SPECIFICATION Device Name : IGBT - IPM Type Name : 6MBP150RTJ060 Spec. No. : MS6M 0677 Fuji Electric Co.,Ltd. Matsumoto Factory Jan.29 ` 03 N.Matsuda Jan.29 ` 03 Nishiura T.Fujihira Jan. 29` 03 K.Yamada http://store.iiic.cc/ MS6M 0677 a 1 22 H04-004-07 Revised Records Date Classification Jan. 29' 03 enactment May . 19' 03 Revision Ind. Content Applied date Issued date a Reliability Test Items Drawn N.Matsuda N.Matsuda MS6M 0677 http://store.iiic.cc/ Checked A.Nishiura K.Yamada T.Miyasaka K.Yamada Approved T.Fujihira T.Fujihira a 2 22 H04-004-06 a 1. Package Outline Drawings Package type : P621 1 3 .8 0.3 1 09 1 95 0.3 6 6 .4 4 1 0 0.2 10 6 0.15 6 0.15 2 0.3 3 . 2 2 0.3 0.2 1 0 0.2 1 2 0.25 6 0.15 2 0.1 4 - 5 .5 1 10 7 4 0.3 20 N V U 0.5 17 W 0.5 24 26 26 1 9 - 0 .5 2- 2.5 9 +0.6 3 1-0.3 22 17 +1.0 8 -0.2 17 Lot No. Indication of Lot No. 2 0.1 2 0.1 3.22 0.3 2 0.1 2 2 0.1 max 2 Odered No. in monthly Manufactured month (Jan.Sep.:19,Oct.:O,Nov.:N,Dec.:D) Last digit of manufactured year 4.5 2.5 (11.5) 10 8 0.3 0.5 1 22 +1.0 -0.3 12.5 7 6-M5 (12) 88 P +1.0 -0.3 1 20 B Details of control terminals Dimensions in mm MS6M 0677 http://store.iiic.cc/ a 3 22 H04-004-03 2. Pin Descriptions Main circuit Symbol Description P Positive input supply voltage. U Output (U). V Output (V). W Output (W). N Negative input supply voltage. B No contact. Control circuit No Symbol Description 1 GNDU High side ground (U). 2 ALMU Alarm signal output (U). 3 VinU Logic input for IGBT gate drive (U). 4 VccU High side supply voltage (U). 5 GNDV High side ground (V). 6 ALMV Alarm signal output (V). 7 VinV Logic input for IGBT gate drive (V). 8 VccV High side supply voltage (V). 9 GNDW High side ground (W). 10 ALMW Alarm signal output (W). 11 VinW Logic input for IGBT gate drive (W). 12 VccW High side supply voltage (W). 13 GND Low side ground. 14 Vcc Low side supply voltage. 15 VinDB No contact. 16 VinX Logic input for IGBT gate drive (X). 17 VinY Logic input for IGBT gate drive (Y). 18 VinZ Logic input for IGBT gate drive (Z). 19 ALM Low side alarm signal output. MS6M 0677 http://store.iiic.cc/ a 4 22 H04-004-03 3. Block Diagram P VccU 4 VinU 3 Pre - Driver ALMU 2 R ALM 1.5k Vz GNDU 1 VccV 8 VinV 7 U Pre - Driver ALMV 6 R ALM 1.5k Vz GNDV 5 VccW 12 VinW 11 ALMW 10 V Pre - Driver R ALM 1.5k Vz GNDW 9 Vcc 14 VinX 16 W Pre - Driver Vz GND VinY 13 17 Pre - Driver Vz VinZ 18 Pre - Driver Vz B NC VinDB 15 N ALM 19 Ov er heating protection circuit RALM 1.5k Pre-drivers include following functions 1.Amplifier for driver 2.Short circuit protection 3.Under voltage lockout circuit 4.Over current protection 5.IGBT chip over heating protection a MS6M 0677 http://store.iiic.cc/ 5 22 H04-004-03 4. Absolute Maximum Ratings Tc=25C unless otherwise specified. Items Symbol Min. Max. Units VDC 0 450 V VDC(surge) 0 500 V Vsc 200 400 V Vces 0 600 V DC Ic - 150 A 1ms Icp - 300 A Duty=68.2% *2 -Ic - 150 A Pc - 431 W Supply Voltage of Pre-Driver *4 Vcc -0.5 20 V Input Signal Voltage *5 Vin -0.5 Vcc+0.5 V Input Signal Current Iin - 3 mA Alarm Signal Voltage *6 VALM -0.5 Vcc V Alarm Signal Current *7 ALM - 20 mA Tj - 150 C Operating Case Temperature Topr -20 100 C Storage Temperature Tstg -40 125 C Viso - AC2500 V - - 3.5 Nm Bus Voltage DC (between terminal P and N) Surge Short operating Inverter Collector-Emitter Voltage *1 Collector Current Collector Power Dissipation One transistor *3 Junction Temperature Isolating Voltage (Terminal to base, 50/60Hz sine wave 1min.) Screw Torque Terminal (M5) Mounting (M5) Note *1 : Vces shall be applied to the