Data Sheet 1 V 2.0
www.infineon.com/sensors 2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensors
Features
Single and dual die sensor with AMR or GMR technology
Separate supply pins for top and bottom sensor
Low current consumption and quick start up
180°(AMR) and 360°(GMR) contactless angle measurement
Output amplitude optimized for circuits with 3.3 V or 5 V supply voltage
Immune to airgap variations due to MR based sensing principle
Automotive qualified Q100, Grade 1: -40°C to 125°C (ambient temperature)
Pre-amplified output signals for differential or single-ended applications
Diverse redundance combination of GMR sensor and AMR sensor in one package possible
High accuracy typically 0.1° overall angle error for AMR sensor
Green product (RoHS compliant)
Functional Safety
Safety Manual and Safety Analysis Summary Report available on request.
Product Validation
Developed for automotive applications. Product qualification according to AEC-Q100.
Potential Applications
The TLE5x0916(D) angle sensors are designed for angular position sensing in safety critical automotive and
non- automotive applications. Their high accuracy combined with short propagation delay make especially
the GMR sensor variants suitable for systems with high speeds and high accuracy demands such as brush-less
DC (BLDC) motors for actuators and electric power steering systems (EPS). The AMR sensor variants with their
typically accuracy of 0.1° fit for systems with high speeds and high accuracy demands such as pedals, levers
or brush-less DC (BLDC) motors with an even number of pole pairs. At the same time their fast start-up time
and low overall power consumption enables the device to be employed for low-power turn counting.
Extremely low power consumption can be achieved with power cycling, where the advantage of fast power on
time reduces the average power consumption. Potential applications are:
•BLDC motors
Pedals and rotary switches
Steering angle sensing
Valve or flap position sensing
Data Sheet 2 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Figure 1 A usual application for TLE5x09A16(D) is the electrically commutated motor
Description
The TLE5x0916(D) are angle sensor with analog outputs. They detect the orientation of a magnetic field by
measuring sine and cosine angle components with Magneto Resistive (MR) elements. The sensors provide
analog sine and cosine output voltages that describe the magnetic angle in a range of 0 to 180° (AMR sensor),
and 0 to 360° (GMR sensor), respectively. There are single die and dual die combinations with a Giant Magneto
Resistance (GMR) sensor for full 360° angle range or also an Anisotropic Magneto Resistance (AMR) sensor for
high precision in a top-bottom configuration in one package possible. The following derivatives of the
TLE5x09A16(D) sensor family are available:
Single die GMR: TLE5009A16
Dual die GMR: TLE5009A16D
Single die AMR: TLE5109A16
Dual die AMR: TLE5109A16D
Dual die AMR (bottom) / GMR (top): TLE5309D
The differential MR bridge signals are independent of the magnetic field strength to maintain constant output
voltage over a wide temperature and field range. The analog output is designed for differential or single-ended
applications and an internal temperature compensation is applied for higher accuracy.
The sensor is available as single die version (TLE5x09A16) and dual die version (TLE5x09A16D) for safety
applications that require redundancy. The two versions are pin-compatible for easy scalability. In the dual die
TLE5x09A16D, both sensor dies are supplied independently by separate supply and ground pins.
Table 1 TLE5009A16(D) Derivate ordering codes
Product Type Marking Ordering Code Package Description
TLE5009A16 E1200 09A11200 SP001285624 PG-TDSO-16 3.3 V, single die, without TCO1)
TLE5009A16 E1210 09A11210 SP001296110 PG-TDSO-16 3.3 V, single die, with TCO1)
TLE5009A16 E2200 09A12200 SP001296118 PG-TDSO-16 5.0 V, single die, without TCO1)
TLE5009A16 E2210 09A12210 SP001296114 PG-TDSO-16 5.0 V, single die, with TCO1)
TLE5009A16D E1200 09A21200 SP001285628 PG-TDSO-16 3.3 V, dual die, without TCO1)
TLE5009A16D E1210 09A21210 SP001296122 PG-TDSO-16 3.3 V, dual die, with TCO1)
Data Sheet 3 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
TLE5009A16D E2200 09A22200 SP001296126 PG-TDSO-16 5.0 V, dual die, without TCO1)
TLE5009A16D E2210 09A22210 SP001296130 PG-TDSO-16 5.0 V, dual die, with TCO1)
1) Temperature Compensation Offset.
Table 2 TLE5109A16(D) Derivate ordering codes
Product Type Marking Ordering Code Package Description
TLE5109A16 E1210 10911210 SP000956970 PG-TDSO-16 3.3 V, single die, with TCO1)
TLE5109A16 E2210 10912210 SP000956966 PG-TDSO-16 5.0 V, single die, with TCO1)
TLE5109A16D E1210 10921210 SP001496434 PG-TDSO-16 3.3 V, dual die, with TCO1)
TLE5109A16D E2210 10922210 SP001044230 PG-TDSO-16 5.0 V, dual die, with TCO1)
1) Temperature Compensation Offset.
Table 3 TLE5309D Derivate ordering codes
Product Type Marking Ordering Code Package Description
TLE5309D E1211 309D1211 SP001227880 PG-TDSO-16 3.3 V, dual die, AMR (bottom) and
GMR (top), with TCO1)
TLE5309D E2211 309D2211 SP001227888 PG-TDSO-16 5.0 V, dual die, AMR(bottom) and
GMR (top), with TCO1)
TLE5309D E5201 309D5201 SP001227884 PG-TDSO-16 5.0 V AMR (bottom), 3.3 V GMR
(top), dual die, without TCO1)
1) Temperature Compensation Offset.
