November 2016
DocID027958 Rev 2
1/36
This is information on a product in full production.
www.st.com
VN7007ALH
High-side driver with CurrentSense analog feedback for
automotive applications
Datasheet - production data
Features
Max transient supply voltage
40 V
Operating voltage range
4 to 28 V
Typ. on-state resistance (per Ch)
7
Current limitation (typ)
100 A
Stand-by current (max)
0.5 µA
AEC-Q100 qualified
General
Single channel smart high-side driver
with CurrentSense analog feedback
Very low standby current
Compatible with 3 V and 5 V CMOS
outputs
Diagnostic functions
Overload and short to ground (power
limitation) indication
Thermal shutdown indication
OFF-state open-load detection
Output short to VCC detection
Sense enable/ disable
Protections
Undervoltage shutdown
Overvoltage clamp
Load current limitation
Self limiting of fast thermal transients
Loss of ground and loss of VCC
Configurable latch-off on
overtemperature or power limitation
Reverse battery
Electrostatic discharge protection
Applications
Specially intended for Automotive smart power
distribution, glow plugs, heating systems, DC
motors, relay replacement and high power
resistive and inductive actuators.
Description
The device is a single channel high-side driver
manufactured using ST proprietary VIPower®
technology and housed in the Octapak package.
The device is designed to drive 12 V automotive
grounded loads through a 3 V and 5 V CMOS-
compatible interface, and to provide protection
and diagnostics.
The device integrates advanced protective
functions such as load current limitation, overload
active management by power limitation and
overtemperature shutdown.
A combination of INPUT and FR_DIAG pins
latches the output in case of fault, disables the
latch-off functionality and enables OFF-state
diagnostic.
Table 1: Device summary
Package
Order codes
Tape and reel
Octapak
VN7007ALHTR
Contents
VN7007ALH
2/36
DocID027958 Rev 2
Contents
1 Block diagram and pin description ................................................ 5
2 Electrical specification .................................................................... 7
2.1 Absolute maximum ratings ................................................................ 7
2.2 Thermal data ..................................................................................... 8
2.3 Main electrical characteristics ........................................................... 8
2.4 Electrical characteristics curves ...................................................... 15
3 Protections..................................................................................... 19
3.1 Power limitation ............................................................................... 19
3.2 Thermal shutdown ........................................................................... 19
3.3 Current limitation ............................................................................. 19
3.4 Negative voltage clamp ................................................................... 19
4 Application information ................................................................ 20
4.1 GND protection network against reverse battery ............................. 20
4.2 Immunity against transient electrical disturbances .......................... 21
4.3 MCU I/Os protection ........................................................................ 21
4.4 CS - analog current sense .............................................................. 22
4.4.1 Principle of CurrentSense signal generation .................................... 23
4.4.2 Short to VCC and OFF-state open-load detection ........................... 25
5 Maximum demagnetization energy (VCC = 16 V) ........................ 27
6 Package and PCB thermal data .................................................... 28
6.1 Octapak thermal data ...................................................................... 28
7 Package information ..................................................................... 31
7.1 Octapak package information.......................................................... 31
7.2 Octapak packing information ........................................................... 32
7.3 Octapak marking information .......................................................... 34
8 Revision history ............................................................................ 35
VN7007ALH
List of tables
DocID027958 Rev 2
3/36
List of tables
Table 1: Device summary ........................................................................................................................... 1
Table 2: Pin functions ................................................................................................................................. 5
Table 3: Suggested connections for unused and not connected pins ........................................................ 6
Table 4: Absolute maximum ratings ........................................................................................................... 7
Table 5: Thermal data ................................................................................................................................. 8
Table 6: Power section ............................................................................................................................... 8
Table 7: Switching ....................................................................................................................................... 9
Table 8: Logic Inputs................................................................................................................................. 10
Table 9: Protections .................................................................................................................................. 11
Table 10: Current Sense ........................................................................................................................... 11
Table 11: Truth table ................................................................................................................................. 14
Table 12: FR_DIAG functionality .............................................................................................................. 15
Table 13: ISO 7637-2 - electrical transient conduction along supply line ................................................. 21
Table 14: CurrentSense pin levels in off-state .......................................................................................... 25
Table 15: PCB properties ......................................................................................................................... 28
Table 16: Thermal parameters ................................................................................................................. 30
Table 17: Octapak mechanical data ......................................................................................................... 31
Table 18: Reel dimensions ....................................................................................................................... 33
Table 19: Document revision history ........................................................................................................ 35
List of figures
VN7007ALH
4/36
DocID027958 Rev 2
List of figures