input voltage between terminal P and U or or W, N and U or V or W . *2 : 125C/FWD Rth(j-c)/(IcxVF MAX)=125/0.47/(150x2.6)x100=68.2% *3 : Pc=125C/IGBT Rth(j-c)=125/0.29=431W [Inverter] *4 : VCC shall be applied to the input voltage between terminal No.4 and 1, 8 and 5, 12 and 9, 14 and 13. *5 : V shall be applied to the input voltage between terminal No.3 and 1, 7 and 5, 11 and 9, 16,17,18 and 13. *6 : shall be applied to the voltage between terminal No.2 and 1, No6 and 5, No10 and 9, No.19 and 13. *7 : shall be applied to the input current to terminal No.2,6,10 and 19. MS6M 0677 http://store.iiic.cc/ a 6 22 H04-004-03 5. Electrical Characteristics Tj=25C, Vcc=15V unless otherwise specified. 5.1 Main circuit Item Collector Current Inverter at off signal input Collector-Emitter saturation voltage Forward voltage of FWD Conditions Symbol ICES VCE(sat) VF =600V Min. Typ. Max. Units - - 1.0 mA - - 2.3 - 1.8 - V - - 2.6 - 1.6 - V Vin terminal open. I =150A Terminal Chip -I =150A Terminal Chip Turn-on time ton VDC=300V, Tj=125C 1.2 - - Turn-off time toff Ic=150A Fig.1, Fig.6 - - 3.6 Reverse recovery time trr - - 0.3 170 - - mJ Min. Typ. Max. Units - - 18 mA - - 65 mA ON 1.00 1.35 1.70 OFF 1.25 1.60 1.95 - 8.0 - 1.1 - - - 2.0 - - - 4.0 1425 1500 1575 VDC=300V s IF=150A Fig.1, Fig.6 internal wiring Maximum AvalancheEnergy PAV (A non-repetition) inductance=50nH Main circuit wiring inductance=54nH 5.2 Control circuit Item Supply current of P-side pre-driver (one unit) Supply current Conditions Symbol Iccp Iccn Switching Frequency : 0~15kHz Tc=-20~125C Fig.7 of N-side pre-driver Input signal threshold voltage Input Zener Voltage Vin(th) Vz Rin=20k Tc=-20C Alarm Signal Hold Time tALM Tc=25C Tc=125C Current Limit Resistor Fig.2 Fig.2 Fig.2 RALM Alarm terminal V V ms a MS6M 0677 http://store.iiic.cc/ 7 22 H04-004-03 5.3 Protection Section (Vcc=15V) Item Symbol Over Current Protection Level Conditions Min. Typ. Max. Units Ioc Tj=125C 225 - - A Over Current Protection Delay time tdoc Tj=125C - 5 - s SC Protection Delay time tsc Tj=125C Fig.4 - - 8 s IGBT Chips Over Heating TjOH 150 - - C - 20 - C 110 - 125 C of Inverter circuit Surface Protection Temperature Level of Over Heating Protection Hysteresis IGBT Chips TjH Over Heating Protection TcOH VDC=0V, Ic=0A Protection Temperature Level Case Temperature Over Heating Protection Hysteresis TcH - 20 - C Under Voltage Protection Level VUV 11.0 - 12.5 V VH 0.2 0.5 - Symbol Min. Typ. Max. Units IGBT Rth(j-c) - - 0.29 C/W FWD Rth(j-c) - - 0.47 Case to Fin Thermal Resistance with Compound Rth(c-f) - 0.05 - Min. Typ. Max. Units 2.0 - - kV 5.0 - - kV Symbol Min. Typ. Max. Units DC Bus Voltage VDC - - 400 V Power Supply Voltage of Pre-Driver Vcc 13.5 15.0 16.5 V - 2.5 - 3.0 Nm Symbol Min. Typ. Max. Units Wt - 450 - g Under Voltage Protection Hysteresis 6. Thermal Characteristics (Tc=25C) Item Junction to Case Inverter Thermal Resistance *8 *8 : ( For 1device , Case is under the device ) 7. Noise Immunity (Vdc=300V, Vcc=15V, Test Circuit Fig 5.) Conditions Item Common mode rectangular noise Common mode lightning surge Pulse width 1us,polarity ,10 minuets Judge : no over-current, no miss operating Rise time 1.2us,Fall time 50s Interval 20s,10 times Judge : no over-current, no miss operating 8. Recommended Operating Conditions Item Screw Torque (M5) 9. Weight Item Weight a MS6M 0677 http://store.iiic.cc/ 8 22 H04-004-03 1 ff Figure 1. Switching Time Waveform Definitions off /Vin Vge (Inside IPM) Fault (Inside IPM) off on Gate On on Gate Off normal alarm /ALM