Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exa r.c om
xr XRT91L32
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
JUNE 2007 REV. 1.0.3
GENERAL DESCRIPTION
The XRT91L32 is a fully integrated SONET/SDH
transceiver for SONET/SDH 622.08 Mbps STS-12/
STM-4 or 155.52 Mbps STS-3/STM-1 applications.
The transceiver includes an on-chip Clock Multiplier
Unit (CMU), which uses a high frequency Phase-
Locked Loop (PLL) to generate the high-speed
transmit serial clock from a slower external clock
reference. It also provides Clock and Data Recovery
(CDR) function by synchronizing its on-chip Voltage
Controlled Oscillator (VCO) to the incoming serial
data stream. The internal CDR unit can be disabled
and bypassed in lieu of an externally recovered
received clock from the optical module. Either the
internal ly recov ered clock or the extern ally reco vered
clock can be used for loop timing applications. The
chip provides serial-to-parallel and parallel-to-serial
converters using an 8-bit wide LVTTL system
interface in both receive and transmit directions.
The transmit section includes an option to accept a
parallel clock signal from the framer/mapper to
synchronize the transmit section timing. The device
can inter nally monit or Los s of Signal (LO S) condition
and automatically mute received data upon LOS. An
on-chip SONET/SDH frame byte and boundary
detector and frame pulse generator offers the ability
recover SONET/SDH framing and to byte align the
receive serial data stream into the 8-bit parallel bus.
APPLICATIONS
SONET/S DH- based Transmiss ion Systems
Add/Drop Multiplexers
Cross Connect Equipment
ATM and Multi-Service Switches, Routers and
Switch/Routers
DSLAMS
SONET/SDH Test Equipment
DWDM Termination Equipment
FIGURE 1. BLOCK DIAGRAM OF XRT 91 L 32
XRT91L32
Reset
DLOOP
RLOOPS
LOOPTIME
LOSEXT
STS-12/STS-3
ALOOP
DLOSDIS
FRAMEPULSE
OOF
Clock Control
Contro l Bl ock
CDRDIS
CDRREFSEL
CMUFREQSEL
STS-12/STM-4 or STS-3/STM-1
TRANSCEIVER
Loop F il ters
CAP1P
CAP2P
CAP1N
CAP2N
RXDO[7:0]
RXPCLKO
CDR RXIP/N
8
Div by 8
XRXCLKIP/N
SIPO
(Seria l I nput
Parallel Output)
MUX
PISO
(Par allel I npu t
Serial Output)
DLOOP
RLOOPS
Re-Timer
CMU
TXOP/N
MUX
XOR
TTLREFCLK
REFCLKP/N
CDRAUXREFCLK
MUX
TXPCLK_IO Div by
8
ENB
ENB
TXDI[7:0]
8
MUX
ALOOP
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER REV. 1.0.3
2
FEATURES
Targeted for SONET STS-12/STS-3 and SDH STM-4/STM-1 Applications
Selectable full duplex operation between STS-12/STM-4 standard rate of 622.08 Mbps or STS-3/STM-1
155.52 Mbps
Single- ch ip fu ll y in teg ra ted s olu tio n containing par all el -to- se rial c on ver te r, cloc k mu lti pli er uni t (C M U) , s eria l-
to-parallel converter, clock data recovery (CDR) functions, and a SONET/SDH frame and byte boundary
detection circuit
Ability to disable and bypass onchip CDR for external based received reference clock recovery thru
Differential LVPECL input pins XRXCLKIP/N
8-bit LVTTL parallel data bus paths running at 77.76 Mbps in STS-12/STM-4 or 19.44 Mbps in STS-3/STM-1
mode of operation
Uses Differentia l LV PECL or Si ngle-Ended LVT TL CMU refe rence clock frequencie s of either 19.44 MHz or
77.76 MHz for both STS-12/STM-1 or STS-3/STM-1 operations
Optional use of 77.76 MHz Single-Ended LVTTL input for independent CDR reference clock operation
Able to Detect and Recover SONET/SDH frame boundary and byte align received data on the parallel bus
Diagnostics features include LOS monitoring and automatic received data mute upon LOS
Provides Local, Remote and Split Loop-Back modes as well as Loop Timing mode
Optional flexibility to re-configure the transmit parallel bus clock output to a clock input and accept timing
signal from the framer/mapper device to permit the framer/mapper device time domain to be synchronized
with the transceiver transmit timing.
Meets Telcordia, ANSI, Bellcore TR-NWT-000253 and GR-253-CORE, and G.783 ITU-T jitter requirements
Operates at 3.3V with 3.3V I/O
Less than 660mW in STS-3/STM-1 mode or 800mW in STS-12/STM-4 mode Typical Power Dissipation
Package: 10 x 10 x 2.0 mm 100-pin QFP
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIVER
3
FIGURE 2. 100 QFP PIN OUT OF THE XRT91L32 (TOP VIEW)
XRT91L32
VDD3.3
NC
NC
GND
RXDO0
RXD01
GND
RXDO2
RXDO3
GND
RXDO4
RXDO5
GND
RXDO6
RXDO7
GND
RXPCLKO
F
RAMEPULSE
VDD3.3
NC
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
RLOOPS
VDD3.3
ALOOP
RESET
LOOPTIME
NC
NC
C
MUFREQSEL
VDD_PECL
TXOP
TXON
GND
NC
NC
VDD_PECL
NC
DLOSDIS
GND
XRXCLKIP
XRXCLKIN
VDD_PECL
OOF
CDRDIS
RXIP
RXIN
NC
NC
VDD3.3
REFCLKP
REFCLKN
NC
NC
NC
NC
VDD3.3
GND
NC
NC
GND
AGND_RX
AGND_RX
AVDD3.3_RX
AVDD3.3_RX
AVDD3.3_RX
CAP2P
CAP2N
CAP1N
CAP1P
AVDD3.3_TX
NC
AGND_TX
AGND_TX
VDD3.3
NC
TTLREFCLK
GND
VDD3.3
LOSEXT
NC
CDRAUXREFCL
K
DLOOP
VDD3.3
CDRREFSE
L
STS12/STS
3
NC
TXDI0
TXDI1
GND
TXDI2
TXDI3
NC
TXIN4
TXDI5
GND
TXDI6
TXDI7
GND
NC
TXPCLK_IO
VDD
ORDERING INFORMATION
PART NUMBER PACKAGE OPERATING TEMPERATURE RANGE
XRT91L32IQ-F 100 Pin QFP -40°C to +85°C
XRT91L32 xr
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
I
TABLE OF CONTENTS
GENERAL DESCRIPTION.................................................................................................1
APPLICATIONS...........................................................................................................................................1
FIGURE 1. BLOCK DIAGRAM OF XRT91L32..................... .. .. .. .. .... ..... .. .. .. .. .... .. .. ..... .. .. .... .. .. .. .. ....... .. .. .. .. .. .. ....... .. .. .. .. .... .. .. ................. 1
FEATURES......................................................................................................................................................2
FIGURE 2. 100 QFP PIN OUT OF THE XRT91L32 (TOP VIEW).......................................................................................................... 3
ORDERING INFORMATION.....................................................................................................................3
TABLE OF CONTENTS ............................................................................................................ I
PIN DESCRIPTIONS ..........................................................................................................4
.....................................................................................................................................................................4
HARDWARE CONTROL ....................................................................................................................................4
TRANSMITTER SECTION ..................................................................................................................................6
RECEIVER SECTION........................................................................................................................................8
POWER AND GROUND ....................................................................................................................................9
1.0 FUNCTIONAL DESCRIPTION .............................................................................................................11
1.1 STS-12/STM-4 AND STS-3/STM-1 MODE OF OPERATION ......................................................................... 11
1.2 CLOCK INPUT REFERENCE FOR CLOCK MULTIPLIER (SYNTHESIZER) UNIT ...................................... 11
TABLE 1: CMU REFERENCE FREQUENCY OPTIONS (DIFFERENTIAL OR SINGLE-ENDED) ................................................................... 11
1.3 DATA LATENCY ............................................................................................................................................. 11
TABLE 2: DATA INGRESS TO DATA EGRESS LATENCY ....................................................................................................................... 11
2.0 RECEIVE SECTION .............................................................................................................................12
2.1 RECEIVE SERIAL INPUT ............................................................................................................................... 12
FIGURE 3. RECEIVE SERIAL INPUT INTERFACE BLOCK ..................................................................................................................... 12
2.2 RECIEVE SERIAL DATA INPUT TIMING ...................................................................................................... 13
FIGURE 4. RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING DIAGRAM.......................................................................................... 13
TABLE 3: RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING (STS-12/STM-4 OPERATION) ............................................................. 13
TABLE 4: RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING (STS-3/ST M-1 OPERATION)............................................................... 13
2.3 RECEIVE CLOCK AND DATA RECOVERY .................................................................................................. 14
TABLE 5: CLOCK DATA RECOVERY UNIT REFERENCE CLOCK SETTINGS ............................................................................................ 14
TABLE 6: CLOCK AND DATA RECOVERY UNIT PERFORMANCE.......................................................................................................... 15
2.3.1 INTERNAL CLOCK AND DATA RECOVERY BYPASS........................................................................................ .. .. 15
FIGURE 5. INTERNAL CLOCK AND DATA RECOVERY BYPASS............................................................................................................ 15
2.4 EXTERNAL RECEIVE LOOP FILTER CAPACITORS ................................................................................... 16
FIGURE 6. EXTERNAL LOOP FILTERS .............................................................................................................................................. 16
2.5 LOSS OF SIGNAL .......................................................................................................................................... 16
FIGURE 7. LOS DECLARATION CIRCUIT........................................................................................................................................... 16
2.6 SONET FRAME BOUNDARY DETECTION AND BYTE ALIGNMENT RECOVERY .................................... 17
2.7 RECEIVE SERIAL INPUT TO PARALLEL OUTPUT (SIPO) ......................................................................... 17
FIGURE 8. SIMPLIFIED BLOCK DIAGRAM OF SIPO ...........................................................................................................................17