Table 1 TLE5009A16(D) Derivate ordering codes (cont’d)
Product Type Marking Ordering Code Package Description
Data Sheet 4 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Functional Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Product Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Dual die angle output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Sensor specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Error diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Electrostatic discharge protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Electro magnetic compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Package parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table of Contents
Data Sheet 5 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Functional description
1 Functional description
1.1 General
The Magneto Resistive (MR) sensors are implemented using vertical integration. This means that the MR
sensitive areas are integrated above the analog portion of the ICs. These MR elements change their resistance
depending on the direction of the magnetic field.
On each sensor, four individual MR elements are connected in a Wheatstone bridge arrangement. Each MR
element senses one of two components of the applied magnetic field:
•X component, Vx (cosine) or the
•Y component, Vy (sine)
The advantage of a full-bridge structure is that the amplitude of the MR signal is doubled and temperature
effects cancel out.
GMR Sensor
Figure 2 Sensitive bridges of the GMR sensor
Note: In Figure 2, the arrows in the resistors symbolize the direction of the reference layer. The size of the
sensitive areas is greatly exaggerated for better visualization.
With the trigonometric function ARCTAN2, the true 360° angle value that is represented by the relation of X and
Y signals can be calculated according to Equation (1).
(1)
The ARCTAN2 function is a microcontroller library function which resolves an angle within 360° using the x and
y coordinates on a unit circle.
NS
V
DD
GNDADC
X
+
GMR Resistors
ADC
X
-ADC
Y
+ADC
Y
-
V
X
V
Y
90°
α = arctan2(V
x
,V
y
)
Data Sheet 6 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Functional description
Figure 3 Ideal output of the GMR sensor bridges
V
Angle α
90° 180° 270° 360°
V
X
(COS_P)
Y Component (SIN)
V
Y
(SIN_P)
V
Y
V
X
X Component (COS)
V
Y
(SIN_N)
V
X
(COS_N)
90°
Data Sheet 7 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Functional description
AMR sensor
Figure 4 Sensitive bridges of the AMR sensor
Note: In Figure 4, the size of the sensitive areas is greatly exaggerated for better visualization.
With the trigonometric function ARCTAN2, the true 180° angle value that is represented by the relation of X and
Y signals can be calculated according to Equation (2). The AMR sensing element internally measures the
double angle, so the result has to be divided by 2. At external magnetic angles α between 180° and 360°, the
angle measured by the sensor is α - 180°.
(2)
Figure 5 Ideal output of the AMR sensor bridges
NS
90°
Cos
+
V
DD
Cos
-
Sin
+
Sin
-
GND
V
Y
V
X
α = arctan2(Vx,Vy) / 2
V
Angle α
90° 180°
V
X
(COS_P)
V
Y
(SIN_P)V
Y
(SIN_N)
V
X
(COS_N)
45° 135°
V
MV
Data Sheet 8 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Functional description
1.2 Pin configuration
The sensitive area is located at the center of the chip.
Figure 6 Pin configuration (top view)
1.3 Pin description
The top die is defined as die 1 and the bottom die as die 2. Single die sensors use the top die only.
Table 4 Pin description
Pin No. Pin Name In/Out TLE5x09A16 - Function TLE5x09A16D - Function
1V
DIAG1 O Die 1 bridge voltage proportional to
temperature. Diagnostic function
Die 1 bridge voltage proportional to
temperature. Diagnostic function
2V
DD1 Die 1 Supply voltage Die 1 Supply voltage
3 SIN_N1 O Die 1 Analog negative sine output Die 1 Analog negative sine output
4 SIN_P1 O Die 1 Analog positive sine output Die 1 Analog positive sine output
5 SIN_P2 O Not connected Die 2 Analog positive sine output
6 SIN_N2 O Not connected Die 2 Analog negative sine output
7V
DD2 Not connected Die 2 Supply voltage
8V
DIAG2 O Not connected Die 2 bridge voltage proportional to
temperature. Diagnostic function
9 GND2 Not connected Die 2 Ground
10 GND2 Not connected Die 2 Ground
11 COS_N2 O Not connected Die 2 Analog negative cosine output
12 COS_P2 O Not connected Die 2 Analog positive cosine output
13 COS_P1 O Die 1 Analog positive cosine output Die 1 Analog positive cosine output
14 COS_N1 O Die 1 Analog negative cosine output Die 1 Analog negative cosine output
15 GND1 Die 1 Ground Die 1 Ground
16 GND1 Die 1 Ground Die 1 Ground
Data Sheet 9 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Functional description
1.4 Block diagram
Figure 7 TLE5x09A16(D) block diagram example: TLE5309D sensor with die 1 GMR- and die 2 AMR-
sensing technology
Y-GMR
X-GMR Amplifier
Amplifier
DC-Offset &
Fuses
GMR_COS_P
GMR_V
DD
GMR_COS_N
GMR_SIN_P
GMR_SIN_N
GMR_GND1
GMR_V
DIAG
GMR_GND2
PMU & Temperature Compensation
Y-AMR
X-AMR Amplifier
Amplifier
DC-Offset &
Fuses
AMR_COS_P
AMR_V
DD
AMR_COS_N
AMR_SIN_P
AMR_SIN_N
AMR_GND1
AMR_V
DIAG
AMR_GND2
PMU & Temperature Compensation
TLE 5309 D
#1
GMR Sensor
(top, close to upper surface )
#2
AMR Sensor (bottom )
TLE 5009 (GMR)
TLE5109 (AMR)
Data Sheet 10 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Functional description
1.5 Dual die angle output
The TLE5x09A16(D) comprises one MR-based angle sensor IC mounted on the top and one MR-based angle
sensor IC mounted on the bottom of a package lead frame in a flipped configuration, so the positions of the
sensitive elements in the package-plane coincide. This mounting technique ensures a minimum deviation of
the magnetic field orientation sensed by the two chips.
