 GNDA PWR Analog Ground GND PAD GND Ground pad. This pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible. silabs.com | Building a more connected world. Description 0.7 V, 100 MHz differential clock Power supply No connect Output enable for DIFF_3 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs No connect Power supply No connect Preliminary Rev. 0.7 | 50 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions DIFF_1 OE_1b 17 16 18 GND VDDA DIFF_1b 19 1 15 VDD_IO 2 14 12 OE_0b DIFF_0b DIFF_0 11 GND VDD SDA SCLK 13 10 5 9 VSSR SS_EN GND 4 6 VDDX 8 Si52202 3 7 PWRGD/PWRDNb XIN/CLKIN XOUT 20 9.4 Si52202 Pin Descriptions Figure 9.4. 20-pin QFN Table 9.3. Si52202 20-pin QFN Descriptions1 Pin # Name Type 1 PWRGD/ PWRDNb I, PU 2 XIN/CLKIN I 25.00 MHz crystal input or 25 MHz Clock Input. 3 XOUT O 25.00 MHz crystal output. Float XOUT if using only CLKIN (Clock input). 4 VDDX PWR Power supply for crystal 5 VSSR GND Ground 6 SDA I/O 7 SCLK I I2C compatible SCLOCK 8 SS_EN I Spread spectrum enable pin. 0 = -0.25% spread; mid = Off; 1 = -0.5% spread. (this pin has an internal pull-up) 9 GND GND Ground 10 VDD PWR Power supply 11 GND GND Ground 12 DIFF_0 O, DIF 0.7 V, 100 MHz differential clock 13 DIFF_0b O, DIF 0.7 V, 100 MHz differential clock 14 OE_0b I, PD Output enable for DIFF_0 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 15 VDD_IO PWR Output power supply 16 OE_1b I, PD Output enable for DIFF_1 pair (This pin has an internal pull-down). 0 = Enable outputs; 1 = Disable outputs 17 DIFF_1 O, DIF 0.7 V, 100 MHz differential clock 18 DIFF_1b O, DIF 0.7 V, 100 MHz differential clock 19 VDDA PWR silabs.com | Building a more connected world. Description Active low input pin asserts power down (PDb) and disables all outputs (This pin has an internal pull-up). I2C compatible SDATA Analog Power Supply Preliminary Rev. 0.7 | 51 Si52212/Si52208/Si52204/Si52202 Data Sheet Pin Descriptions Pin # Name Type Description 20 GND GND Ground GND PAD GND Ground pad. This pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible. Note: 1. Contact factory for 133/200M output frequencies. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 52 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10. Packaging 10.1 Si52212 Package The figure below illustrates the package details for the Si52212 in a 64-Lead 9 x 9 mm QFN package. The table lists the values for the dimensions shown in the illustration. Figure 10.1. 64L 9 x 9 mm QFN Package Diagram Table 10.1. Package Diagram Dimensions Dimension Min Nom Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 b 0.18 0.25 0.30 D D2 9.00 BSC 5.10 5.20 e 0.50 BSC E 9.00 BSC 5.30 E2 5.10 5.20 5.30 L 0.30 0.40 0.50 aaa 0.15 bbb 0.10 ccc 0.08 ddd 0.10 eee 0.05 silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 53 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging Dimension Min Nom Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC Outline MO-220. 4. Recommended card reflow profile is per JEDEC/IPC J-STD-020D specification for Small Body Components. 10.2 Si52212 Land Pattern The following figure illustrates the land pattern details for the Si52212 in a 64-Lead 9 x 9 mm QFN package. The table lists the values for the dimensions shown in the illustration. Figure 10.2. 64L 9 x 9 mm QFN Land Pattern silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 54 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging Table 10.2. PCB Land Pattern Dimensions Dimension mm C1 8.90 C2 8.90 E 0.50 X1 0.30 Y1 0.85 X2 5.30 Y2 5.30 Notes: General 1. All dimensions shown are in millimeters (mm). 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad. Stencil Design 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125 mm (5 mils). 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads. 4. A 3x3 array of 1.25 mm square openings on a 1.80 mm pitch should be used for the center ground pad. Card Assembly 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 55 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.3 Si52208 Package The figure below illustrates the package details for the Si52208 in a 48-Lead 6 x 6 mm QFN package. The table lists the values for the dimensions shown in the illustration. Figure 10.3. 48L 6 x 6 mm QFN Package Diagram Table 10.3. Package Diagram Dimensions Dimension Min Nom Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 b 0.15 0.20 0.25 D D2 6.00 BSC 3.5 3.6 e 0.40 BSC E 6.00 BSC 3.7 E2 3.5 3.6 3.7 L 0.30 0.40 0.50 aaa 0.10 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 56 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging Dimension Min Nom Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC Outline MO-220. 4. Recommended card reflow profile is per JEDEC/IPC J-STD-020 specification for Small Body Components. 10.4 Si52208 Land Pattern The figure below illustrates the land pattern details for the Si52208 in a 48-Lead, 6 x 6 mm QFN package. The table lists the values for the dimensions shown in the illustration. Figure 10.4. 48L 6 x 6 mm QFN Land Pattern silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 57 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging Table 10.4. PCB Land Pattern Dimensions Dimension mm C1 5.90 C2 5.90 X1 0.20 X2 3.60 Y1 0.85 Y2 3.60 e 0.40 BSC Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on IPC-7351 guidelines. 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad. Stencil Design 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125 mm (5 mils). 3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. 4. A 3x3 array of 0.90 mm square openings on 1.15mm pitch should be used for the center ground pad. Card Assembly 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 58 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.5 Si52204 Package The figure below illustrates the package details for the Si52204 in a 32-Lead, 5 x 5 mm QFN package. The table lists the values for the dimensions shown in the illustration. Figure 10.5. 