2.8 RECEIVE PARALLEL OUTPUT INTERFACE ............................................................................................... 18
FIGURE 9. RECEIVE PARALLEL OUTPUT INTERFACE BLOCK ............................................................................................................. 18
2.9 DISABLE PARALLEL RECEIVE DATA OUTPUT UPON LOS ..................................................................... 18
2.10 RECEIVE PARALLEL DATA OUTPUT TIMING .......................................................................................... 19
FIGURE 10. RECEIVE PARALLEL OUTPUT TIMING ............................................................................................................................ 19
TABLE 7: RECEIVE PARALLEL DATA OUTPUT TIMING (STS-12/STM-4 OPERATION)......................................................................... 19
TABLE 8: RECEIVE PARALLEL DATA OUTPUT TIMING (STS-3/S TM -1 O PERATION)........................................................................... 19
TABLE 9: PECL AND TT L R ECEIVE OUTPUTS TIMING SPECIFICATION.............................................................................................. 20
3.0 TRANSMIT SECTION ..........................................................................................................................21
3.1 TRANSMIT PARALLEL INPUT INTERFACE ................................................................................................. 21
FIGURE 11. TRANSMIT PARALLEL INPUT INTERFACE BLOCK............................................................................................................. 21
3.2 TRANSMIT PARALLEL DATA INPUT TIMING .............................................................................................. 22
FIGURE 12. TRANSMIT PARALLEL INPUT TIMING.............................................................................................................................. 22
TABLE 10: TRANSMIT PARALLEL DATA INPUT TIMING (STS-12/STM-4 OPERATION)......................................................................... 22
TABLE 11: TRANSMIT PARALLEL DATA INPUT TIMING (STS-3/STM-1 OPERATION)........................................................................... 22
3.3 TRANSMIT PARALLEL INPUT TO SERIAL OUTPUT (PISO) ...................................................................... 23
FIGURE 13. SIMPLIFIED BLOCK DIAGRAM OF PISO ......................................................................................................................... 23
3.4 CLOCK MULTIPLIER UNIT (CMU) AND RE-TIMER ..................................................................................... 23
TABLE 12: CLOCK MULTIPLIER UNIT PERFORMANCE ....................................................................................................................... 23
3.5 LOOP TIMING AND CLOCK CONTROL ...................... ...... ...... ..... ...... ..... ................. ...... ..... ...... ...... .............. 24
TABLE 13: LOOP TIMING AND CLOCK RECOVERY CONFIGURATIONS ................................................................................................. 24
xr XRT91L32
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
II
FIGURE 14. LOOP TIMING MODE USING INTERNAL CDR OR AN EXTERNAL RECOVERED CLOCK ....................................................... 25
3.6 TRANSMIT SERIAL OUTPUT CONTROL ..................................................................................................... 25
FIGURE 15. TRANSMIT SERIAL OUTPUT INTERFACE BLOCK.............................................................................................................. 25
4.0 DIAGNOSTIC FEATURES ...................................................................................................................26
4.1 SERIAL REMOTE LOOPBACK ..................................................................................................................... 26
FIGURE 16. SERIAL REMOTE LOOPBACK......................................................................................................................................... 26
4.2 DIGITAL LOCAL LOOPBACK ....................................................................................................................... 26
FIGURE 17. DIGITAL LOCAL LOOPBACK........................................................................................................................................... 26
4.3 ANALOG LOCAL LOOPBACK ...................................................................................................................... 27
FIGURE 18. ANALOG LOCAL LOOPBACK.......................................................................................................................................... 27
4.4 SPLIT LOOPBACK ......................................................................................................................................... 27
FIGURE 19. SPLIT LOOPBACK......................................................................................................................................................... 27
4.5 EYE DIAGRAM ............................................................................................................................................... 28
FIGURE 20. STS-3/ST M -1 EYE DIAGRAM ...................................................................................................................................... 28
FIGURE 21. STS-12/ST M -4 EYE DIAGRAM .................................................................................................................................... 28
4.6 SONET JITTER REQUIREMENTS ................................................................................................................. 29
4.6.1 JITTER TOLERANCE:................................................................................................................................................ 29
FIGURE 22. JITTER TOLERANCE MASK............................................................................................................................................ 29
FIGURE 23. XRT91L32 MEASURED JITTER TOLERANCE AT 622.08 MBPS STS- 1 2 /STM-4........ ...... ................. ................. ...... ........ 30
FIGURE 24. XRT91L32 MEASURED JITTER TOLERANCE AT 155.52 MBPS STS- 3 /STM-1........ ...... ................. ...... ................. .......... 30
4.6.2 JITTER GENERATION................................................................................................................................................ 31
FIGURE 25. XRT91L32 MEASURED ELECTRICAL PHASE NOISE TRANSMIT JITTER GENERATION AT 622.08 MBPS STS-12/STM4 USING
’1010’ OUTPUT PATTERN................................................................................................................................................. 31
5.0 ELECTRICAL CHARACTERISTICS ...................................................................................................32
ABSOLUTE MAXIMUM RATINGS .... ...... ....... ................... ....... ...... ...... ....... ...... ....... ...... ....... ................... .......32
ABSOLUTE MAXIMUM POWER AND INPUT/OUTPUT RATINGS .........................................................32
POWER AND CURRENT DC ELECTRICAL CHARACTERISTICS....................................................................32
...................................................................................................................................................................32
LVPECL AND LVTTL LOGIC SIGNAL DC ELECTRICAL CHARACTERISTICS......................................33
ORDERING INFORMATION ..................................................................................................................34
PACKAGE DIMENSIONS.......................... ..... ..... .............. .... ..... ..... .............. .... ..... ..... ....34
REVISION HISTORY ......................................................................................................................................35
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
4
PIN DESCRIPTIONS
L32
HARDWARE CONTROL
NAME LEVEL TYPE PIN DESCRIPTION
RESET LVTTL I 4 Remote Serial Loopback
Active "High." When this pin is pulled "High" , the internal state
machines are set to their default state.
"Low" = Normal Operation
"High" = Master Hardware Reset ( minimum 100nS)
STS12/STS3 LVTTL I97 Data Rate Selection
Selects SONET/SDH transmission and reception speed rate
"Low" = STS-3/STM-1 155.52 Mbps
"High" = STS-12/STM-4 622.08 Mbps
CMUFREQSEL LVTTL I 8 Clock Multiplier Unit Reference Frequency Select
This pin is used to select the frequency of the REFCLKP/N or
TTLREFCLK input to the CMU.
"Low" = 77.76 MHz reference clock
"High" = 19.44 MHz reference clock
NOTE: REFCLKP/N or TTLREFCLK input should be generated
from an LVPECL/LVTTL crystal oscillator which has a
frequency accuracy better than 20ppm in order for the
transmitted data rate frequency to have the necessary
accuracy required for SONET systems..
CMU-
FREQSEL STS12/
STS3
REFCLKP/N OR
TTLREFCLK
REFERENCE
FREQUENCY
DATA RATE
0077.76 MHz STS-3/STM-1
155.52 Mbps
0 1 77.76 MHz STS-12/STM-4
622.08 Mbps
1019.44 MHz STS-3/STM-1
155.52 Mbps
1 1 19.44 MHz STS-12/STM-4
622.08 Mbps
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
5
CDRREFSEL LVTTL I98 Clock and Data Recover Unit Reference Frequency Select
Selects the Cloc k an d D at a Re cov ery U nit refere nc e freq uency
based on the table below.
"Low" = CDR uses CMU’s reference clock
"High" = CDR reference clock from CDRAUXREFCLK
NOTE: CDRAUXREFCLK requires accuracy of 77.76 MHz
+/- 500ppm.
LOOPTIME LVTTL I 5 Loop Timing Mode
When the loop timing mode is activated the external reference
clock to th e input of the Retimer i s replaced with the high -speed
recovered receive clock from the CDR.
"Low" = Disabled
"High" = Loop timing Activated
CDRDIS LVTTL I23 Clock and Data Recovery Unit Disable
Active "High." Disables internal Clock and Data Recovery unit.
Received serial data bypasses the integrated CDR block.
RXINP/N is then sampled on the rising edge of externally
recovered differential clock XRXCLKIP/N coming from the opti-
cal module.
"Low" = Internal CDR unit is Enabled
"High" = Internal CDR unit is Disabled and Bypassed
RLOOPS LVTTL I 1 Serial Remote Loopback
The serial remote loopback mode interconnects the receive
serial data input to the transmit serial data output. If serial
remote l oopback is ena bled, the 8-bit parallel transmit data
input is ignored while the 8-bit parallel receive data output is
maintained.
"Low" = Disabled
"High" = Serial Remote Loopback Mode Enabled
NOTE: DLOOP and RLOOPS can be enabled simultaneously
to achieve a dual lo opb ack dia gnostic feat ure in norm al
operation.