tALMMax. tALMMax. tALM 2ms(typ.) FaultOver-current,Over-heat or Under-voltage Figure 2. Input/Output Timing Diagram Necessary conditions for alarm reset (refer to to in figure2.) This represents the case when a failure-causing Fault lasts for a period more than tALM. The alarm resets when the input Vin is OFF and the Fault has disappeared. This represents the case when the ON condition of the input Vin lasts for a period more than tALM. The alarm resets when the Vin turns OFF under no Fault conditions. This represents the case when the Fault disappears and the Vin turns OFF within tALM. The alarm resets after lasting for a period of the specified time tALM. off /Vin on on Ioc Ic /ALM tdoc alarm tdoc Figure 3. Over-current Protection Timing Diagram Period : When a collector current over the OC level flows and the OFF command is input within a period less than the trip delay time tdoc, the current is hard-interrupted and no alarm is output. Period : When a collector current over the OC level flows for a period more than the trip delay time tdoc, the current is soft-interrupted. If this is detected at the lower arm IGBTs, an alarm is output. MS6M 0677 http://store.iiic.cc/ a 9 22 H04-004-03 tSC Ic Ic IALM Ic IALM IALM Figure.4 Definition of tsc 20k DC 15V VinU CT P VccU IPM U SW1 AC200V GNDU Vcc V VinX W + 20k DC 15V 4700p SW2 Noise N GND Earth Cooling Fin Figure 5. Noise Test Circuit Vcc P 20k DC 15V L IPM + Vin DC 300V HCPL4504 GND N Ic Figure 6. Switching Characteristics Test Circuit Icc DC 15V A Vcc P IPM P.G +8V fsw Vin U V W GND N Figure 7. Icc Test Circuit MS6M 0677 http://store.iiic.cc/ a 10 22 H04-004-03 10. Truth table 10.1 IGBT Control The following table shows the IGBT ON/OFF status with respect to the input signal Vin. TheI GBTt ur nonwhenVi ni sat" Low"l ev el undernoal ar mc ondi t i on. Input (Vin) Output (IGBT) Low ON High OFF 10.2 Fault Detection (1) When a fault is detected at the high side, only the detected arm stops its output. Att hatt i met heI PM dos en' tanyal ar m. (2) When a fault is detected at the low side, all the lower arms stop their outputs and the IPM outputs an alarm of the low side. Fault High side Uphase High side Vphase High side Wphase Low side Case IGBT Alarm Output U-phase V-phase W-phase Low side ALM-U ALM-V ALM-W ALM OC OFF * * * L H H H UV OFF * * * L H H H TjOH OFF * * * L H H H OC * OFF * * H L H H UV * OFF * * H L H H TjOH * OFF * * H L H H OC * * OFF * H H L H UV * * OFF * H H L H TjOH * * OFF * H H L H OC * * * OFF H H H L UV * * * OFF H H H L TjOH * * * OFF H H H L TcOH * * * OFF H H H L Temperature *Depend on input logic. MS6M 0677 http://store.iiic.cc/ a 11 22 H04-004-03 11. Cautions for design and application 1. Trace routing layout should be designed with particular attention to least stray capacity between the primary and secondary sides of optical isolators by minimizing the wiring length between the optical isolators and the IPM input terminals as possible. 2. Mount a capacitor between Vcc and GND of each high-speed optical isolator as close to as possible. Vcc-GND 3. For the high-speed optical isolator, use high-CMR type one with tpHL, tpLH 0.8s. tpHL,tpLH0.8usCMR 4. For the alarm output circuit, use low-speed type optical isolators with CTR 100%. CTR100% 5. For the control power Vcc, use four power supplies isolated each. And they should be designed to reduce the voltage variations. Vcc 6. Suppress surge voltages as possible by reducing the inductance between the DC bus P and N, and connecting some capacitors between the P and N terminals. P-NP-N 