32L 5 x 5 mm QFN Package Diagram silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 59 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging Table 10.5. Package Diagram Dimensions Dimension Min Nom Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 A3 0.20 REF b 0.18 0.25 0.30 D/E 4.90 5.00 5.10 D2/E2 3.40 3.50 3.60 E 0.50 BSC K 0.20 -- -- L 0.30 0.40 0.50 R 0.09 -- 0.14 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 60 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.6 Si52204 Land Pattern The figure below illustrates the land pattern details for the Si52204 in a 32-Lead, 5 x 5 mm QFN package. The table lists the values for the dimensions shown in the illustration. Figure 10.6. 32L 5 x 5 mm QFN Land Pattern Table 10.6. PCB Land Pattern Dimensions Dimension mm S1 4.01 S 4.01 L1 3.50 W1 3.50 e 0.50 W 0.26 L 0.86 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on IPC-7351 guidelines. Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad. Stencil Design 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125mm (5 mils). 3. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 4. A 3x3 array of 0.85 mm square openings on 1.00 mm pitch can be used for the center ground pad. Card Assembly 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 61 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.7 Si52202 Package The figure below illustrates the package details for the Si52202 in a 20-Lead, 3 x 3 mm QFN package. The table lists the values for the dimensions shown in the illustration. Figure 10.7. 20L 3 x 3 mm QFN Package Diagram silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 62 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging Table 10.7. Package Diagram Dimensions Dimension Min Nom Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 A3 -- 0.65 -- A3 b 0.20 REF 0.15 D D2 0.25 3.00 BSC 1.8 E E2 0.20 1.9 2.0 3.00 BSC 1.8 e 1.9 2.0 0.40 BSC K 0.20 -- -- L 0.20 0.30 0.40 R 0.075 -- 0.125 aaa 0.10 bbb 0.07 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. The drawing complies with JEDEC MO-220. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 63 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.8 Si52202 Land Pattern The figure below illustrates the land pattern details for the Si52202 in a 20-Lead, 3 x 3 mm QFN package. The table lists the values for the dimensions shown in the illustration. Figure 10.8. 20L 3 x 3 mm QFN Land Pattern silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 64 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging Table 10.8. PCB Land Pattern Dimensions Dimension mm C1 3.10 C2 3.10 X1 0.20 X2 1.90 Y1 0.70 Y2 1.90 e 0.40 BSC Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on IPC-7351 guidelines. 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad. Stencil Design 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125 mm (5 mils). 3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. 4. A 3x3 array of 0.90 mm square openings on 1.15 mm pitch should be used for the center ground pad. Card Assembly 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 65 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.9 Si52212 Top Markings Figure 10.9. Si52212 Top Marking Table 10.9. Si52212 Top Marking Explanation Line Characters Description 1 52212 Device part number 2 A01A Device part number 3 YYWWTTTTTT YY = Assembly year WW = Assembly work week TTTTTT = Manufacturing trace code 4 e# CC e# = Lead-finish symbol. # is a number CC = Country of origin (ISO abbreviation) silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 66 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.10 Si52208 Top Markings Figure 10.10. Si52208 Top Marking Table 10.10. Si52208 Top Marking Explanation Line Characters Description 1 52208 Device part number 2 A01A Device part number 3 TTTTTT TTTTTT = Manufacturing trace code 4 YYWW YY = Assembly year WW = Assembly work week silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 67 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.11 Si52204 Top Markings Figure 10.11. Si52204 Top Marking Table 10.11. Si52204 Top Marking Explanation Line Characters Description 1 52204 Device part number 2 A01A Device part number 3 TTTTTT TTTTTT = Manufacturing trace code 4 YYWW YY = Assembly year WW = Assembly work week silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 68 Si52212/Si52208/Si52204/Si52202 Data Sheet Packaging 10.12 Si52202 Top Markings Figure 10.12. Si52202 Top Marking Table 10.12. Si52202 Top Marking Explanation Line Characters Description 1 5220 Device part number 2 TTTT Manufacturing trace code 3 YWW Y = Assembly year WW = Assembly work week silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 69 Si52212/Si52208/Si52204/Si52202 Data Sheet Revision History 11. Revision History 11.1 Revision 0.7 September 20, 2017 * Initial Release. silabs.com | Building a more connected world. Preliminary Rev. 0.7 | 70 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW www.silabs.com/CBPro Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.(R) , Silicon Laboratories(R), Silicon Labs(R), SiLabs(R) and the Silicon Labs logo(R), Bluegiga(R), Bluegiga Logo(R), Clockbuilder(R), CMEMS(R), DSPLL(R), EFM(R), EFM32(R), EFR, Ember(R), Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember(R), EZLink(R), EZRadio(R), EZRadioPRO(R), Gecko(R), ISOmodem(R), Micrium, Precision32(R), ProSLIC(R), Simplicity Studio(R), SiPHY(R), Telegesis, the Telegesis Logo(R), USBXpress(R), Zentri, Z-Wave, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com