NC No Connect -6,7,13,
14,16,26,
27,32,33,
50,52,57,
61,73,74,
77,78,79,
80,83,90,
96
NOTE: No connect
NAME LEVEL TYPE PIN DESCRIPTION
CDRREFSEL STS12/
STS3 CDRAUXREFCLK
FREQUENCY DATA RATE
0CDR uses CMU’s reference clock
(see CMUFREQSEL pin)
1077.76 MHz STS-3/STM-1
155.52 Mbps
1177.76 MHz STS-12/STM-4
622.08 Mbps
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
6
ALOOP LVTTL I 3 Analog Local Loopback
This loopback feature serializes the 8-bit parallel transmit data
input and presents the data to the transmit serial output and in
addition it also internally routes the serialized data back to the
Clock an d Data Reco very block for s eria l to p a r al lel con ve rsi on.
The received seri al data input is ignored.
"Low" = Disabled
"High" = Analog Local Loopback Mode Enabled
DLOOP LVTTL I100 DLOOP Local Loopback
This digital loopback mode interconnects the 8-bit parallel
transmit data input and TXCLK to the 8-bit parallel receive data
output and receive RXCLK respectively while maintaining the
transmit serial data output. If digital loopback is enabled, the
receive serial data input is ignored.
"Low" = Disabled
"High" = Digital Local Loopback Mode Enabled
NOTE: DLOOP and RLOOPS can be enabled simultaneously
to achieve a dual lo opb ac k dia gnostic feat ure in norm al
operation.
TRANSMITTER SECTION
NAME LEVEL TYPE PIN DESCRIPTION
TXDI0
TXDI1
TXDI2
TXDI3
TXDI4
TXDI5
TXDI6
TXDI7
LVTTL I95
94
92
91
89
88
86
85
Transmit Parallel Data Input
Transmit Parallel Clock Output Operation
The 77.76 Mb ps (STS-12/ST M-4) / 19.44 Mbp s (STS-3/STM-1)
8-bit parallel transmit data should be applied to the transmit
para llel bus an d simu ltaneo usly referenc ed to the risi ng edge of
the TXPCLK_ IO cl oc k out put. The 8 -bit pa rall el in terfa ce is m ul -
tiplexed into the transmit serial output interface with the MSB
first (TXDI[7:0]).
Alternate Transmit Parallel Clock Input Operation
When operating is this mode, TXPCLK_IO is no longer a paral-
lel clock output reference but reverses direction and serves as
the p aralle l trans mit cl ock i nput ref erence for th e PIS O (Paral lel
Input to Se rial Outpu t) blo ck. Th e 77.76 Mbp s (STS-12/STM-4 )
/ 19.44 M bps (STS-3/ST M-1 ) 8-b it parallel tra ns mit da t a s ho uld
be applied to the tra ns mi t p arallel bu s a nd simu lt a neously refe r -
enced to the rising edge of the TXPCLK_IO clock input.
TXOP
TXON LVPECL Diff O10
11 Transmit Serial Data Output
The tran smit serial dat a stream is generated by mu ltiplexing the
8-bit parallel transmit data input into a 622.08 Mbps STS-12/
STM-4 or 155.52 Mbps STS-3/STM-1 seri al data stream.
NAME LEVEL TYPE PIN DESCRIPTION
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
7
TXPCLK_O LVTTL O82 Transmit Parallel Clock Output (77.76/19.44 MHz)
Transmit Parallel Clock Output Operation
This pin will output a 77 .76 MHz (STS-12/ST M-4) or 19.4 4 MHz
(STS-3/STM-1) clock output reference for the 8-bit parallel
transmit data input TXDI[7:0]. This clock is used by the framer/
mapper device to present the TXDI[7:0] data which the
XRT91L32 will latch on the rising edge of this clock. This
enables the framer/mapper device and the XRT91L32 trans-
ceiv er to be in synchronization .
REFCLKP
REFCLKN LVPECL Diff I29
30 Reference Clock Input (77.76 MHz or 19.44 MHz)
This differential clock input reference is used for the transmit
clock mult ipli er unit (CMU) and clock data recovery (CDR) to
provide the necessary high speed clock reference for this
device. It will accept either a 77. 76 MHz or a 19.44 MHz Differ-
ential LVPECL clock source. Pin CMUFREQSEL determines
the value us ed as the referenc e. See Pin CMUFREQ SEL for
more details. REFCLKP/N inputs are internally biased to 1.65V.
NOTE: In the event that TTLREFCLK LVTTL input is used
instead of these differential inputs for clock reference,
the REFCLKP should be tied to ground.
TTLREFCLK LVTTL I56 Auxillary Reference Clock Input (77.76 MHz or 19.44 MHz)
This LVTTL clock input reference is used for the transmit clock
multiplier unit (CMU) and clock data recovery (CDR) to provide
the ne cess ary hig h spee d cloc k referen ce for thi s devi ce. It w ill
accep t either a 77.7 6 MHz or a 1 9.44 MHz LVTTL clock source.
Pin CMUFREQSEL determines the value used as the refer-
ence. See Pin CMUFREQSEL for more details.
NOTE: In the event that REFCLKP/N differential inputs is used
instead of this LVTTL input for clock reference, the
TTLREFCLK should be tied to ground.
TRANSMITTER SECTION
NAME LEVEL TYPE PIN DESCRIPTION
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
8
RECEIVER SECTION
NAME LEVEL TYPE PIN DESCRIPTION
RXDO0
RXDO1
RXDO2
RXDO3
RXDO4
RXDO5
RXDO6
RXDO7
LVTTL O35
36
38
39
41
42
44
45
Receive Parallel Data Output
77.76 Mbps (STS-12/STM-4) / 19.44 Mbps (STS-3/STM-1)
8-bit parallel receive data output is updated simultaneously on
the risin g edge of the RXPCLKO ou tput. T he 8-bi t p arallel inter -
face is de-multiplexed from the receive serial data input MSB
first (RXDO[7:0]). The XRT91L32 will output the data on the
rising edge of this clock.
RXIP
RXIN Diff LV PECL I24
25 Receive Serial Data Input
The differential receive serial data stream of 622.08 Mbps
STS-12/STM-1 or 155.52 Mbps STS-3/STM-1 is applied to
these input pins.
XRXCLKIP
XRXCLKIN Diff L VPECL I19
20 External Recov ered Re ce ive Clock Input
The differential receive serial data stream of 622.08 Mbps
STS-12/STM-1 or 155.52 Mbps STS-3/STM-1 is sampled on
the rising edge of this externally recovered differential clock
coming from the optical module. It is used when the internal
CDR unit is disabled and bypassed by the CDRDIS pin.
NOTE: In the event that XRXCLKIP/N differential input pins are
unused, XRXCLKIP should be tied to VCC with a 1k
Ohm pull-up and XRXCLKIN should be tied to Ground
wit h a 1k Ohm pull- down.
RXPCLKO LVTTL O47 Receive Parallel Clock Output (77.76 MHz or 19.44 MHz)
77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/STM-1)
clo ck output referenc e for the 8-bit parallel receive data output
RXDO[7:0]. The parallel received data output bus will be
updated on the falling edge of this clock.
CDRAUX-
REFCLK LVTTL I51 Clock and Data Recovery Auxillary Reference Clock
77.76 MHz ± 500 ppm auxillary reference clock for the CDR.
NOTE: In the event that CDRAUXREFCLK LVTTL input pin is
unused, CDRAUXREFCLK should be tied to ground.
OOF LVTTL I22 Out of Frame In put Indicator
This level sensitive input pin is used to initiate frame detection
and byte alignment recovery when OOF is declared by the
downstream device. When this pin is held High, FRAME-
PULSE will pul se for a sin gl e RXPC LK O peri od upon t he dete c-
tion of every third frame alignment A2 byte in the incoming
SONET/SDH Frame.
"Low" = Normal Operation
"High" = OOF Indication initiating frame detection and byte
boundary rec ove ry and activ ati ng FRAMEPULSE
FRAMEPULSE LVTTL O48 Sonet Frame Alignment Pulse
This pin will generate a singl e pulse for an RXPCLKO clock
period upon the detection of the third frame alignment A2 byte
whenev er the OOF input p in is held Hig h. The para llel receiv ed
data output bus will then be byte aligned to this newly recov-
ered SONET/SDH frame.
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
9
POWER AND GROUND
CAP1P
CAP2P Analog -63
66 CDR Non-Invertin g External Fee back Capacitor
C1 = 0.47μF ± 10% tolerance
(Isolate from noise and place close to pin)
CAP1N
CAP2N Analog -64
65 CDR Inverting External Feeback Capacitor
C2 = 0.47μF ± 10% tolerance
(Isolate from noise and place close to pin)
DLOSDIS LVTTL I17 LOS (Los of Signal) Detect Disable
Disables internal LOS monitoring and automati c muting of
RXDO[7:0] upon LOS detection (according to gating shown in
Figure 7.) LOS is declared when a string of 128 consecutive
zeros occur on the line. LOS condition is cleared when the 16
or more pulse transitions is detected for 128 bit period sliding
window.
"Low" = Monitor and Mute received data upon LOS declaration
"High" = Disable internal LOS monitoring (see Figure 7 f or logi c
operation.)
LOSEXT SE-LVPECL I53 LOS or Signal Detect Input from Optical Module
Active "L ow." When ac tiv e, thi s pin c an forc e t he received data
output bus RXDO[7:0] to a logic state of ’0’ per Figure 7.
"Low" = Forced LOS
"High" = Normal Operation
NAME TYPE PIN DESCRIPTION
VDD3.3 PWR 2,28,31,49,54,
58,76,99,81 3.3V CMOS Power Supply
VDD3.3 should be isolated from the analog VDD power supplies.
Use a ferrite bead alo ng with an internal pow er plane sep ara tion.
The VDD3.3 pow e r supply pin s s ho uld hav e b ypass capac itor s to
the nearest ground. For best results, refer to Application notes
about general board lay ou t guide li nes .
