MOC3051M, MOC3052M, MOC3053M
www.onsemi.com
6
APPLICATIONS INFORMATION
Basic Triac Driver Circuit
The random phase triac drivers MOC3051M,
MOC3052M and MOC3053M can allow snubberless
operations in applications where load is resistive and the
external generated noise in the AC line is below its
guaranteed dv/dt withstand capability. For these
applications, a snubber circuit is not necessary when a noise
insensitive power triac is used. Figure 7 shows the circuit
diagram. The triac driver is directly connected to the triac
main terminal 2 and a series resistor R which limits the
current to the triac driver. Current limiting resistor R must
have a minimum value which restricts the current into the
driver to maximum 1 A.
The power dissipation of this current limiting resistor and
the triac driver is very small because the power triac carries
the load current as soon as the current through driver and
current limiting resistor reaches the trigger current of the
power triac. The switching transition times for the driver is
only one micro second and for power triacs typical four
micro seconds.
Triac Driver Circuit for Noisy Environments
When the transient rate of rise and amplitude are expected
to exceed the power triacs and triac drivers maximum
ratings a snubber circuit as shown in Figure 8 is
recommended. Fast transients are slowed by the R−C
snubber and excessive amplitudes are clipped by the Metal
Oxide Varistor MOV.
Triac Driver Circuit for Extremely Noisy Environments
As specified in the noise standards IEEE472 and
IEC255−4.
Industrial control applications do specify a maximum
transient noise dv/dt and peak voltage which is
super−imposed onto the AC line voltage. In order to pass this
environment noise test a modified snubber network as
shown in Figure 9 is recommended.
LED Trigger Current versus Temperature
Recommended operating LED control current IF lies
between the guaranteed IFT and absolute maximum IF.
Figure 3 shows the increase of the trigger current when the
device is expected to operate at an ambient temperature
below 25°C. Multiply the datasheet guaranteed IFT with the
normalized IFT shown on this graph and an allowance for
LED degradation over time.
Example:
IFT = 10 mA, LED degradation factor = 20%
IF at −40°C = 10 mA × 1.25 × 120% = 15 mA
LED Trigger Current vs. Pulse Width
Random phase triac drivers are designed to be phase
controllable. They may be triggered at any phase angle
within the AC sine wave. Phase control may be
accomplished by an AC line zero cross detector and a
variable pulse delay generator which is synchronized to the
zero cross detector. The same task can be accomplished by
a microprocessor which is synchronized to the AC zero
crossing. The phase controlled trigger current may be a very
short pulse which saves energy delivered to the input LED.
LED trigger pulse currents shorter than 100 ms must have
increased amplitude as shown on Figure 4. This graph shows
the dependency of the trigger current IFT versus the pulse
width. IFT in this graph is normalized in respect to the
minimum specified IFT for static condition, which is
specified in the device characteristic. The normalized IFT
has to be multiplied with the devices guaranteed static
trigger current.
Example:
IFT = 10 mA, Trigger PW = 4 ms
IF (pulsed) = 10 mA × 3 = 30 mA
Minimum LED Off Time in Phase Control Applications
In phase control applications, one intends to be able to
control each AC sine half wave from 0° to 180°. Turn on at
0° means full power and turn on at 180° means zero power.
This is not quite possible in reality because triac driver and
triac have a fixed turn on time when activated at zero
degrees. At a phase control angle close to 180°the driver’s
turn on pulse at the trailing edge of the AC sine wave must
be limited to end 200 ms before AC zero cross as shown in
Figure 10. This assures that the triac driver has time to switch
off. Shorter times may cause loss of control at the following
half cycle.
Static dv/dt
Critical rate of rise of off−state voltage or static dv/dt is a
triac characteristic that rates its ability to prevent false
triggering in the event of fast rising line voltage transients
when it is in the off−state. When driving a discrete power
triac, the triac driver optocoupler switches back to off−state
once the power triac is triggered. However, during the
commutation of the power triac in application where the
load is inductive, both triacs are subjected to fast rising
voltages. The static dv/dt rating of the triac driver
optocoupler and the commutating dv/dt rating of the power
triac must be taken into consideration in snubber circuit
design to prevent false triggering and commutation failure.