OPTOELECTRONICS HERMETIC SILICON PHOTOTRANSISTOR L14N1/2 l | _ NG PLANE A - how | o4 | @ b L gop fg $T1336 SyMBOL|__NCHES | MILUMETERS [ores MIN. | MAX. | MIN. | MAX. A [2 | | 534 @b 016 | .021 406 | 534 @p_ | 209 | 230 | 530 | 585 @D, | .178 | 195 | 452 | 4.96 100NOM | 2.54NOM 2 e, 0.50 NOM 1.27 NOM 2 h _ .030 = 76 j 036 | 046 | 91 [1.17 | .028 | 048 | 71 [122 | 4 Lt | 500 | | ta7{] | 45 | 45 | 45 | 45 [ 3 (COLLECTOR CONNECTED TO CASE) (3) B(2) stigeos EM) NOTES: 1. MEASURED FROM MAXIMUM DIAMETER OF DEVICE. 2. LEADS HAVING MAXIMUM DIAMETER .021 (.533mm) MEASURED IN GAUGING PLANE .054 + .001 .000 (137 + .025 .000mm) BELOW THE REFERENCE PLANE OF THE DEVICE SHALL BE WITHIN .007 (.778mm) THEIR TRUE POSITION RELATIVE TO MAXIMUM WIDTH TAB. 3. FROM CENTERLINE TAB, The L14N series is a silicon phototransister mounted in a wide angle, TO-18 package. @ Hermetically sealed package. m@ Narrow reception angle. m Device can be used as a photodiode by using the collector and base leads. ) HERMETIC SILICON OPTOELECTAONICS PHOTOTRANSISTOR Storage Temperature 2... cen teeter tenn een eens 65C to +150C Operating Temperature 0.0... cee n tenet e tt ee nett atnenes 65C to +125C Soldering: Lead Temperature (Iron) 200. cece ett e eee 240C for 5 sec.%459 Lead Temperature (Flow) ........0.0.0.0.0.0.0 0200s 260C for 10 sec.*4 Collector-Emitter Breakdown Voltage ... 6.0... n ee nee nsec renee 30 Volts Collector-Base Breakdown Voltage 1.0... cece nen eee ee ten ee eneees 40 Volts Emitter-Base Breakdown Voltage ........0.0.. 00. cece ene n nee n eee e teen eee ees 5 Volts Power Dissipation (T, = 25C) 0... eee een ee tee nee cette eee ene eas 300 mw Power Dissipation (Te = 25C) 20... n nee eee ne enneenae 600 mW? 25C Unless Otherwise Specified) ants made undet pulse conditio PARAMETER SYMBOL MIN. TYP. UNITS TEST CONDITIONS Collector-Emitter Breakdown BV ceo 30 _ Vv |, = 10 mA, Ee = 0 Emitter-Base Breakdown BV eso 5 _ Vv le = 100 pA, Ee = 0 Collector-Base Breakdown BV cso 40 _ Vv lp = 100 pA, Ee = 0 Collector-Emitter Leakage leeo 100 nA Voe = 10V, Ee = 0 Collector-Base Leakage leso _ 25 nA Vea = 25V, Ee = 0 Reception Angle at 12 Sensitivity 8 +40 Degrees On-State Collector Current L14N1 lejos) 3.0 mA Ee = 1.5 mWicm, Vee = 5 Vi" On-State Collector Current L14N2 loom 6.0 mA Ee = 1.5 mWicm, Vee = 5 Vi") On-State Photodiode Current losiom 5.0 LA Ee = 1.5 mW/cm?, Ves = 5 V Rise Time t 14 us le = 10 MA, Veo = 5 V, R, = 1002, Fall Time t 16 uS Ip = 10 MA, Veco = 5 V, R. = 1002 