Due to the flipped mounting, the two GMR ICs for the TLE5009A16D sense opposite rotation directions. This
behavior is illustrated in Figure 8, which shows the angle calculated from the output of the two dies,
respectively, for a given external magnetic field orientation.
Figure 8 TLE5009A16D Dual die angle output
The TLE5109A16D consists of two AMR ICs sense opposite rotation directions. This behavior is illustrated in
Figure 9, which shows the angle calculated from the output of the two dies, respectively, for a given external
magnetic field orientation.
Figure 9 TLE5109A16D Dual die angle output
90° 180° 270° 360 °
90°
180 °
270 °
360°
GMR sensor die 1
GMR sensor die 2
external magnetic field angle
sensor output angle
90° 180° 270° 360°
90°
180°
AMR1 sensor output
AMR2 sensor output
external magnetic field angle
sensor output angle
AMR2 sensor output
(SIN inverted)
Data Sheet 11 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Functional description
The bottom sensor element of the TLE5309D is an AMR sensor, the signal of which is only unambiguous over
180°. Therefore, in the angle range of 180° to 360° of the GMR sensor, the AMR sensor output signal will be in a
range of 0° to 180° again. This behavior is illustrated in Figure 10, which shows the angle calculated according
to Equation (1) and Equation (2) from the output of the GMR and AMR sensors, respectively, for a given
external magnetic field orientation.
If in an application a different output of the two sensors is desired, the connections to the SIN_N and SIN_P or
COS_N and COS_P pins on the printed circuit board can be interchanged. The consequence of this change of
connections is that either the differential sine or the cosine signal are inverted, which corresponds to a change
of rotation direction (see dashed line in Figure 9 and Figure 10).
Figure 10 TLE5309D Dual die angle output
Attention: The positioning accuracy of each sensor IC in the package is ±3°. In addition, the sensor
technology dependent offset of the magnetization must be considered in the overall angle
offset. With a GMR sensor the non-orthogonality error can be in worst case +/-12° according to
specification for each die. For AMR this effect is negligible. The non-orthogonality error means
the deviation of the 90°-phase correlation from X- and Y-phase. The resulting angle error
offsets for AMR and GMR dies are listed in Table 5. Both effects can be compensated by an end-
of-line calibration including the definition of the zero-phase or X-reference direction. The angle
error offsets are not included in the angular accuracy in Table 11 and Table 12.
Table 5 Angle error offset without end-of-line calibration
AMR GMR
Rotational displacement die to
package
+/-3° +/-3°
Magnetization error on die +/-0° +/-12°
Overall error +/-3° +/-15°
90° 180° 270° 360 °
90°
180 °
270 °
360°
GMR sensor output
AMR sensor output
external magnetic field angle
sensor output angle
AMR sensor output
(SIN inverted)
Data Sheet 12 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
2 Specification
2.1 Application circuit
The TLE5x09A16(D) sensor can be used in single-ended or differential output mode. Figure 11 shows a typical
application circuit for the TLE5x09A16(D) in single-ended output mode using the positive output channels. For
single-ended operation the positive or negative output channels can be used. Unused single-ended output
pins should preferably be floating or connected to GND with a high-ohmic resistance (> 100 kΩ). The
TLE5x09A16(D) has separate supply pins for the GMR sensor and the AMR sensor. The microcontroller
comprises up to 10 A/D inputs used to receive the sensor output signals in differential output mode, illustrated
in Figure 12. For reasons of EMC and output filtering, the following RC low pass arrangement is
recommended. The RC low pass has to be adapted according to the applied rotation speed. 1)
Attention: Unused output pins should not be connected.
Figure 11 Application circuit for the TLE5x09A16(D) in single-ended output mode; positive output
channels used
1) E. g. the RC low pass with R=2.15kΩ and C=47nF is appropriate for a rotation speed up to 10,000 rpm.
TLE5x09A16D
Channel 1
100nF
VDD1
GND1
SIN_P1
SIN_N1
COS_P1
COS_N1
VDIAG1
GND1
VDD1
μController
GND1
4.7nF
GND1 GND1
GND1
Channel 2
100nF
VDD2
GND2
SIN_P2
SIN_N2
COS_P2
COS_N2
VDIAG2
GND2
VDD2
GND2
47nF 47nF
2.15kΩ
2.15kΩ
4.7nF
GND2 GND2
GND2
47nF 47nF
2.15kΩ
2.15kΩ
*) Not used single-ended output pins should be floating. Another option is connected to GND with a high-ohmic resistance (>100kΩ)
*)
*)
*)
*)
Data Sheet 13 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
Figure 12 Application circuit for the TLE5x09A16(D) in differential output mode
Application circuit for low-power consumption (e.g. turn counter)
Applications that use electric motors and actuators may require a turn counter function. A turn counter
function allows to keep track of the electric motor or actuator position with low-power consumption. During
operation the sensor is powered on, therefore the angle information is constantly available and, if necessary,
stored. But when the system is not in operation the sensor is powered off to save power consumption,
therefore rotational movements are not detected. To avoid missing the position the sensor can be awaked
periodically to obtain the angle information. The minimum length of the awake time must cover the
TLE5x09A16(D) power-up time (described in Table 8) and the required time to transmit the data, which is also
dependent on the application circuit.