7. To prevent noise intrusion from the AC lines, connect a capacitor of some 4700pF between the three-phase lines each and the ground. AC 8. At the external circuit, never connect the control terminal GNDU to the main terminal U-phase, GNDV to V-phase, GNDW to W-phase, and GND to N-phase. Otherwise, malfunctions may be caused. VVWW N 9. Takenot et hatanopt i c ali s ol at or ' sr esponset ot hepr i mar yi nputsi gnalbec omess l ow if a capacitor is connected between the input terminal and GND. -GND a MS6M 0677 http://store.iiic.cc/ 12 22 H04-004-03 10. Tak i ngt heusedi sol at or ' sCTRi nt oaccount ,desi gnwi t has uf f i c i ental l owancet odeci de the primary forward current of the optical isolator. CTR 11. Apply thermal compound to the surfaces between the IPM and its heat sink to reduce the thermal contact resistance. 12. Finish the heat sink surface within roughness of 10m and flatness (camber) between screw positions of 0 to +100m. If the flatness is minus, the heat radiation becomes worse due to a gap between the heat sink and the IPM. And, if the flatness is over +100m, there is a danger that the IPM copper base may be deformed and this may cause a dielectric breakdown. 10um +100m 0 0100um IPM Heat sink 100um Mounting holes 13. This product is designed on the assumption that it applies to an inverter use. Sufficient examination is required when applying to a converter use. Please contact Fuji Electric Co.,Ltd if you would like to applying to converter use. 14. Please see the Fuji IGBT-IPM R SERIES APPLICATION MANUAL and Fuji IGBT MODULES N SERIES APPLICATION MANUAL. IGBT-IPM R IGBT N MS6M 0677 http://store.iiic.cc/ a 13 22 H04-004-03 12. Example of applied circuit 20 k P +01 IF 0 .1 u F Vc c U 5 V A C 2 00 V uF + V 1k W uF B N 20 k IF 0 .1 u F +01 Vc c 5 V 1k 20k IF 0 .1 u F Vc c +01 uF 5 V 1k IPM Vc c IF IF IF 2 0k 0 .1 u F 01 2 0 k 0 .1 u F 01 2 0 k 0 .1 u F 01 uF uF uF 5 V 1k The alarm signal should be connected to Vcc when it it is not used. Vcc 13. Package and Marking Please see the MT6M4140 which is packing specification of P610 & P611 & P621 package 14. Cautions for storage and transportation Store the modules at the normal temperature and humidity (5 to 35C, 45 to 75%). (5354575%) Avoid a sudden change in ambient temperature to prevent condensation on the module surfaces. Avoid places where corrosive gas generates or much dust exists. Store the module terminals under unprocessed conditions . Avoid physical shock or falls during the transportation. 15. Scope of application This specification is applied to the IGBT-IPM (type: 6MBP150RTJ060). IGBT-IPM (6MBP150RTJ060) 16. Based safety standards UL1557 MS6M 0677 http://store.iiic.cc/ a 14 22 H04-004-03 17.Characteristics 17-1.Control Circuit Characteristics(Respresentative) P ower sup ply current vs. Switching frequency Tc=1 25C Input signal thresh old voltage vs. P ower sup ply voltag e 2.5 P-side N-side 60 Inp u t s ig na l thresho ld voltag e : Vin(on ),Vin (off) (V) Pow er su p pl y c u rre nt : Icc (mA) 70 Vcc=17V 50 Vcc= 15V 40 Vcc=13V 30 20 Vcc= 17V Vcc= 15V Vcc= 13V 10 0 2 } Vin(off) 1 0.5 5 10 15 20 Switching frequency : fs w (k Hz) 25 12 18 1 Un de r voltage h ys te ris is : VH (V) 14 12 10 8 6 4 2 0 20 13 14 15 16 17 Power supply voltag e : Vcc (V) Under voltage hysterisis vs. Jnction tem perature Under voltage vs. Junc tion temp erature Un d er voltag e : VUVT (V) } Vin(on) 1.5 0 0 0.8 0.6 0.4 0.2 0 40 60 80 100 120 140 20 Ju nc tion temperatu re : Tj (C) O ver h ea tin g protec tio n :TcO H , TjO H ( C ) O H hy