AVDD3.3_TX PWR 62 Analog 3.3V Transmitter Power Supply
AVDD3.3_TX should be isolated from the digital power supplies.
For best results, use a ferrite bead along with an internal power
plane separation. The AVDD3.3_TX power supply pins should
have bypass capacitors to the nearest ground.
AVDD3.3_RX PWR 67,,68,69 Analog 3.3V Receiver Power Supply
AVDD3.3_RX should be isolated from the digital power supplies.
For best results, use a ferrite bead along with an internal power
pla ne separation. The AVDD3.3_RX power sup ply pins should
have bypass capacitors to the nearest ground.
VDD_LVPECL PWR 9,15,21 3.3V Input/Output LVPECL Bus Power Supply
These pins require a 3.3V potential voltage for properly biasing
the Differential LVPECL input and output pins.
AGND_TX PWR 59,60 Transmitter Analog Ground for 3.3V Analog Power Supplies
It is recommended that all ground pins of this device be tied
together.
NAME LEVEL TYPE PIN DESCRIPTION
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
10
AGND_RX PWR 70,71 Receiver Analog Ground for 3.3V Analog Power Supplies
It is recommended that all ground pins of this device be tied
together.
GND GND 12,18,34,37,40,43,46,55,
72,75,84,87,93 Power Supply and Thermal Ground
It is recommended that all ground pins of this device be tied
together.
NAME TYPE PIN DESCRIPTION
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
11
1.0 FUNCTIONAL DESCRIPTION
The XRT91L32 transceiver is designed to operate with a SONET Framer/ASIC device and provide a high-
speed serial inte rface to optical networks. The transceiver converts 8-bit parallel data running at 77.7 6 Mbps
(STS-12/STM-4) or 19.44 Mbps (STS-3/STM-1) to a serial Differential LVPECL bit stream at 622. 08 Mbps or
155.52 Mbps and vice-versa. It implements a clock multiplier unit (CMU), SONET/SDH serialization/de-
serialization (SerDes), receive clock and data recovery (CDR) unit and a SONET/SDH frame and byte
boundary detection circuit. The transceiver is divided into Transmit and Receive sections and is used to
provide the front end component of SONET equipment, which includes primarily serial transmit and receive
functions.
1.1 STS-12/STM-4 and STS-3/STM-1 Mode of Operation
Functiona lity of the transceiv er can be c onfigured by using the appropria te signal l evel on the S TS-12/STS-3
pin. STS-3/STM-1 mode is selected by pulling STS-12/STS-3 "Low" as described in the Hardware Pin
Descriptions. However, if STS-12/STM-4 mode is desired, it is selected by pulling STS-12/STS-3 "High."
Therefor e, th e fol lo win g s ec tio ns desc ribe the func ti onality rat her tha n ho w each func tion is co ntrol le d. He nce ,
the hardware Pin and the Register Bit Descriptions focus on device configuration.
1.2 Clock Input Reference for Clock Multiplier (Synthesizer) Unit
The XRT91L32 c an accept both a 19 .44 MHz or a 77 .76 MHz Diffe rential LVP ECL cloc k inp ut at REFCL KP/N
or a Single-Ended LVTTL clock at TTLREFCLK as its internal timing reference for generating higher speed
clocks. The REFCLK P/N or TT LREFCLK input shou ld be gene rated from a n LVPECL /LVTTL c rystal o scilla tor
which has a frequency accuracy better than 20ppm in order for the transmitted data rate frequency to have the
necessary accuracy required for SONET systems. The reference clock can be provided with one of two
frequencies chosen by CMUFREQSEL. The reference frequency options for the XRT91L32 are listed in
Table 1.
1.3 Data Latency
Due to different o perati ng mod es and d ata logic paths through t he devi ce, the re is an a ssoc iated latenc y from
data ingress to data egress. Table 2 specifies the data latency for a typical path.
TABLE 2: DATA INGRESS TO DATA EGRESS LATENCY
TABLE 1: CMU REFERENCE FREQUENCY OPTIONS (DIFFERENTIAL OR SINGLE-ENDED)
CMUFREQSEL STS12/STS3 REFCLKP/N OR TTLREFCLK
REFERENCE FREQUENCY DATA RATE
0 0 77.76 MHz STS-3/STM-1
155.52 Mbps
0 1 77.76 MHz STS-12/STM-4
622.08 Mbps
1 0 19.44 MHz STS-3/STM-1
155.52 Mbps
1 1 19.44 MHz STS-12/STM-4
622.08 Mbps
MODE OF
OPERATION DATA PATH CLOCK REFERENCE RANGE OF CLOCK
CYCLES
Thru-mode MSB at RXIP/N to data on RXDO[7:0] Recoved RXIP/N Clock 25 to 35
Serial Remote Loopback MSB at RXIP/N to MSB at TXOP/N Recoved RXIP/N Clock 2 to 4
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.2
12
2.0 REC EI V E SE CT I O N
The receive section of XRT91L32 include the inputs RXIP/N, followed by the clock and data recovery unit
(CDR) and receive serial-to-parallel converter. The receiver accepts the high speed Non-Return to Zero (NRZ)
serial data at 622.08 Mbps or 155.5 2 Mbps through the input int erfaces RXIP /N. The cloc k and data recove ry
unit recovers the high-speed receive clock from the incoming scrambled NRZ data stream. The recovered
serial data is converted into an 8-bit-wide, 77.76 Mbps or 19.44 Mbps parallel data and presented to the
RXDO[7:0] parallel interface. This parallel interface is designed for Single-Ended LVTTL operation. A divide-
by-8 ver sion of th e high- spee d recov ered cl ock RXPCLK OP/N, is used to sync hronize the transfer o f the 8-bit
RXDO[7:0] data with the receive portion of the framer/mapper device. Upon initialization or loss of signal or
loss of lock, the external reference clock signal of 19.44 MHz or 77.76 MHz is used to start-up the clock
recove ry phase-loc k ed loop for prope r o perati on . In c er tain app li ca tio ns , the CD R blo ck on the X RT91L32 ca n
be disabled and bypassed by enabling the CDRDIS pin to permit the flexibility of using an externally recovered
receive clock thru the XRXCLKIP/N pins.7
2.1 Receive Serial Input
The receive serial inputs are applied to RXIP/N. The receive serial inputs can be AC or DC coupled to an
optical module or an electrical interface. A simplified AC coupling block diagram is shown in Figure 3.(Also,
refer to application note TAN-9132.)
NOTE: Some op tic al mod u le s i nte gr at e A C co up lin g capac i to rs w it hi n th e mo du l e. AC o r DC co upl in g is l arg e ly spe cif ic to
system design and optical module of choice.
FIGURE 3. RECEIVE SERIAL INPUT INTERFACE BLOCK
SFP, Optica l Module
RXIP
RXIN Optical Fib e
r
XRT91L32
STS-12/STM-4
or
STS-3/STM-1
Transceiver
82 O hm
130 O hm
XRXCLKIP
XRXCLKIN (optional)
1KOhm
1KOhm
Install terminators close to
RXIP and RXIN pins
Tie unused differential input pins
to VCC and GND
Internally
AC co upled
xr XRT91L32
REV. 1.0.2 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
13
2.2 Recieve Serial Data Input Timing
The received High-Speed Serial Differential Data Input must adhere to the set-up and hold time timing
specifications below.
TABLE 4: RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING (STS-3/STM-1 OPERATION)
FIGURE 4. RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING DIAGRAM
TABLE 3: RECEIVE HIGH-SPEED SERIAL DATA INPUT TIMING (STS-12/STM-4 OPERATION)
SYMBOL PARAMETER MIN TYP MAX UNITS
tRXCLK Receive external recovered clock period 1.608 ns
tRX_SU Serial data setup time with respect to XRXCLKIP/N 400 ps
tRX_HD Serial data hold time with respect to XRXCLKIP/N 100 ps
SYMBOL PARAMETER MIN TYP MAX UNITS
tRXCLK Receive exter nal recovered clock period 6.43 ns
tRX_SU Serial data setup time with respect to XRXCLKIP/N 1.5 ns
tRX_HD Serial data hold time with respect to XRXCLKIP/N 1.5 ns
tRXCLK
RXIP
RXIN
XRXCLKIP
XRXCLKIN
tRX_HD
tRX_SU
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.2
14
2.3 Receive Clock and Data Recovery
The clock and data recovery (CDR) unit accepts the high speed NRZ serial data from the Differential LVPECL
receiver and generates a clock that is the same frequency as the incoming data. The clock recovery can either
utilize the transmitters CMU reference clock from either REFCLKP/N or TTLREFCLK or it can use
independe nt cl ock sourc e CDRA UXR EFCLK to train a nd mo nit or its c lock rec ov ery P LL . In itial ly u pon s tartup,
the PLL locks to the local reference clock within ±500 ppm. Once this is achieved, the PLL then attempts to
lock o nto th e incoming recei ve data st ream. When ever t he reco vered cl ock fr equency d eviates from th e local
referen ce clock frequen cy by more than approxi mately ±500 ppm , the clock rec overy PLL w ill switch and lo ck
back o nto the l ocal refe rence cl ock. W henever a Loss of Lock or a Lo ss of S ignal event occu rs, the CDR will
continue to supply a receive clock (based on the local reference) to the framer/mapper device. When the
LOSEXT is asserted by the optical module or when LOS is detected, the receive parallel data output will be
forced t o a log ic z er o state for the en tir e d urati on that a LO S condition is dete ct ed. This ac ts as a r ec eiv e da ta
mute up on L OS fun ct ion to p re vent r and om noi se fr om b ein g mi sint er preted as va lid i nc omi ng d ata. Whe n th e
LOSEXT becomes inactive and the recovered clock is determined to be within ± 500 ppm accuracy with respect
to the loc al re ference s ourc e and L OS is n o long er dec lared, th e clo ck rec over y PLL wil l swi tch and lock back
onto the incoming receive data stream. Table 5 shows Clock and Data Recovery reference clock settings.