An optimal TLE5309D application circuit for systems with turn counter function is shown in Figure 13 for
single-ended output respectively in Figure 14 for differential output. The AMR sensor is used for high precise
angle measurement in normal operation and the GMR sensor for turn counter function. With a lower resistor
and capacitor design the low-pass filter time constant can be adapted for high speed applications. Therefore,
the time needed to supply the TLE5309D with power in order to read the output signal is considerably
reduced.
TLE5x09A16D
Channel 1
100nF
VDD1
GND1
SIN_P1
SIN_N1
COS_P1
COS_N1
VDIAG1
GND1
VDD1
μController
GND1
4.7nF
GND1 GND1
GND1
Channel 2
100nF
VDD2
GND2
SIN_P2
SIN_N2
COS_P2
COS_N2
VDIAG2
GND2
VDD2
GND2
47nF 47nF
2.15kΩ
2.15kΩ
4.7nF
GND2 GND2
GND2
47nF 47nF
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
GND2
47nF
GND2
47nF
GND1
47nF
GND1
47nF
Data Sheet 14 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
Figure 13 Application circuit for the TLE5309D in low-power applications in single-ended output
mode (e.g. turn counter); positive output channels used
Figure 14 Application circuit for the TLE5309D in low-power applications in differential output mode
(e.g. turn counter)
Pull-down resistors for partial diagnostics
It is also possible to use pull-down resistors to get partial diagnostics. With this setting it is not required to use
the VDIAG pin. The application circuit with pull-down resistors is shown in Figure 15 for single-ended output
respectively in Figure 16 for differential output. For further details please refer to the Safety Manual.
TLE5309D
100nF
μController
100nF
47nF 47nF
47nF 47nF
ASIC
(for turn
counter)
*) VDIAG is an output pin and can be floating. Another option is connected to GND with a high-ohmic resistance (e.g. 100kΩ)
*)
*)
**) Not used single-ended output pins should be floating. Another option is connected to GND with a high-ohmic resistance (>100kΩ)
**)
**)
**)
**)
AMR
AMR VDD
AMR GND
AMR GND
AMR SIN_P
AMR SIN_N
AMR COS_P
AMR COS_N
AMR VDIAG
GMR
GMR VDD
GMR GND
GMR SIN_P
GMR SIN_N
GMR COS_P
GMR COS_N
GMR VDIAG
GMR GND
GMR
GND
GMR
GND
GMR VDD
AMR VDD
GMR GND
AMR GND
AMR
GND
AMR
GND
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
TLE5309D
100nF
μController
100nF
47nF 47nF 47nF 47nF
47nF 47nF 47nF 47nF
ASIC
(for turn
counter)
*) VDIAG is an output pin and can be floating. Another option is connected to GND with a high-ohmic resistance (e.g. 100kΩ)
*)
*)
AMR
AMR VDD
AMR GND
AMR GND
AMR SIN_P
AMR SIN_N
AMR COS_P
AMR COS_N
AMR VDIAG
GMR
GMR VDD
GMR GND
GMR SIN_P
GMR SIN_N
GMR COS_P
GMR COS_N
GMR VDIAG
GMR GND
GMR
GND
GMR
GND
GMR
GND
GMR
GND
GMR VDD
AMR VDD
GMR GND
AMR GND
AMR
GND
AMR
GND
AMR
GND
AMR
GND
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
Data Sheet 15 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
Figure 15 Application circuit for the TLE5x09A16(D) for partial diagnostics with pull-down resistors in
single-ended output mode; positive output channels used
Figure 16 Application circuit for the TLE5x09A16(D) for partial diagnostics with pull-down resistors in
differential output mode
TLE5x09A16D
Channel 1
100nF
VDD1
GND1
SIN_P1
SIN_N1
COS_P1
COS_N1
VDIAG1
GND1
VDD1
μController
GND1
GND1 GND1
Channel 2
100nF
VDD2
GND2
SIN_P2
SIN_N2
COS_P2
COS_N2
VDIAG2
GND2
VDD2
GND2
47nF 47nF
2.15kΩ
2.15kΩ
GND1 GND1
*)
*)
**) VDIAG is an output pin and can be floating. Another option is connected to GND with a high-ohmic resistance (e.g. 100kΩ)
**)
GND2 GND2
47nF 47nF
2.15kΩ
2.15kΩ
GND2 GND2
*)
*)
**)
*) 100kΩ < R < 500kΩ
***)
***)
***)
***)
***) Not used single-ended output pins should be floating. Another option is connected to GND with a high-ohmic resistance (>100kΩ)
TLE5x09A16D
Channel 1
100nF
VDD1
GND1
SIN_P1
SIN_N1
COS_P1
COS_N1
VDIAG1
GND1
VDD1
μController
GND1
GND1 GND1 GND1 GND1
Channel 2
100nF
VDD2
GND2
SIN_P2
SIN_N2
COS_P2
COS_N2
VDIAG2
GND2
VDD2
GND2
47nF 47nF 47nF 47nF
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
GND1 GND1 GND1 GND1
*)
*)
*)
*)
**) VDIAG is an output pin and can be floating. Another option is connected to
GND with a high-ohmic resistance (e.g. 100kΩ)
**)
GND2 GND2 GND2 GND2
47nF 47nF 47nF 47nF
2.15kΩ
2.15kΩ
2.15kΩ
2.15kΩ
GND2 GND2 GND2 GND2
*)
*)
*)
*)
**)
*) 100kΩ < R < 500kΩ
Data Sheet 16 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
2.2 Absolute maximum ratings
Attention: Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the device.