st erisis :Tc H, TjH (C ) 3 40 60 80 100 120 Ju nc tion temperatu re : Tj (C) 140 Over heatin g characteristics TcO H,TjO H,TcH,TjH vs. Vc c Alarm hold tim e vs. P ower sup ply voltag e Alarm h old time : tALM (m Se c) Tj=25C Tj= 125C 200 2.5 Tc= 100 C 150 2 Tc=25C 1.5 TcO H 100 1 0.5 0 12 TjO H 13 14 15 16 17 18 Power supply voltag e : Vcc (V) 50 TcH,TjH 0 12 13 14 15 MS6M 0677 http://store.iiic.cc/ 16 17 18 Power supply voltag e : Vcc (V) a 15 22 H04-004-03 17-2.Main Circuit Characteristics (Representative) Collector curren t vs . Collec tor-Em itter voltag e Tj=25 C(Chip) 240 240 Vcc=15V Vcc= 17V 200 Vcc= 15V Vcc=17V Vc c=13V Collector Cu rre nt : Ic (A) Collector Cu rren t : Ic (A) Collector current vs . Collec tor-Em itter voltage Tj=25C(Term inal) 160 120 80 40 200 Vc c= 13V 160 120 80 40 0 0 0 0.5 1 1.5 2 2.5 3 3.5 0 Collector-Em itter voltage : Vce (V) Vc c= 13V 160 120 80 40 2.5 3 3.5 Vcc=15V Vcc=17V 200 Vcc= 13V 160 120 80 40 0 0 0 0.5 1 1.5 2 2.5 3 3.5 0 Collector-Em itter voltage : Vce (V) 0.5 1 1.5 2 2.5 3 3.5 Collector-Em itter voltage : Vce (V) Forward current vs. Forward voltage (Chip) Forward current vs. Forward voltag e (Term inal) 300 300 250 Fo rw ard Cu rren t : If (A) 250 Forward Cu rrent : If (A) 2 240 Col lecto r Cu rrent : Ic (A) Collector Cu rren t : Ic (A) Vcc=17V 1.5 Collector curren t vs . Collec tor-Em itter voltage Tj=125 C(Term inal) Vc c=15V 200 1 Collector-Em itter voltage : Vce (V) Collector current vs . Collec tor-Em itter voltage Tj=125 C(Chip) 240 0.5 125 C 25C 200 150 100 125C 150 100 50 50 0 0 0 0.5 1 1.5 2 2.5 Forw ard vol tage : Vf (V) 0 0.5 1 1.5 2 2.5 Forw ard vol tage : Vf (V) MS6M 0677 http://store.iiic.cc/ 25C 200 a 16 22 H04-004-03 Switching Loss vs. Collector Current Edc=300V,V cc=15V,Tj=1 25C 16 14 Eon 12 10 8 6 Eoff 4 2 E rr 0 0 60 120 180 25 Eon 20 15 10 Eoff 5 E rr 0 240 0 60 180 240 Collec tor current : Ic (A) Reversed b iased safe operating area Vc c=1 5V,Tj 125C Transient therm al resistance Th erma l resis ta nc e : R th (j-c) (C /W ) 300 200 RBS OA(Repetitive pulse) 100 0 1 FWD IGB T 0.1 0.01 0 100 200 300 400 500 600 0.001 700 0.01 0.1 1 Pu lse width :Pw (sec) Collector-Em itter voltag e : Vce (V) Power d eratin g for IG BT (per device) Power derating for FW D (per device) 500 300 Colle cter Power D issip ation : P c (W ) Colle cter Power D issip ation : P c (W ) 120 Coll ec tor current : Ic (A) 400 Col lector cu rren t : Ic (A) Switch in g loss : Eo n ,Eoff,Err (m J/cycle) Switch in g loss : Eo n,Eo ff ,Err (m J/cy cle) Switching Loss vs. Collector Current Edc =30 0V,Vcc =15 V,Tj=25C 400 300 200 100 0 250 200 150 100 50 0 0 20 40 60 80 100 120 140 160 Case Tem p erature : Tc (C) 0 20 40 60 80 MS6M 0677 http://store.iiic.cc/ 100 120 140 160 Case Temperature : Tc (C) a 17 22 H04-004-03 Switching tim e vs. Collec tor current Edc=300 V,V cc=15V,Tj=1 25C Switching tim e vs. Collec tor current Edc =30 0V,Vcc=15 V,Tj=25C 10000 Switch in g tim e : ton ,toff,tf (n Sec) Switch in g tim e : ton ,toff,tf (n Sec) 10000 ton toff 1000 100 tf 10 ton toff 1000 100 tf 10 0 50 100 150 200 Col lector cu rrent : Ic (A) 250 0 50 100 150 200 250 Col lector cu rrent : Ic (A) Revers e recovery characteris tic s trr,Irr vs.IF R eve rse rec overy cu rre n t:Irr(A) Reverse recovery time:trr(n sec) trr125C trr25 C 100 Irr125C Irr25 C 10 1 0 50 100 150 200 250 Forw ard cu rren t:IF(A) MS6M 0677 http://store.iiic.cc/ a 18 22 H04-004-03 a 18. Reliability Test Items Test categories Test items 1 Terminal strength Test methods and conditions Pull force : 40 N (main