Table 6 specifies the Clock and Data Recovery Unit performance characteristics.
TABLE 5: CLOCK DATA RECOVERY UNIT REFERENCE CLOCK SETTINGS
1Requires frequency accuracy better than 20ppm in order for the transmitted data rate frequency to have the necessary
accuracy required for SONET systems.
2CDRAUXREFCLK requires accuracy of 77.76 MHz +/- 500ppm.
CMUFREQSEL CDRREFSEL STS12/
STS3
REFCLKP/N1OR
TTLREFCLK1
FREQUENCY (MHZ)
CDRAUXREFCLK2
FREQUENCY (MHZ)CDR OUTPUT
FREQUENCY (MHZ)
0 0 0 77. 76 MHz not used 155.52
0 0 1 77. 76 MHz not used 622.08
1 0 0 19. 44 MHz not used 155.52
1 0 1 19. 44 MHz not used 622.08
X 1 0 not referenced by CDR 77.76 MHz 155.52
X 1 1 not referenced by CDR 77.76 MHz 622.08
xr XRT91L32
REV. 1.0.2 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
15
TABLE 6: CLOCK AND DATA RECOVERY UNIT PERFORMANCE
Jitter specification is defined using a 12kHz to 1.3/5MHz LP-HP single-pole filter.
1These reference clock jitter limits are required for the outputs to meet SONET system level jitter requirements (<10 mUIrms).
2Required to meet SONET output frequency stability requirements.
2.3.1 Internal Clock and Data Recovery Bypass
Optionally, the internal CDR unit can be disabled and bypassed in lieu of an externally recovered clock.
Asserting th e CDRDIS "High" disable s the in ternal Cloc k and Da ta Recovery u nit an d the received serial data
bypasses the integrated CD R block. RX INP/N is then sampled on t he rising edg e of the externa lly recove red
differential clock XRXCLKIP/N coming from the optical module or an external clock recovery unit. Figure 5
shows the possible internal paths of the recovered clock and data.
NAME PARAMETER MIN TYP MAX UNITS
REFDUTY Reference clock duty cycle 40 60 %
REFJIT Reference clock jitter (rms) with 19.44 MHz refer ence15ps
REFJIT Reference clock jitter (rms) with 77.76 MHz refer ence113 ps
REFTOL Reference clock frequency tolerance2-20 +20 ppm
TOLJIT Input jitter tolerance with 1 MHz < f < 20 MHz PRBS pattern 0.3 0.4 UI
OCLKFREQ Frequency output 620 624 MHz
OCLKDUTY Clock output duty cycle 40 60 %
FIGURE 5. INTERNAL CLOCK AND DATA RECOVERY BYPASS
RXIP
RXIN
MUX
CDR
MUX
CDRDIS
Clk
Data
XRXCLKIP
XRXCLKIN
DATA
CLOCK
SIPO
Div by 8 CLOCK
Parallel DATA 8
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.2
16
2.4 External Receive Loop Filter Capacitors
These external loop filter 0.47μF non-polarized capacitors provide the necessary components to achieve the
required receiver j itter perfor mance. They must be we ll isolate d to prohi bit noise ente ring the CD R block and
should b e placed as close to the p ins as much a s possible. Figure 6 show s the pin co nnections and external
loop filter components. These two non-polarized capacitors should be of +/- 10% tolerance.
2.5 Loss Of Signal
XRT91L32 supp orts interna l Loss of Signal dete ction (LOS) an d external LOS de tection. The interna l Loss of
Signal Detector monitors the incoming data stream and if the incoming data stream has no transition
continuously for more than 128 bit periods, Loss of Signal is declared. This LOS detection will be removed
when the ci rcuit detec ts 16 transitions in a 128 b it period s liding windo w. Pulli ng the corres ponding DL OSDIS
signal to a h igh l evel will di sabl e the inter nal LOS detec tion circuit. The external LOS f uncti on is supp orted by
the LOSEXT input. The Singl e-E nded LVPECL inp ut us ua ll y c ome s from the optic al mod ul e throug h an output
usually called “SD” or “FLAG” which indicates the lack or presence of optical power. Depending on the
manufacturer of these devices the polarity of this signal can be either active "Low" or active "High." LOSEXT is
an activ e "Lo w" si gnal r equi ring a l ow lev el to as sert or in voke a forced L OS. The exter nal LOSEXT input pin
and internal LOS detector are gated to control detection and declaration of Loss of Signal (see Figure 7.)
Whene ver LO S is inte rnally detec ted or an e xternal LOS is asserte d th ru the LOSEXT pin , the X RT91L32 wi ll
automatically force the receive parallel data output to a logic state "0" for the entire duration that a LOS
condition is declared. This acts as a receive data mute upon LOS function to prevent random noise from being
misinterpreted as valid incoming data.
FIGURE 6. EXTERNAL LOOP FILTERS
FIGURE 7. LOS DECLARATION CIRCUIT
CAP2NCAP1N
0.47uF
non-polarized
CAP2PCAP1P
0.47uF
non-polarized
Pin 66Pin 63 Pin 64 Pin 65
Inte rna l LOS De te c t
DLOSDIS
LOSEXT ( SD )
LO S D eclaration
xr XRT91L32
REV. 1.0.2 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
17
2.6 SONET Frame Boundary Detection and Byte Alignment Recovery
A Frame and Byte Boundary Detection circuit searches the incoming data channel for three consecutive A1
(0xF6 Hex ) b yt es foll owe d by thr ee co ns ecuti ve A2 (0x 28 Hex ) byt es . The d etec tor op erate s u nder th e c ontrol
of the OOF (Out of Fram e) signa ls provided from the S ONET F ramer. Detection is enable d when OOF is held
"High" and remains active until OOF goes "Low." When framing pattern detection is enabled, the framing
pattern is used to locate byte and frame boundaries in the incoming receive data stream. The receive serial-to-
parallel con verter block uses the located byte boundary to assem ble the incoming data stream into bytes for
output on the parallel data output bus RXDO[7:0]. The frame boundary is reported on the frame pulse
(FRAMEPULSE) output at the onset of detecting the third A2 byte pattern when any serial 48-bit pattern
matching the framing pattern is detected on the incoming data stream. While in the pattern search and
detection s tate an d so lo ng is OO F i s ac tive , the fra me pul se ( FRA ME PUL SE ) output i s activ ate d f or on e byt e
clock cycle (RXPCLKO = 12.86 ns pulse duration for STS-12/STM-4 or 51.44 ns pulse duration for STS-3/
STM-1) anytime a 48 -bit pattern ma tching th e framing pattern is dete cted on th e incoming data stream. O nce
the SONET F ramer Overhe ad Circuitry ha s verified tha t frame and byt e synchroni zation are co rrect, the OOF
input pin should be de-asserte d by the SONET Framer to disable the XRT91L32 frame search process from
trying to synchronize repeatedly and to de-activate FRAMEPULSE. When the XRT91L32’s framing pattern
detection is disab led upon the de-a ssertion of OOF inp ut pin fr om the SON ET Fram er, the by te bounda ry will
lock to the detected location and will remain locked to that location found when detection was previously
enabled.
2.7 Receive Serial Input to Parallel Output (SIPO)
During STS-12/STM-4 operation, the SIPO is used to convert the 622.08 Mbps serial data input to 77.76 Mbps
parallel data output which can interface to a SONET Framer/ASIC. If the XRT91L32 is operating in STS-3/
STM-1, the SI PO will conver t the 155.52 Mbps seria l data inp ut to 19 .44 Mbps par allel da ta outpu t. The SI PO
bit de-interleaves the serial data input into an 8-bit parallel output to RXDO[7:0]. A simplified block diagram is
shown in Figure 8. XRT91L32 clocks data out on RXDO[7:0] at the falling edge of RXPCLKO.
FIGURE 8. SIMPLIFIED BLOCK DIAGRAM OF SIPO
b00b01b02b03
bn0bn1bn2bn3
bn+0bn+1bn+2bn+3
b70b71b72b73
8-bit Parallel LVTTL Output Data
RXDO0
RXDO7
RXDOn+
RXDOnRXIP/N
RXPCLKO
b30b
20b
10b
00b70b
60b
50b
40b33b
23b
13b43b53b63b73
SIPO
77.76 MH z (STS -12 / STM-4) or 19.44 MHz (S TS- 3/STM-1 )
622.08 M bps ST S-12/S TM -4 or
155.52 Mbps STS- 3/S TM-1 s eria l data rat e
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.2
18
2.8 Receive Parallel Output Interface
The 8-bit Single- E nded LVT TL r unn in g at 77. 76 M bps ( STS -12/S T M-4) o r 19.4 4 M bps (STS -3 /STM-1) parallel
data output of the receive path is used to interface to a SONET Framer/ASIC synchronized to the recovered
clock. A simplified block diagram is shown in Figure 9.
2.9 Disable Parallel Receive Data Output Upon LOS
The parallel receiver outputs are automatically pulled "Low" or forced to a logic state of "0" during a LOS
condition to prevent data chattering unless LOS detection is disabled by asserting DLOSDIS and keeping
LOSEXT input pin "high." In addition, the user can also assert LOSEXT input pin "low" from the optical module
to force an LOS and mute the parallel receiver outputs as well (while DLOSDIS input is also low, see Figure 7.)