Table 6 Absolute maximum ratings
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Supply voltage VDD -0.5 6.5 V Max. 40 h over lifetime
Ambient temperature1)
1) Assuming a thermal resistance of the sensor assembly in the application of 150 K/W or less.
TA-40 140 °C
Magnetic field induction |B| 200 mT Max. 5 min. at TA = 25°C
150 mT Max. 5 h at TA = 25°C
Data Sheet 17 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
2.3 Sensor specification
The following operating conditions must not be exceeded in order to ensure correct operation of the
TLE5x09A16(D).
All parameters specified in the following sections refer to these operating conditions, unless otherwise noted.
Table 7 is valid for -40°C < TA < 125°C and through the TLE5x09A16(D) lifetime. Parameters are valid for AMR
and GMR sensor, unless otherwise noted.
2.3.1 Operating range
Table 7 Operating range
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Ambient temperature1)
1) Assuming a thermal resistance of the sensor assembly in the application of 150 K/W or less.
TA -40 125 °C
Supply voltage GMR2)
2) Supply voltage VDD buffered with 100 nF ceramic capacitor in close proximity to the sensor.
VDD, GMR 3.0 3.3 3.6 V E1200, E1210, E1211, E5201
4.5 5 5.5 V E2200, E2210, E2211
Supply voltage AMR2) VDD, AMR 3.0 3.3 3.6 V E1210, E1211
4.5 5 5.5 V E2210, E2211, E5201
Output current3)4)
3) Not subject to production test - verified by design/characterization.
4) Assuming a symmetrical load.
IQ0 0.5 mA COS_N; COS_P; SIN_N; SIN_P
00.1mAVDIAG
Load capacitance3)5)
5) Directly connected to the pin.
CL0 4.7 nF All output pins - without series
resistor
Magnetic induction
GMR1)3)6)7)
6) Values refer to a homogenous magnetic field (BXY) without vertical magnetic induction (BZ = 0 mT).
7) Min/Max values for magnetic field for intermediate temperatures can be obtained by linear interpolation.
BXY 24 60 mT In X/Y direction, at TA = 25°C
26 100 mT In X/Y direction, at TA = -40°C
21 50 mT In X/Y direction, at TA = 125°C
Magnetic induction AMR3)6) BXY 20 mT in X/Y direction, tested up to 500 mT
quasi-static
Angle range α 0 360 ° (AMR is 180°-periodic, see
Chapter 1.5)
Rotation speed3)8)
8) Typical angle propagation delay error is 1.62° at 30,000 rpm.
n 30,000 rpm
150,000 rpm No signal degradation observed in lab
Data Sheet 18 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
2.3.2 Electrical parameters
The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical
values correspond to the specified supply voltage range and 25°C, unless individually specified. All other
values correspond to -40°C < TA < 125°C and through the TLE5x09A16(D) lifetime.
2.3.3 Output parameters
All parameters apply over the full operating range, unless otherwise specified. The parameters in Table 9 refer
to single pin output and Table 10 to differential output. For variable names please refer to Figure 17 “GMR
sensor single-ended output signals” on Page 20 and Figure 19 “GMR differential output of ideal cosine”
on Page 21.
The following equations describe various types of errors that combine to the overall angle error.
The maximum and zero-crossing of the SIN and COS signals do not occur at the precise angle of 90°. The
difference between the X and Y phases is called the orthogonality error. In Equation (3) the angle at zero
crossing of the X COS output is subtracted from the angle at the maximum of the Y SIN output, which describes
the orthogonality of X and Y.
(3)
The amplitudes of SIN and COS signals are not equal to each other. The amplitude mismatch is defined as
synchronism, shown in Equation (4). This value could also be described as amplitude ratio mismatch.
(4)
Table 8 Electrical parameters
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Supply current GMR IDD 7 10.5 mA Without load on output pins
Supply current AMR 6 9.5 mA Without load on output pins
POR level VPOR 2.3 2.65 2.97 V Power-On Reset
POR hysteresis1)
1) Not subject to production test - verified by design/characterization.
VPORhy 50 mV
Power-On time2)
2) Time measured at chip output pins.
tPON 40 70 µs Settling time to 90% of full output
voltages
Temperature reference
voltage
VDIAG 0.5 1.05 2.0 V Temperature proportional
output voltage; available on pin
VDIAG
Diagnostic function VDIAG 00.39VDiagnostic for internal errors;
available on pin VDIAG
Temperature coefficient of
VDIAG1)
TCVDIAG 0.4 %/K
Y
X
A
A
k*100=
Data Sheet 19 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
The sensor outputs 4 single-ended signals SIN_N, SIN_P, COS_N, and COS_P, which are centered at the
voltage offset 0.5*VDD. The differential signals are calculated from the single-ended signals. The differential
voltages for X or Y are defined in Equation (5).
(5)
The maximum amplitudes for the differential signals are centered at 0 V and defined for X or Y as given in
Equation (6):
(6)
Differential offset is of X or Y is defined in Equation (7).
(7)
In single-ended mode the offset is defined as the mean output voltage and equals typically 0.5*VDD. For
further details please refer to the application note “TLE5xxx(D) Calibration”.