terminal) M ec hani c al T es t s (Pull test) 2 Mounting Strength 3 Vibration E n v i ro n m e n t T e s t s Reference norms EIAJ ED-4701 5 (1:0) 5 (1:0) 5 (1:0) 5 (1:0) 5 (1:0) Test Method 201 5 (1:0) Test Method 202 5 (1:0) Test Method 103 5 (1:0) 5 (1:0) Test Method 105 5 (1:0) Test Method 307 5 (1:0) Test Method 402 method Test Method 403 Condition code B Test Method 404 Condition code B Test Method 303 Condition code A Test Method 302 Condition code A Test code C Test Method 103 Test code E method Condition code A +5 : : : : (1:0) Method Test time : Screw torque : Test time : Range of frequency : Sweeping time : Acceleration : 100 m/s2 Sweeping direction : Each X,Y,Z axis Test time : 6 hr. (2hr./direction) 4 Shock Maximum acceleration : 5000 m/s2 Pulse width 1.0 ms Direction : Each X,Y,Z axis Test time : 3 times/direction 5 Solderabitlity Solder temp. : 235 5 Immersion duration : 5.0 0.5 sec. Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 6 Resistance to Solder temp. : 260 5 soldering heat Immersion time : 10 1sec. Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 1 High temperature Storage temp. : 125 5 storage Test duration : 1000 hr. 2 Low temperature Storage temp. : -40 5 storage Test duration : 1000 hr. 3 Temperature Storage temp. : 85 2 humidity storage Relative humidity : 85 5% Test duration : 1000hr. 4 Unsaturated Test temp. : 120 2 pressure cooker Atmospheric pressure : 1.7x105 Pa : 85 5% Test humidity Test duration : 96 hr. 5 Temperature Test temp. : Minimum storage temp. -40 5 cycle Maximum storage temp. 125 5 Normal temp. 5 ~ 35 Dwell time : Tmin ~ TN ~ Tmax ~ TN 1hr. 0.5hr. 1hr. 0.5hr. Number of cycles : 100 cycles 6 Thermal shock +0 Test temp. : High temp. side 100 -5 Fluid used Dipping time Transfer time Number of cycles 5 Test Method 401 10 N (control terminal) 10 1 sec. 2.5 ~ 3.5 Nm (M5) 10 1 sec. 10500 Hz 15 min. AcceptNumber ance of sample number Low temp. side 0 -0 Pure water (running water) 5 min. par each temp. 10 sec. 10 cycles MS6M 0677 http://store.iiic.cc/ a 19 22 H04-004-03 a Endurance Endurance Tests Tests Test categories Test items Reference norms EIAJ ED-4701 Test methods and conditions 1 High temperature reverse bias 2 Temperature humidity bias Test temp. Bias Voltage Bias Method Test duration Test temp. Relative humidity Bias Voltage Bias Method Test duration ON time OFF time Test temp. 3 Intermitted operating life (Power cycle) Number of cycles : Ta = 125 5 (Tj 150 ) : VC = 0.8xVCES : Applied DC voltage to C-E Vcc = 15V : 1000 hr. : 85 2 : 85 5 % : VC = 0.8xVCES Vcc = 15V : Applied DC voltage to C-E : 1000 hr. : 2 sec. : 18 sec. : Tj=100 5deg Tj 150 , Ta=25 5 : 15000 cycles AcceptNumber ance of sample number Test Method 101 5 (1:0) Test Method 102 5 (1:0) 5 (1:0) Condition code C Test Method 106 19. Failure Criteria Item Characteristic Symbol Electrical Leakage current ICES characteristic Saturation voltage VCE(sat) Forward voltage VF Thermal IGBT th(j-c) resistance FWD th(j-c) Over Current Protection Ioc Alarm signal hold time tALM Over heating Protection TcOH Isolation voltage Viso Visual Visual inspection inspection Peeling Plating and the others Failure criteria Unit Lower limit Upper limit Note USLx2 mA USLx1.2 V USLx1.2 V USLx1.2 /W USLx1.2 /W LSLx0.8 USLx1.2 LSLx0.8 USLx1.2 ms LSLx0.8 USLx1.2 Broken insulation The visual sample - LSL : Lower specified limit. USL : Upper specified limit. Note : Each parameter measurement read-outs shall be made after stabilizing the components at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests. And in case of the wetting tests, for example, moisture resistance tests, each component shall be made wipe or dry completely before the measurement. MS6M 0677 http://store.iiic.cc/ a 20 22 H04-004-03 Warnings 1. This product shall be used within its absolute maximum rating (voltage, current, and temperature). This product may be broken in case of using beyond the ratings. 