FIGURE 9. RECEIVE PARALLEL OUTPUT INTERFACE BLOCK
SONET Framer/ASIC
XRT91L32
STS-12/STM-4
or
STS-3/STM-1
Transceiver
RXPCLKO
RXDO[7:0]
8
xr XRT91L32
REV. 1.0.2 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
19
2.10 Receive Parallel Data Output Timing
The receive parallel data output from the STS-12/STM-4 or STS-3/STM-1 receiver will adhere to the setup and
hold times shown in Figure 10 ,Table 7, and Table 8. Table 9 shows the PECL and TTL output timing
specifications.
FIGURE 10. RECEIVE PARALLEL OUTPUT TIMING
TABLE 7: RECEIVE PARALLEL DATA OUTPUT TIMING (STS-12/STM-4 OPERATION)
TABLE 8: RECEIVE PARALLEL DATA OUTPUT TIMING (STS-3/STM-1 OPERATION)
SYMBOL PARAMETER MIN TYP MAX UNITS
tRXCLK Receive high-speed serial clock period 1.608 ns
tRXPCLKO Receive parallel data output byte clock period 12.86 ns
tRXDO_VALID Time the data is valid on RXDO[7:0] and FRAMEPULSE
before and after the rising edge of RXPCLKO 4ns
tPULSE_WID Pulse width of frame detection pulse on FRAMEPULSE 12.86 ns
SYMBOL PARAMETER MIN TYP MAX UNITS
tRXCLK Receive high-speed serial clock period 6.43 ns
tRXPCLKO Receive parallel data output byte clock period 51.44 ns
tRXDO_VALID Time the data is valid on RXDO[7:0] and FRAMEPULSE
before and after the rising edge of RXPCLKO 22 ns
tPULSE_WID Pulse width of frame detection pulse on FRAMEPULSE 51.44 ns
tRXCLK
RXPCLKO
RXDO[7:0]
RXIP
RXIN
FRAMEPULSE
tRXDO_VALID
tRXPCLKO
A1 A2 A2A2 A2
tPULSE_WID
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.2
20
TABLE 9: PECL AND TTL RECEIVE OUTPUTS TIMING SPECIFICATION
SYMBOL PARAMETER MIN TYP MAX UNITS
tR_PECL PECL output rise time (20% to 80%) 350 ps
tF_PECL PECL output fall time (80% to 20%) 350 ps
tR_TTL TTL output rise time (10% to 90%) 2ns
tF_TTL TTL output fall time (90% to 10%) 1.5 ns
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
21
3.0 TRANSMIT SECTION
The tra nsmit secti on of the XRT91L 32 accep ts 8-bit parallel d ata and conve rts it to seria l Differ ential LVPECL
data output intented to interface to an optical module. It consists of an 8-bit parallel Single-Ended LVTTL
interface, Parallel-to-Serial Converter , a clock multiplier unit (CMU), a Low V oltage Positive-referenced Emitter-
Coupled Logic (L VPECL) differential line driver, and Loop Timing modes. The LVPECL serial data output rate is
622.08 Mbps for STS-12/STM-4 applications and 155.52 Mbps for STS-3/STM-1 applications. The high
frequency serial clock is synthesized by a PLL, which uses a low frequency clock as its input reference. In
order to synchronize the data transfer process, the synthesized 622.08 MHz for STS-12/STM-4 or 155.52 MHz
STS-3/STM-1 serial clock output is divided by eight and the 77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/
STM-1) clock respectively is presented to the framer/mapper device to be used as its timing source.
3.1 Transmit Parallel Input Interface
The paralle l data from an framer /mappe r devi ce i s pres ented to the XRT91L32 through a n 8-bit Sing le-Ende d
LVT TL parallel bu s interface TXDI[7:0 ]. To directly in terface to the XRT91L32, the SONET Fr amer/ASIC m ust
be sync hronized to t he same tim ing source T XPCLK_IO in presenting data on the parall el bus inte rface. The
data must meet setup and hold times with respect to TXPCLK_IO. This clock output source is used to
synchronize the SONET Framer/ASIC to the XRT91L32. The framer/mapper device should use TXPCLK_IO
as its tim ing s ourc e s o that paral le l data is phase a ligne d with the s erial tr an sm it data. T he da ta is la tch ed int o
a parallel input register on the rising edge of TXPCLK_IO. TXPCLK_IO is derived from a divide-by-8 of the high
speed synthes ized clo ck res ulting in a 77.76/ 1 9.44 MHz Single- Ended LVTTL clo ck ou tput sou rce to be u sed
by the framer/mapper device for parallel bus synchronization. A simplified block diagram of the transmit
parallel bus clock out put system in terface is shown in Figure 11.
FIGURE 11. TRANSMIT PARALLEL INPUT INTERFACE BLOCK
SONET Framer/ASIC
REFCLKP
TXPCLK_IO
TTLREFCLK
TXDI[7:0]
8
CMUREFSEL
REFCLKN
XRT91L32
STS-12/STM-4
or
STS-3/STM-1
Transceiver
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
22
3.2 Transmit Parallel Data Input Timing
When ap plying parall el data input to the tr ansmitt er, the se tup and hold ti mes should be followed as shown in
Figure 12 and Table 10, Table 11.
FIGURE 12. TRANSMIT PARALLEL INPUT TIMING
TABLE 10: TRANSMIT PARALLEL DATA INPUT TIMING (STS-12/STM-4 OPERATION)
TABLE 11: TRANSMIT PARALLEL DATA INPUT TIMING (STS-3/STM-1 OPERATION).
SYMBOL PARAMETER MIN TYP MAX UNITS
tTXPCLK_IO Transmit Clock Output peri od 12.86 ns
tTXDI_SU Transmit data setup time with respect to TXPCLK_IO 1.0 ns
tTXDI_HD Transmit data hold time with respect to TXPCLK_IO11.0 ns
SYMBOL PARAMETER MIN TYP MAX UNITS
tTXPCLK_IO Transmit Clock Output peri od 51.44 ns
tTXDI_SU Transmit data setup time with respect to TXPCLK_IO 1.0 ns
tTXDI_HD Transmit data hold time with respect to TXPCLK_IO11.0 ns
tTXPCLK_IO
TXDI[7:0]
TXPCLK_IO
tTXDI_HD
tTXDI_SU
Transmit Parallel Clock Output
Transmit Parallel
Clock driven by
XRT91L32 Device
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
23
3.3 Transmit Parallel Input to Serial Outpu t (PISO)
The PISO is used to conve rt 77.76 Mbps or 19.44 Mbps parallel data input to 622.08 Mbps STS-12/S TM-1 or
155.52 Mbps STS-3/STM-1 serial data output respectively, which can interface to an optical module. The
PISO bit i nterleaves parall el data input in to a serial bi t stream taking the fi rst bit from TXDI7, then the first bit
from TXDI6, and so on as shown in Figure 13.
3.4 Clock Multiplier Unit (CMU) and Re-Timer
The clock synthesizer uses a 77.76 MHz or a 19.44 MHz reference clock to generate the 622.08 MHz (for STS-
12/STM-4) or 155.52 MHz (for STS-3/STM-1) SONET/SDH transmit serial data rate frequency. Differential
LVP ECL inp ut REFC LKP/N acc epts a clock refer ence of 77.76 MHz or 19.44 MH z to synthes ize a high s peed
622.08 MHz clock for STS-12/STM-4 or 155.52 MHz clock for STS-3/STM-1 applications. Optionally, if a
Differential LVPE CL clock source is not available, TTLR EFCLK can accept an LVTTL clock signal. The clock
synthesizer uses a PLL to lock-on to the differential input REFCLKP/N or Single-Ended input TTLREFCLK
reference clock. The REFCLKP/N input should be generated from an LVPECL crystal oscillator which has a
frequenc y accur acy better than 20pp m in order for the tr ansmitted d ata rate fre quency t o have the n ecessary
accuracy required for SONET systems. If the TTLREFCLK reference clock is used, the TTLREFCLK
reference input should be tied to a LVTTL crystal oscillator with 20ppm accuracy. The two reference clocks are
XNOR’ed and the choice between the LVPECL and LVTTL clocks are controlled tying either REFCLKP or
TTLREFCLK to ground. Table 1, on page 11 shows the CMU reference clock frequency settings. Table 12
specifies the Clock Multiplier Unit’s requirements for the referenc e clock.
TABLE 12: CLOCK MULTIPLIER UNIT REQUIREMETNS FOR REFERENCE CLOCK
FIGURE 13. SIMPLIFIED BLOCK DIAGRAM OF PISO
NAME PARAMETER MIN TYP MAX UNITS
REFDUTY Reference clock duty cycle 40 60 %
REFJIT Reference clock jitter (rms) with 19.44 MHz refer ence15ps
REFJIT Reference clock jitter (rms) with 77.76 MHz refer ence113 ps
REFTOL Reference clock frequency tolerance2-20 +20 ppm
ECLKJIT STS-3/STM-1 Electrical Clock output jitter (rms) with 19.44 MHz reference 1mUIrms
ECLKJIT STS-12/STM-4 Electrical Clock output jitter (rms) with 19.44 MHz reference 5mUIrms
ECLKJIT STS-3/STM-1 Electrical Clock output jitter (rms) with 77.76 MHz reference 2mUIrms
b00b01b02b03b04b05b06b07
bn0bn1bn2bn3bn4bn5bn6bn7
bn+0bn+1bn+2bn+3bn+4bn+5bn+6bn+7
b70b71b72b73b74b75b76b77
8-bi t Pa r alle l LV TTL Inpu t Data
TXDI0
TXDI7
TXDIn+
TXDInTXOP/N
TXPCLK_IO 77.76 MHz (STS-12/STM-4) or 19.44 MHz (STS-3/STM-1)
622.08 Mbps STS-12/STM-4 or
155.52 Mbps STS-3/STM-1 serial data rate
b40b50
b60b70b20
b30
b47b57b67b77b37
PISO
time (0)
b27b
17b
07b10b00
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
24
Jitter specification is defined using a 12kHz to 1.3/5MHz LP-HP single-pole filter.