Table 9 Single-ended output parameters over temperature and lifetime
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
X, Y amplitude AX, AY0.7 1.3 V Sensors with 3.3 V supply
1.2 1.95 V Sensors with 5.0 V supply
X, Y synchronism k94 100 106 % GMR
94 100 106 % AMR
X, Y orthogonality error φ -12 12 ° GMR (AMR negligible)
Mean output voltage VMVX, VMVY 0.47*VDD 0.5*VDD 0.53*VDD VVMV=(Vmax+Vmin)/21)
1) Vmax and Vmin correspond to the voltage levels at Xmax or Ymax and Xmin or Ymin respectively as shown in Figure 17,
Figure 18.
X,Y cut off frequency2)
2) Not subject to production test - verified by design/characterization
fc30 kHz -3 dB attenuation
X,Y delay time2)3)
3) Time measured at chip output pins.
tadel s
Output noise2) VNoise 5mVRMS
SINNSINPYdiff
COSNCOSPXdiff
VVV
VVV
=
=
(
)
()
2
2
__
__
MINdiffMAXdiff
Ydiff
MINdiffMAXdiff
Xdiff
YY
A
XX
A
=
=
(
)
()
2
2
__
__
MINdiffMAXdiff
Ydif f
MINdiffMAXdiff
Xdiff
YY
O
XX
O
+
=
+
=
Data Sheet 20 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
Figure 17 GMR sensor single-ended output signals
Figure 18 AMR sensor single-ended output signals
0 45 90 135 180 225 270 315 360
Angle [°]
GMR (X, Y Output Characteristic)
V_SIN_P V_MVY V_MVX V_ CO S _ P
X
0
X
MAX
Y
MAX
φ
A
X
X
MIN
A
Y
Y
MIN
V
DD
Data Sheet 21 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
Figure 19 GMR differential output of ideal cosine
Table 10 Differential output parameters over temperature and lifetime
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
X, Y amplitude AXdiff, AYdiff 1.4 2.6 V Sensors with 3.3 V supply
2.4 3.9 V Sensors with 5.0 V supply
X, Y synchronism k94 100 106 % GMR
94 100 106 % AMR
X, Y orthogonality error φ -12 12 ° GMR (AMR negligible)
X, Y offset OXdiff, OYdiff -100 0 100 mV GMR
-200 0 200 mV AMR
X,Y cut-off frequency1)
1) Not subject to production test - verified by design/characterization.
fc30 kHz -3 dB attenuation
X,Y delay time1)2)
2) Time measured at chip output pins.
tadel s
Output noise1) VNoise 5mVRMS
Data Sheet 22 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
Figure 20 AMR differential output of ideal cosine
Attention: The misalignment of the magnetization depends on the sensing technology. With a GMR sensor
the non-orthogonality error can be in worst case +/-12° according to specification for each die.
For AMR this effect is negligible. The non-orthogonality error, which means the deviation of the
90°-phase correlation from X- and Y-phase, can be compensated through an end-of-line
calibration including the definition of the zero-phase or X-reference direction. This applies to
each sensor die and has to be taken into account during operation of the TLE5x09A16(D).
Data Sheet 23 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
2.4 Error diagnosis
Each sensor provides two functions at its VDIAG pin. During normal operation the voltage measured at this pin
is temperature dependent. The typical voltage at room temperature and the temperature coefficient are given
in Table 8. The temperature accuracy is not part of the sensor qualification.
The second purpose of pin VDIAG is the diagnosis functionality. In case the device detects an internal error, the
pin is driven to a low level. Another option for obtaining partial diagnostic functions is the alternative
configuration with pull-down resistors described in Figure 16. With this setting, it is not required to use the
VDIAG pin, but internal error detection is also reduced. For further details please refer to the Safety Manual.
2.5 Angle performance
The overall angle error represents the relative angular error. This error describes the deviation from the
reference line after zero angle definition. The typical value corresponds to an ambient temperature of 25°C. All
other values correspond to the operating ambient temperature range -40°C < TA < 125°C and through the
TLE5x09A16(D) lifetime.
Fully compensated performance
Using the algorithm described in the application note “TLE5xxx(D) Calibration”, it is possible to implement
an ongoing automatic calibration on the microcontroller to greatly improve the performance of the
TLE5x09A16(D), as temperature and lifetime drifts are better compensated. This is only possible in
applications where a rotor is turning continuously.
With this auto calibration algorithm, it is possible to reach an angular accuracy as good as the residual error
of the sensing elements, which means the remaining error after perfect compensation of offset and amplitude
synchronicity mismatch for both the AMR and the GMR sensors and perfect compensation of orthogonality
error for the GMR sensor. A typical behavior of a fully compensated angle error with this ongoing calibration is
shown in Figure 21 for the GMR sensor and Figure 22 for the AMR sensor for different ambient temperatures.
The accuracy of the fully compensated angle is listed in Table 11, which is divided into single-ended and
differential output of the sensor.
Table 11 Residual angle error over temperature and lifetime1)
1) After perfect compensation of offset, amplitude synchronicity mismatch and orthogonality error.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Overall angle error AMR sensor
(single-ended)2)3)
2) Including hysteresis error.
3) Assuming a symmetrical load.
αERR,C 0.1 0.5 ° 4)
4) For AMR sensor only: an additional angle error of 0.2° applies to operation in the magnetic field 10 mT < B < 20 mT
Overall angle error AMR sensor
(differential)2)
αERR,C 0.1 0.5 ° 4)
Overall angle error GMR sensor
(single-ended)2)3)
αERR,C < 0.6 0.9 °
Overall angle error GMR sensor
(differential)2)
αERR,C < 0.6 0.9 °
Data Sheet 24 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
Angle performance with one-time calibration
To achieve the overall angle error specified, both sensor ICs in the TLE5x09A16(D) have to be calibrated for
offset and amplitude synchronism at 25°C. Additionally, the GMR sensor has to be calibrated for orthogonality.