2. Connect adequate fuse or protector of circuit between three-phase line and this product to prevent the equipment from causing secondary destruction. 3. When studying the device at a normal turn-off action, make sure that working paths of the turn-off voltage and current are within the RBSOA specification. And ,when studying the device duty at a short-circuit current non-repetitive interruption, make sure that the paths are also within the avalanche proof(PAV) specification which is calculated from the snubber inductance, the IPM inner inductance and the turn-off current. In case of use of IGBT-IPM over these specifications, it might be possible to be broken. RBSOA (PAV) 4. Use this product after realizing enough working on environment and considering of product's reliability life. This product may be broken before target life of the system in case of using beyond the product's reliability life. 5. If the product had been used in the environment with acid, organic matter, and corrosive gas (For example : hydrogen sulfide, sulfurous acid gas), the product's performance and appearance can not be ensured easily. 6. The thermal stress generated from rise and fall of Tj restricts the product lifetime. Yous houl des t i mat et heTj f r om powerl os s esandt her mal r es i s t anc e,anddes i gnt hei nver t erl i f et i me within the number of cycles provided from the power cycle curve. (Technical Rep. No.: MT6M4057) Tj (MT6M4057) 7. Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor contact problem. MS6M 0677 http://store.iiic.cc/ a 21 22 H04-004-03 8. Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor contact problem. 9. If excessive static electricity is applied to the control terminals, the devices can be broken. Implement some countermeasures against static electricity. Caution 1. Fuji Electric is constantly making every endeavor to improve the product quality and reliability. However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents causing injury or death, damage to property like by fire, and other social damage resulted from a failure or malfunction of the Fuji Electric semiconductor products, take some measures to keep safety such as redundant design, spread-fire-preventive design, and malfunction-protective design. 2. The application examples described in this specification only explain typical ones that used the Fuji Electric products. This specification never ensure to enforce the industrial property and other rights, nor license the enforcement rights. 3. The product described in this specification is not designed nor made for being applied to the equipment or systems used under life-threatening situations. When you consider applying the product of this specification to particular used, such as vehicle-mounted units, shipboard equipment, aerospace equipment, medical devices, atomic control systems and submarine relaying equipment or systems, please apply after confirmation of this product to be satisfied about system construction and required reliability. If there is any unclear matter in this specification, please contact Fuji Electric Co., Ltd. MS6M 0677 http://store.iiic.cc/ a 22 22 H04-004-03