Saturation Voltage L14N1 Verisan _ 0.40 v I, = 0.8 mA, Ee = 3.0 mW/cm? Saturation Voltage L14N2 Vesisan _ 0.40 v I, = 1.6 mA, Ee = 3.0 mW/cm? Derate p power cisopation linearly 3.00m wre above 25C ambient. Derate power dissipation linearly 6.00mW/C above 25C case. AMA flux is recommended. Methanol or lsopropy! alcohols are recommended as cleaning agents. Soldering iron tip Vie" (1.6 mm) minimum from housing. As long as leads are not under any stress or spring tension. Light source is a GaAs LED emitting light at a peak wavelength of 940 nm. . Figure 1 and figure 2 use light source of tungsten lamp at 2870K color temperature. A GaAs source of 3.0 mW/crr is approximately equivalent to a tungsten source, at 2870K, of 10 mW/cn?. BNHAAK SHH]& HERMETIC SILICON OPTOELECTRONICS PHOTOTRANSISTOR 8 {+++ 4 6]/-- NORMALIZED TO: Bap be = Sm Wiem? f a Vee= SV. Ty LA 5 2 c TA = 25C E~ 20 mWiem2_| AL ig 7] rc 2 PULSED 10 > c Le] 3 tp = 300usec sy Ln | s 1 bk o4 : | a 8 ] & 4 al E 6 a LAAN Li o 4 Ny 4 a LL tt} w 7 NORMALIZED TO 2 -_ | s Ee = SmW/em2 Ss 05 | je] Zo Vice = 5V xc Ss 08 Ta=25C g te f- & 06 PULSED 8 7 02 8 tp = 300usec | 04 * i root os 04 4 Lo) ~ 92 o4 eo a 02 Oar 07 0608. COCA 1020 on GEE 10 30 Voge COLLEGIOK 10 EMITTER VOLTAGE VOLTS Ee - TOTAL IARADIANCE IN mW/cm? Fig. 1. Light Current vs. Collector to Emitter Voltage T1992 Fig. 2. Light Current vs. Radiation ST1097 10" afr = 50 ma t z 2 a} | Zz 10 c Th mA pr 5 ane SS s o 3 __ 2 593 & 6 3 & 4{[ 2m a r__] a a oe A le t| o = eee eee 3 Z / | a ao +- & O 0.5 3 NORMALIZED TO: Ta = 25C = | < Vce= 10V | .04pNORMALIZED TO: If - 5 mA 2 Voce =5 3 1 4 Tas 28C z o2 PULSED. { Ga Ag SOURCE (1NG265) I TyTa. tp= Sobusee 0.4 1 70207 a0~CSSCSSC~iaSSCSSCSSCSC*s o"=0 35 0 25 50 75 100 Ta TEMPERATURE C T, TEMPERATURE C Fig. 3. Dark Current vs. Temperature ST1093 Fig. 4. Light Current vs. Temperature ST1096 100 1 9 'B0 L \ 4 we b & 40 - os 9 3 z ahs L 4 z a OB ios Pal P| , OG Fs 4 ~J01) = = 1000, E 60 \ : = 6 50 m ~ z a _| @ 4 S 0 + STAIN pseae > A) +4 K 0r> a 3 40 04 WN > NStweo! Nha 5 a Ca = = t 1 th 2 . 4 z 8 is 20) 0.2 5 6} NORMALIZED TO: Tt NORMALIZED TO: Z 4b Vee = 5V Veo = SV 7 Y I = 10mA Igi= 10mA 0 4 i 1 | 4 ! I i D 2b RL=100n RL= 1000 =-40 -20 0 20 40500 700 900 1100 5 Ta = 25C : Ta * 25C @- ANGULAR DISPLACEMENT A+ WAVE LENGTH - 1d Jy FROM OPTICAL AXIS. NANOMETERS ee ee, OUTPUT CURRENT io DEGREES ce AL ST1095 sTi004 RISE TIME FALL TIME Fig. 5. Angular and Spectral Response Fig. 6. Switching Speed vs. Bias