The compensation parameters have to be stored and applied on the microcontroller. For the detailed
calibration procedure refer to the application note “TLE5xxx(D) Calibration”. Table 12 characterizes the
accuracy of the angle, which is calculated from the single-ended output respectively the differential output of
the sensor and the compensation parameters acquired in the end-of-line calibration.
Typical behaviour of angle error compensation
The angle accuracy performance for ideal compensation and one-time compensation is listed in Table 11
respectively in Table 12. Figure 21 shows for the GMR sensor and Figure 22 for the AMR sensor the typical
behavior of the residual angle error with ongoing respectively one-time calibration at different ambient
temperatures. The comparison of this compensation algorithms demonstrates the superior performance of
the full compensation method over lifetime and temperature with an average residual error below 0.6° for the
GMR sensor and 0.1° for the AMR sensor operating in the specified magnetic field. With one-time
compensation an additional residual angle error occurs due to the temperature dependency of the sensor.
Table 12 One-time calibrated angle error over temperature and lifetime
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Overall angle error AMR
sensor (single-ended)1)2)
1) Including hysteresis error.
2) Assuming a symmetrical load.
αERR 1.7 ° E1210, E1211, E2210, E2211, with TCO3); 4)
3) Temperature Compensation Offset.
4) For AMR sensor only: an additional angle error of 0.2° applies to operation in the magnetic field 10 mT < B < 20 mT.
2.9 ° E5201, without TCO3); 4)
Overall angle error AMR
sensor (differential)1)
αERR 1.7 ° E1210, E1211, E2210, E2211, with TCO3); 4)
2.9 ° E5201, without TCO3); 4)
Overall angle error GMR
sensor (single-ended)1)2)
αERR 4.0 ° E1210, E1211, E2210, E2211, with TCO3)
4.8 ° E1200, E2200, E5201, without TCO3)
Overall angle error GMR
sensor (differential)1)
αERR 3.0 ° E1210, E1211, E2210, E2211, with TCO3)
3.8 ° E1200, E2200, E5201, without TCO3)
Data Sheet 25 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
Figure 21 Typical residual angle error of fully and one-time compensated GMR sensor for differential
output at different temperatures (measured at 0 h); one-time compensation is calibrated at
T = 25°C and B = 40 mT; TLE5309D derivative with TCO1) and 3.3 V supply voltage is used
Figure 22 Typical residual angle error of fully and one-time compensated AMR sensor for differential
output at different temperatures (measured at 0 h); one-time compensation is calibrated at
T = 25°C and B = 40 mT; TLE5309D derivative with TCO1) and 3.3 V supply voltage is used
1) Temperature Compensation Offset
0
0.2
0.4
0.6
0.8
1
20 40 60 80
Residual error (°)
magnetic induction (mT)
Fully compensated
25°C
-40°C
125°C
0
0.2
0.4
0.6
0.8
1
20 40 60 80
Residual error (°)
magnetic induction (mT)
One-time compensated
25°C
-40°C
125°C
0
0.1
0.2
0.3
0.4
0.5
0.6
20 40 60 80
Residual error (°)
magnetic induction (mT)
Fully compensated
25°C
-40°C
125°C
0
0.1
0.2
0.3
0.4
0.5
0.6
20 40 60 80
Residual error (°)
magnetic induction (mT)
One-time compensated
25°C
-40°C
125°C
Data Sheet 26 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Specification
2.6 Electrostatic discharge protection
2.7 Electro magnetic compatibility (EMC)
The TLE5x09A16(D) is characterized according to the EMC requirements described in the “Generic IC EMC Test
Specification” Version 1.2 from November 15, 2007. The classification of the TLE5x09A16(D) is done for local
pins.
Table 13 ESD protection for single die
Parameter Symbol Values Unit Notes
min. max.
ESD voltage VHBM ±4.0 kV 1)
1) Human Body Model (HBM) according to: ANSI/ESDA/JEDEC JS-001.
VCDM ±0.5 kV 2)
2) Charged Device Model (CDM) according to: JESD22-C101.
±0.75 kV 2) for corner pins
Table 14 ESD protection for dual die
Parameter Symbol Values Unit Notes
min. max.
ESD voltage VHBM ±4.0 kV 1) Ground pins connected.
1) Human Body Model (HBM) according to ANSI/ESDA/JEDEC JS-001.
±2.0 kV 1)
VCDM ±0.5 kV 2)
2) Charged Device Model (CDM) according to JESD22-C101.
±0.75 kV 2) For corner pins.
Data Sheet 27 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Package information
3 Package information
The TLE5x09A16(D) is delivered in a green SMD package with lead-free plating, the same PG-TDSO-16 is used
for the single die and the dual die derivates.
3.1 Package parameters
3.2 Package outlines
Figure 23 Package dimensions
Table 15 Package parameters
Parameter Symbol Limit Values Unit Notes
min. typ. max.
Thermal Resistance RthJA 130 150 K/W Junction-to-Air1)
1) According to Jedec JESD51-7
RthJC 35 K/W Junction-to-Case
RthJL 70 K/W Junction-to-Lead
Moisture Sensitivity Level MSL 3 260°C
Lead Frame Cu
Plating Sn 100% > 7 µm
Data Sheet 28 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Package information
Figure 24 Position of sensing element
Note: Figure 24 shows the positioning of the two sensor dies in the TLE5x09A16D. In the TLE5x09A16, only
the top die is mounted.