Figure 1: Block diagram .............................................................................................................................. 5
Figure 2: Configuration diagram (top view)................................................................................................. 6
Figure 3: Current and voltage conventions ................................................................................................. 7
Figure 4: Switching times and Pulse skew ............................................................................................... 13
Figure 5: TDSTKON .................................................................................................................................. 14
Figure 6: OFF-state output current ........................................................................................................... 15
Figure 7: Standby current ......................................................................................................................... 15
Figure 8: IGND(ON) vs. Tcase ................................................................................................................. 15
Figure 9: Logic Input high level voltage .................................................................................................... 15
Figure 10: Logic Input low level voltage.................................................................................................... 16
Figure 11: High level logic input current ................................................................................................... 16
Figure 12: Low level logic input current .................................................................................................... 16
Figure 13: Logic Input hysteresis voltage ................................................................................................. 16
Figure 14: Undervoltage shutdown ........................................................................................................... 16
Figure 15: On-state resistance vs. Tcase ................................................................................................. 16
Figure 16: On-state resistance vs. VCC ................................................................................................... 17
Figure 17: Turn-on voltage slope .............................................................................................................. 17
Figure 18: Turn-off voltage slope .............................................................................................................. 17
Figure 19: Won vs Tcase .......................................................................................................................... 17
Figure 20: Woff vs Tcase .......................................................................................................................... 17
Figure 21: ILIMH vs. Tcase ....................................................................................................................... 17
Figure 22: Turn-off output voltage clamp .................................................................................................. 18
Figure 23: OFF-state open-load voltage detection threshold ................................................................... 18
Figure 24: Vsense clamp vs Tcase ........................................................................................................... 18
Figure 25: Vsenseh vs Tcase ................................................................................................................... 18
Figure 26: Application diagram ................................................................................................................. 20
Figure 27: Simplified internal structure ..................................................................................................... 20
Figure 28: CurrentSense and diagnostic block diagram........................................................................ 22
Figure 29: CurrentSense block diagram ................................................................................................... 23
Figure 30: Analogue HSD open-load detection in off-state ................................................................... 24
Figure 31: Open-load / short to VCC condition ......................................................................................... 25
Figure 32: Maximum turn off current versus inductance .......................................................................... 27
Figure 33: Octapak on two-layers PCB (2s0p to JEDEC JESD 51-5) ...................................................... 28
Figure 34: Octapak on four-layers PCB (2s2p to JEDEC JESD 51-7) ..................................................... 28
Figure 35: Rthj-amb vs PCB copper area in open box free air conditions ............................................... 29
Figure 36: Octapak thermal impedance junction ambient single pulse .................................................... 29
Figure 37: Thermal fitting model for Octapak ........................................................................................... 30
Figure 38: Octapak package dimensions ................................................................................................. 31
Figure 39: Octapack reel 13" .................................................................................................................... 32
Figure 40: Octapak carrier tape ................................................................................................................ 33
Figure 41: Octapak schematic drawing of leader and trailer tape ............................................................ 34
Figure 42: Octapak marking information................................................................................................... 34
VN7007ALH
Block diagram and pin description
DocID027958 Rev 2
5/36
1 Block diagram and pin description
Figure 1: Block diagram
Table 2: Pin functions
Name
Function
VCC
Battery connection.
OUTPUT
Power outputs. All the pins must be connected together.
GND
Ground connection.
INPUT
Voltage controlled input pin with hysteresis. Compatible with 3 V and 5 V CMOS outputs.
It controls output switch state.
CS
Analog current sense output pin delivers a current proportional to the load current.
FR_DIAG
It sets auto-restart and latch-off protection. Moreover, it enables OFF-state diagnostic
(see Table 12: "FR_DIAG functionality").
Block diagram and pin description
VN7007ALH
6/36
DocID027958 Rev 2
Figure 2: Configuration diagram (top view)
Table 3: Suggested connections for unused and not connected pins
Connection /
pin
CS
N.C.
Output
Input
FR_DIAG
Floating
Not allowed
X (1)
X
X
X
To ground
Through 1
resistor
X
Not
allowed
Through 15
resistor
Through 15
resistor
Notes:
(1)X: do not care.
CS
OUTPUT
FR_DIAG
OUTPUT
OUTPUT
GND
INPUT
VN7007ALH
Electrical specification
DocID027958 Rev 2
7/36
2 Electrical specification
Figure 3: Current and voltage conventions
VF = VOUT - VCC when VOUT > VCC and INPUT = LOW
2.1 Absolute maximum ratings
Stressing the device above the rating listed in Table 4: "Absolute maximum ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to the conditions in table below for extended
periods may affect device reliability.