1These reference clock jitter limits are required for the outputs to meet SONET system level jitter requirements (<10 mUIrms).
2Required to meet SONET output frequency stability requirements.
3.5 Loop Timing and Clock Control
Two types of loop timing are possible in the XRT91L32.
In the internal loop timing mode, loop timing is controlled by the LOOPTIME pin. This mode is selected by
assert ing the LO OPTIME sign al to a hig h lev el . Whe n the lo op tim in g mode is activate d, the CMU synt he si ze d
hi-speed r eference clo ck input to the R etimer is repla ced with the hi- speed internal ly recovered receive clo ck
coming from the CDR. Under this condition both the transmit and receive sections are synchronized to the
internally recovered receive clock. Loop time mode directly locks the Retimer to the recovered receive clock.
In external loop timing mode, the XRT91L32 allows the user the flexibility of using an externally recovered
receiv e clock for reti ming the high s peed se rial data. Fi rst, the CDR DIS inpu t pin sh ould be set hig h. By d oing
so, the interna l CDR is disabled and by passed and the XRT91L32 will sampl e the incoming high speed serial
data on RXIP/N with the externally recovered receive clock connected to the XRXCLKIP/N inputs. In this state,
the receive clock de-jittering and recovery is done externally and fed thru XRXCLKIP/N and the XRT91L32 will
sample RXIP/N on the rising edge of XRXCLKIP/N. Secondly, the LOOPTIME pin must also be set high in
order to select the externally recovered receive clock on XRXCLKIP/N as the reference clock source for the
transmit serial data output stream TXOP/N.
Table 13 provides configuration for selecting the loop timing and clock recovery modes. The use of the on-chip
CDR or an external recovered clock in loop timing applications is shown in Figure 14.
ECLKJIT STS-12/STM-4 Electrical Clock output jitter (rms) with 77.76 MHz reference 4mUIrms
OCLKFREQ Frequency output 620 624 MHz
OCYCDUTY Clock output duty cycle (’1010’ data pattern) 45 55 %
TABLE 13: LOOP TIMING AND CLOCK RECOVERY CONFIGURATIONS
CDRDIS LOOPTIME TRANSMIT CLOCK SOURCE RECEIVE CLOCK SOURCE
0 0 Clock Multiplier Unit CDR Enabled.
Clock and Data recovery by internal CDR
0 1 Internal CDR CDR Enabled.
Clock and Data recovery by internal CDR
1 0 Clock Multiplier Unit
CDR Disabled.
Externally recovered Receive Clock from
XRXCLKIP/N
622.08/155.52 Mbps data on RXIP/N sampled at
rising edge of XRXCLKIP/N
1 1 External CDR thru XRXCLKIP/N
CDR Disabled.
Externally recovered Receive Clock from
XRXCLKIP/N
622.08/155.52 Mbps data on RXIP/N sampled at
rising edge of XRXCLKIP/N
NAME PARAMETER MIN TYP MAX UNITS
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
25
3.6 Transmit Serial Output Control
The 622.0 8 Mb ps STS- 12 /STM -4 or 155.52 Mbps STS -3/S T M-1 tr ans mit s er ia l output is avali abl e o n TXO P /N
pins. The transmit serial output can be AC or DC coupled to an optical module or electrical interface. A
simpli fied block di agram with int ernally AC-coup led SFP is show n in Figure 15. Also, refer to applicatio n note
TAN-9132.)
NOTE: Some optical modules integrate AC coupling capacitors within the module. AC or DC coupling is largely specific to
system design and optical module of choice.
FIGURE 14. LOOP TIMING MODE USING INTERNAL CDR OR AN EXTERNAL RECOVERED CLOCK
FIGURE 15. TRANSMIT SERIAL OUTPUT INTERFACE BLOCK
RXIP
RXIN
MUX
CDR
MUX
MUX
REFCLKP
REFCLKN
TTLREFCLK
CDRDIS
Div by 8
Clk
Data
~
~~
~
XRT91L32
LOOPTIME XRXCLKIP
XRXCLKIN
DATA
PISO
to Retime r
SIPO
Retimer
TXOP
TXON
CLK
8
RXDO[7:0]
RXPCLKO
DATA
CLK
TXPCLK_IO
VDD
ENB
ENB
MUX
0
1
Div by
8
8
TXDI[7:0]
622.08/
155.52MHz
CMU
SFP, Optical Module
TXOP
TXON Optical Fibe
r
187 Oh m
Install close to 91L30
Internally AC coup led and
terminated into 100 Ohm
XRT91L32
STS-12/STM-4
or
STS-3/STM-1
Transceiver
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
26
4.0 DIAGNOSTIC FEATURES
4.1 Serial Remote Loopback
The serial remote loopback function is activated by setting RLOOPS "High". When serial remote loopback is
activated, the high-speed serial receive data from RXIP/N is presented at the high speed transmit output
TXOP/N, and the high-speed recovered clock is selected and presented to the high-speed transmit clock input
of the Retimer. During serial remote loopback, the high-speed receive data (RXIP/N) is also converted to
parallel data and presented at the low-speed receive parallel interface RXDO[7:0]. The recovered receive clock
is also divided b y 8 and p resented at the low-spe ed clo ck output RX PCLKO to sy nchroni ze the tra nsfer of th e
8-bit received parallel data. A simplified block diagram of serial remote loopback is shown in Figure 16.
4.2 Digital Local Loopback
The digital local loopback is activated when the DLOOP signal is set "High." When digital local loopback is
activate d, the h igh-spe ed data fro m the o utput of the parallel to seri al co nver ter is l ooped b ack and presente d
to the hi gh-speed i nput of the receiver serial to parallel con verter. Th e CMU o utput is als o looped back to the
receive section and is used to synchronize the transfer of the data through the receiver. In Digital loopback
mode, the transmit data f rom th e transmit paralle l interface T XDI[7:0] is s erialized and pr esented to the high-
speed transmit output TXOP/N using the high-speed 622.08/155.52 MHz transmit clock generated from the
clock multiplier unit and p resented to t he input of the Reti mer and SIPO . A simpl ified block diagram of digital
loopba ck is shown in Figure 17. Receive Data mute up on LOS, as shown in Figure 7, applie s to Digital Local
Loopback Mode
FIGURE 16. SERIAL REMOTE LOOPBACK
FIGURE 17. DIGITAL LOCAL LOOPBACK
PISO Re-Timer LVPECL
Output Drivers
LVPECL
Input Drivers
CDR
SIPO
R
x P a ra lle l Ou tp u t
Tx Serial Outpu
t
Serial Rem ote Loopback
Rx S erial Inpu
t
PISO Re-Timer LVPECL
Output Drivers
LVPECL
Input Drivers
CDR
SIPO
R
x Para ll el Output
Tx S erial O utpu
t
Digital Loopback
Tx Pa r allel Inp u t
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
27
4.3 Analog Local Loopback
Analog Local Loopback (ALOOP) controls a more comprehensive version of digital local loopback in which the
point where the transmit data is looped back is moved all the way back to the high-speed receive I/O. The
transmit data from the transmit parallel interface TXDI[7:0] is serialized and presented to the high-speed
transmit output TXOP/N using the high-speed 622.08/155.52 MHz transmit clock generated from the clock
multipli er unit. I n additio n, the high- speed transmit d ata TXOP/N is looped bac k to the receive c lock and data
recovery unit, replacing the RXIP/N. The signal is then processed by the CDR, and is sent through the serial to
parallel conv erter and presen ted at the low-spee d receive paral lel interface RXDO [7:0]. ALOOP is invoked by
assert ing the ALO O P pin "H igh ." A sim pli fi ed bl ock dia gr am of parall el r emo te lo opba ck is sho wn in Figure 18.
Receive data mute upon "LOS
4.4 Split Loopback
The serial remote loopback and the digital local loopback can be combined to form a split loopback. The
output of the parallel to serial converter is looped back and p resented t o the high- speed input o f the rece iver
serial to parallel converter. The high-speed serial receive data from RXIP/N is presented at the high speed
transmit output TXOP/N, and the high-speed recovered clock is selected to re-time the high speed transmit
data output. A simplified block diagram of parallel remote loopback is shown in Figure 19.
FIGURE 19. SPLIT LOOPBACK
FIGURE 18. ANALOG LOCAL LOOPBACK
PISO Re-Timer LVPECL
Outp ut Drivers
LVPECL
Input Drivers
CDRSIPO
Tx Parallel Input
R
x Parallel Output
Tx S erial Outpu
t
Analog Local Loop back
PISO Re-Timer LVPECL
Outp ut Drivers
LVPECL
Input Drivers
CDR
SIPO
Tx P a ra lle l In pu t
R
x Parallel Output
Tx S erial Outpu
t
Split Loopback
Rx Se rial Inpu
t
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
28
4.5 Eye Diagram
The XRT91L32 Eye diagram illustrates the transmit serial output signal integrity and quality.