Attention: The positioning accuracy of each sensor IC in the package is ±3°. Thus, the relative rotation of
the two sensor ICs can be up to 6°, resulting in a constant offset of the angle output of up to 6°.
Additionally, the misalignment due to magnetization resulting in the orthogonality error
(listed in Table 9 and Table 10) has to be added to the overall angle offset, listed in Table 5.
With a GMR sensor the orthogonality error can be in worst case +/-12° according to
specification for each die. For AMR this effect is negligible. These effects have to be measured
in an end-of-line calibration and taken into account during operation of the TLE5x09A16(D).
Table 16 Sensor IC placement tolerances in package
Parameter Values Unit Notes
Min. Max.
Position eccentricity -100 100 µm In X- and Y-direction
Rotation -3 3 ° Affects zero position offset of sensor
Tilt -3 3 °
0.2
0.2
Data Sheet 29 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Package information
Figure 25 Tolerance of the die in the package
3.3 Footprint
Figure 26 Footprint
3.4 Packing
Figure 27 Tape and reel
z
Tilt angle
Reference plane
y
x
Rotational
displacement
Package
Chip
x
Die pad Chip
1.55 ±0.05
Do
W
4.0 ±0.1(II)
Po
1.75 ±0.1
E1
F(III)
Ao
P1
1.50
0.00
+0.20
D1
R0.3
TYPICAL
3.50
6.05
2.0 ±0.05(I)
P2
YY
XX
0.30 ±0.05
T
Bo
K1
SECTION Y-Y
Ko
1.10
SECTION X-X
+/- 0.1
Bo
+/- 0.1
6.30
Ao
12.00
8.00
+0.3/- 0.1
+/- 0.1
5.50 +/- 0.05
P
F
W
Other material available.(IV)
(III)
(II)
(I)
hole to centreline of pocket.
Measured from centreline of sprocket
holes is ± 0.20 .
Cumulative tolerance of 10 sprocket
to centreline of pocket.
Measured from centreline of sprocket hole
1
5.45
+/- 0.1
1.60
Ko
+/- 0.1
1.30
1
K
Data Sheet 30 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Package information
3.5 Marking
The device is marked on the frontside with a date code, the device type and a lot code.
On the backside there is a 8 x 18 data matrix code and an OCR-A code.
Figure 28 Marking
Position Marking Description
1st Line Gxxxx G = green, 4-digit = date code
2nd Line 309Dxxxx Type (8 digits), see ordering Table 3
3rd Line xxx Lot code (3 digits)
Data Sheet 31 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Revision history
4 Revision history
Revision Date Changes
1.0 2016-01 TLE5309D
Initial release
1.0 2016-06 TLE5009A16D
Initial release
1.1 2017-04 TLE5009A16(D)
Table 1: single die types added.
Table 2: single die pin description added.
Chapter 3: Table 6 splitted in single-ended and differential output parameters, type
description replaced by VDD value.
Figure 8 added (Single-ended output signals).
Table 8: single-ended fully compensated angle error added.
Table 9: single-ended angle error added.
Chapter 3: Typical behavior of angle error compensation added.
Figure 13: Typical residual angle error for full and one-time compensation added.
Chapter 3: ESD protection splitted in single and dual die.
Figure 15 added (Marking).
Layout changed.
1.2 2017-10 TLE5009A16(D)
Chapter References removed.
Table 2: Pin description changed.
Figure 7: Application circuit in single-ended output mode added.
Figure 9: Application circuit for partial diagnostics with pull-down resistors in
single-ended output mode added.
Figure 10: Application circuit for partial diagnostics with pull-down resistors in
differential output mode added.
Table 6: single-ended output noise changed.
Data Sheet 32 V 2.0
2018-12
TLE5x09A16(D)
Analog AMR/GMR Angle Sensor
Revision history
1.1 2017-10 TLE5309D
Layout changed.
Table 8: single-ended angle error added.
Table 9: single-ended angle error added.
Figure 19: Typical residual angle error for full and one-time compensation GMR
sensor added.
Figure 20: Typical residual angle error for full and one-time compensation AMR
sensor added.
Chapter References removed.
Pin description: Symbol changed to Pin Name.
Figure 9: Application circuit in single-ended output mode added.
Figure 11: Application circuit in low-power applications in single-ended output
mode added.
Figure 13: Application circuit for partial diagnostics with pull-down resistors in
single-ended output mode added.
2.0 2018-12 TLE5x09A16(D) family sensor datasheet released
Changes TLE5009A16(D) rev. 1.2 to TLE5x09A16(D) rev. 2.0:
Chapter 2.4 Error diagnosis: internal detectable errors removed.
Table 9 differential mode: vector length removed.
Figure 25: die displacement added.
TLE5109A16(D) - initial release in TLE5x09A16(D) rev. 2.0
Changes TLE5309D rev. 1.1 to TLE5x09A16(D) rev. 2.0:
Table 6: Magnetic induction AMR added.
Chapter 2.4 Error diagnosis: internal detectable errors removed.
Table 8 single-ended: AMR synchronism to +/- 6 % changed.
Table 9 differential mode: AMR synchronism to +/- 6 % changed.
Table 9 differential mode: vector length removed.
Table 10: footnote angle error adder at low magnetic field for AMR added.
Table 11: footnote angle error adder at low magnetic field for AMR added.
Table 11: AMR single-ended one-time calibrated angle error improved.
Figure 25: die displacement added.
Revision Date Changes
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-12
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.
Please read the Important Notice and Warnings at the end of this document