FIGURE 20. STS-3/ST M -1 EYE DIAGRAM
FIGURE 21. STS-12/STM-4 EYE DIAGRAM
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
29
4.6 SONET Jitter Requirements
SONET equipment jitter requirements are specified for the following three types of jitter . The definitions of each
of these types of jitter are given below. SONET equipment jitter requirements are specified for the following
three types of jitter.
4.6.1 Jitter To le ranc e:
Jitter tolerance is defined as the peak-to-peak amplitude of sinusoidal jitter applied on the input OC-N
equipment interface that causes an equivalent 1dB optical power penalty. OC-1/STS-1, OC-3/STS-3, OC-12
and OC-48 category II SONET interfaces should tolerate, the input jitter applied according to the mask of
Figure 22, with the corresponding parameters specified in the figure.
FIGURE 22. JITTER TOLERANCE MASK
OC-N/STS-N LEVEL
1
3
12
48
F0 (HZ)
10
10
10
10
F1 (HZ)
30
30
30
600
F2 (HZ)
300
300
300
6000
F3 (HZ)
2K
6.5K
25K
100K
F4 (HZ)
20K
65K
250K
1000K
A1 (UIPP)
0.15
0.15
0.15
0.15
A2 (UIPP)
1.5
1.5
1.5
1.5
A3 (UIPP)
15
15
15
15
Input
Jitter
Amplitude
(UIpp)
A3
A2
A1
f0f1f2f3f4
slop e= -20dB/decade
slope= -20 dB/decade
Jitter Frequency (Hz)
3
12
10
10
30
30
300
300
6.5K
25K
65K
250K
0.15
0.15
1.5
1.5
15
15
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
30
FIGURE 23. XRT91L32 MEASURED JITTER TOLERANCE AT 622.08 MBPS STS-12/STM-4
FIGURE 24. XRT91L32 MEASURED JITTER TOLERANCE AT 155.52 MBPS STS-3 / ST M-1
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
31
4.6.2 Jitter Generation
Jitter generation is defined as the amount of jitter at the STS-N output in the absence of applied input jitter. The
Bellcore and ITU requirement for this type jitter is 0.01UI rms measured with a specific band-pass filter.
For more in formation on these specifi cations re fer to Bellcore TR -NWT-0 00253 sect ions 5.6.2-5 an d GR-253-
CORE secti on 5.6.
Phase noise plot shows the power of the noise with respect to the carrier power. When this curve is integrated
in the frequency band of in terest, the outcome is the noise power. Jitter generation in rms is then derived by
factoring with the appropriate period for the clock cycle.
FIGURE 25. XRT91L32 MEASURED ELECTRICAL PHASE NOISE TRANSMIT JITTER GENERATION AT 622.08 MBPS
STS-12/STM4 USING ’1010’ OUTPUT PATTERN
Phase Noise Transmit Jitter Generation
(Wide Band ) usi n g HP 8560E
-120
-115
-110
-105
-100
-95
-90
1 10 100 1000 10000 100000
Fre quency (kHz )
dBC/Hz
REF CLK = 19. 44 M Hz
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
32
5.0 ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
NOTE: Stresses listed under Absolute Maximum Power and I/O ratings may be applied to devices one at a time without
causin g pe rma nent dama ge. F unc tio na lity at o r abo ve the v al ues li ste d is not imp li ed. Ex po sure to thes e v alu es for
extended periods will severe ly affect device reliability.
Thermal Resistance of QFP Package........ΘjA = 45°C/W Operating Temperature Range ..... ...... ......-40°C to 85°C
Thermal Resistance of QFP Package........ΘjC = 12°C/W Case Temperature under bias..................-55°C to 125°C
ESD Protection (HBM)..........................................>2000V Storage Temperature ...............................-65°C to 150°C
ABSOLUTE MAXIMUM POWER AND INPUT/OUTPUT RATINGS
SYMBOL TYPE PARAMETER MIN. TYP. MAX. UNITS
VDD3.3 CMOS Digital Power Supply -0.5 6.0 V
VDDLVPECL PECL I/O Power Supply -0.5 6.0 V
AVDD_IO 3.3V Analog I/O and Power Supply -0.5 6.0 V
LVPECL DC logic signal input voltage -0.5 VDDLVPECL +0.5 V
LVTTL DC logic signal input voltage -0.5 5.5 V
LVTTL DC logic signal output voltage -0.5 VDD3.3 +0.5 V
LVPECL Input current -100 100 mA
LVTTL Input current -100 100 mA
POWER AND CURRENT DC ELECTRICAL CHARACTERISTICS
Test Conditions: TA = 25°C, VDD = 3.3V + 5% unless otherwise specified
SYMBOL TYPE PARAMETER MIN. TYP. MAX. UNITS CONDITIONS
VDD3.3 Power Supply Voltage 3.135 3.3 3.465 V
AVDD3.3 Transmit Power Supply Voltage (AVDD3.3_TX) 3.135 3.3 3.465 V
AVDD3.3 Receiver Power Supply Voltage (AVDD3.3_RX) 3.135 3.3 3.465 V
VDD
LVPECL PECL I/O Power Supply Voltage 3.135 3.3 3.465 V
IDD-OC3 Total Power Supply Current 200 mA
IDD-OC12 Total Power Supply Current 242 mA
PDD-OC3 Total Power Consumption 660 mW
PDD-OC12 Total Power Consumption 800 mW
xr XRT91L32
REV. 1.0.3 STS-12/STM-4 OR STS-3 /ST M-1 SONET/SDH TRANSCEIVER
33
LVPECL AND LVTTL LOGIC SIGNAL DC ELECTRICAL CHARACTERISTICS
Test Conditions: TA = 25°C, VDD = 3.3V + 5% unless otherwise specified
SYMBOL TYPE PARAMETER MIN TYP MAX UNITS CONDITIONS
VOH LVPECL Output High Voltage VDDLVPECL
- 0.9 V
VOL LVPECL Output Low Voltage 0.7 V
VOCOMM LVPECL Output C om mo n M ode Voltage 1.1 VDDLVPECL
- 1.3 V
VODIFF LVPECL Output Differential Voltage 600 1300 mV Terminate with
50Ω to
VDDLVPECL- 2.0
VIH LVPECL Input High Voltage VDDLVPECL
- 0.9 VDDLVPECL
- 0.3 VFor
Single-Ended
VIL LVPECL Input Low Voltag e 0VDDLVPECL
- 1.72 VFor
Single-Ended
VIDIFF LVPECL Input PECL Differential V oltage 400 1600 mV
VICOMM LVPECL Input PECL Common Mode
Voltage 2.0 V
VOH LVTTL Output High Voltage 2.0 V IOH = -18.0mA
at VOH=2.4V
VOL LVTTL Output Low Voltage 00.8 V IOL = 15.0mA
at VOL=0.4V
VIH LVTTL Input High Voltage 2.0 V
VIL LVTTL Input Low Voltage 00.8 V
IIH LVTTL Input High Current 50 500 μA2.0V<VIN<5.5V
VIN=2.4V typical
IIL LVTTL Input Low Current -500 μA-0.5V<VIN<0.8V
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
34
PACKAGE DIMENSIONS
ORDERING INFORMATION
PART NUMBER PACKAGE OPERATING TEMPERATURE RANGE
XRT91L32IQ-F 100-pin Plastic Quad Flat Pack (14.0 x 20.0 x 2.7 mm3, QFP) -40°C to +85°C
80 51
50
31
130
81
100
D
D1
E
E1
B
e
A2
α
A1
A
eating Plane L
C
(14 x 20 x 2.7 m m , QFP , 1.6m m form )
Rev. 1.00
(Pin 1 feature is mfger option
SYMBOLMINMAXMINMAX
A 0.102 0.134 2.60 3.40
A1 0.010 0.020 0.25 0.50
A2 0.100 0.120 2.55 3.05
B 0.009 0.015 0.22 0.38
C 0.005 0.009 0.13 0.23
D 0.904 0.923 22.95 23.45
D1 0.783 0.791 19.90 20.10
E 0.667 0.687 16.95 17.45
E1 0.547 0.555 13.90 14.10
e 0.0256 BSC 0.65 BSC
L 0.029 0.040 0.73 1.03
α
MILLIMETERSINCHES
Note: The control dimension is the millimeter column
1.6mm form
XRT91L32 xr
STS-12/STM-4 OR STS-3/STM-1 SONET/SDH TRANSCEIV E R REV. 1.0.3
35
NOTICE
EXAR Co rporation r eserve s the right to ma ke chan ges to the products contained in th is publ ication i n order t o
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any
circuits described herein, conveys no license under any patent or other right, and makes no representation that
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration
purpose s and m ay var y de pendin g upon a us er’s s pecif ic appl icati on. W hile the in forma tion i n thi s pub lica tion
has been carefully checked; no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the
failure or malfunctio n of the product ca n reasona bly be expecte d to cause fai lure of the life s upport syst em or
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless
EXAR Corporatio n receive s, in writi ng, assuran ces to i ts satisfac tion that: (a) the ris k of inju ry or dam age has
been m inimized; (b) the user as sumes al l such risks ; (c) poten tial liabi lity of EXA R Corporation is adequate ly
protected under the circumstances.
Copyright 2006 EXAR Corporation
Datasheet November 2006.
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
REVISION HISTORY
REVISION # DATE DESCRIPTION
1.0.0 November 2006 XRT91L32 datasheet release version.
1.0.1 11/07/06 correct typo errors
1.0.2 11/08/06 Added Min Reset pulse width of 100nS in pin description, correct typo errors.
1.0.3 06/14/07 Corrected Figure 3 to portray an applic ati on w ith AC-co upl ed SFP
Corrected the serial data bit order in Figure 13
Made pin 81 VDD only
Minor editorial corrections