Table 4: Absolute maximum ratings
Symbol
Parameter
Value
Unit
VCC
DC supply voltage
38
V
-VCC
Reverse DC supply voltage
16
VCCPK
Maximum transient supply voltage (ISO7637-2:2004 Pulse 5b level
IV clamped to 40 V; RL = 4 Ω)
40
VCCJS
Maximum jump start voltage for single pulse short circuit protection
28
-IGND
DC reverse ground pin current
200
mA
IOUT
OUTPUT DC output current
Internally
limited
A
-IOUT
Reverse DC output current
30
IIN
INPUT DC input current
-1 to 10
mA
IFR_DIAG
FR_DIAG DC input current
ISENSE
CS pin DC output current (VGND = VCC and VSENSE < 0 V)
10
mA
CS pin DC output current in reverse (VCC < 0 V)
-20
VFn
IS
IGND
VCC VCC
OUTPUT IOUT
ISENSE
VSENSE
VOUT
CS
INPUT
FR_DIAG
VIN
VFR_DIAG
IFR_DIAG
IIN
Electrical specification
VN7007ALH
8/36
DocID027958 Rev 2
Symbol
Parameter
Value
Unit
EMAX
Maximum switching energy (single pulse)
(TDEMAG = 0.4 ms; Tjstart = 150 °C)
170
mJ
VESD
Electrostatic discharge (JEDEC 22A-114F)
INPUT
CurrentSense
FR_DIAG
OUTPUT
VCC
4000
2000
4000
4000
4000
V
V
V
V
V
VESD
Charge device model (CDM-AEC-Q100-011)
750
V
Tj
Junction operating temperature
-40 to 150
°C
Tstg
Storage temperature
-55 to 150
2.2 Thermal data
Table 5: Thermal data
Symbol
Parameter
Typ. value
Unit
Rthj-board
Thermal resistance junction-board (JEDEC JESD 51-8)(1)
2.8
°C/W
Rthj-amb
Thermal resistance junction-ambient (JEDEC JESD 51-2) (2)
58.3
Rthj-amb
Thermal resistance junction-ambient (JEDEC JESD 51-2)(1)
15.8
Notes:
(1)Device mounted on four-layers 2s2p PCB
(2)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace
2.3 Main electrical characteristics
7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified.
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
Table 6: Power section
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VCC
Operating supply voltage
4
13
28
V
VUSD
Undervoltage shutdown
4
VUSDReset
Undervoltage shutdown
reset
5
VUSDhyst
Undervoltage shutdown
hysteresis
0.3
RON
On-state resistance
IOUT = 6 A; Tj = 25°C
7
IOUT = 6 A; Tj = 150°C
14.3
IOUT = 6 A; VCC = 4 V; Tj = 25°C
10.5
RON_Rev
RDSON in reverse battery
condition
VCC = -13 V; IOUT = -6 A;
Tj = 25°C
7
Vclamp
Clamp voltage
IS = 20 mA; Tj = -40°C
38
V
IS = 20 mA; 25°C < Tj < 150°C
41
46
52
V
VN7007ALH
Electrical specification
DocID027958 Rev 2
9/36
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
ISTBY
Supply current in
standby at VCC = 13 V
(1)
VCC = 13 V;
VIN = VOUT = VFR_DIAG = 0 V;
Tj = 25°C
0.5
µA
VCC = 13 V;
VIN = VOUT = VFR_DIAG = 0 V;
Tj = 85°C (2)
0.5
VCC = 13 V;
VIN = VOUT = VFR_DIAG = 0 V;
Tj = 125°C
3
tD_STBY
Standby mode blanking
time
VCC = 13 V; VIN = 5 V;
VFR_DIAG = 0 V; IOUT = 0 A
60
300
550
µs
IS(ON)
Supply current
VCC = 13 V; VFR_DIAG = 0 V;
VIN = 5 V; IOUT = 0 A
3
6.5
mA
IGND(ON)
Control stage current
consumption in ON
state. All channels
active.
VCC = 13 V; VFR_DIAG = 5 V;
VIN = 5 V; IOUT = 6 A
9
mA
IL(off)
Off-state output current
at VCC = 13 V
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 25°C
0
0.01
0.5
µA
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 125°C
0
3
VF
Output - VCC diode
voltage
IOUT = -6 A; Tj = 150°C
0.7
V
Notes:
(1)PowerMOS leakage included.
(2)Parameter specified by design; not subject to production test.
Table 7: Switching
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified
Symbol
Parameter
Test
conditions
Min.
Typ.
Max.
Unit
td(on)(1)
Turn-on delay time at Tj = 25 °C
RL = 2.2 Ω
10
65
120
µs
td(off)(1)
Turn-off delay time at Tj = 25 °C
10
55
100
(dVOUT/dt)on(1)
Turn-on voltage slope at Tj = 25 °C
RL = 2.2 Ω
0.1
0.36
0.8
V/µs
(dVOUT/dt)off(1)
Turn-off voltage slope at Tj = 25 °C
0.1
0.47
0.8
WON
Switching energy losses at turn-on
(twon)
RL = 2.2 Ω
0.6
1.7(2)
mJ
WOFF
Switching energy losses at turn-off
(twoff)
RL = 2.2 Ω
0.6
1.7(2)
mJ
tSKEW(1)
Differential Pulse skew
(tPHL - tPLH)
RL = 2.2 Ω
-65
-15
35
µs
Notes:
(1)See Figure 4: "Switching times and Pulse skew".
(2)Parameter guaranteed by design and characterization; not subject to production test.
Electrical specification
VN7007ALH
10/36
DocID027958 Rev 2
Table 8: Logic Inputs
7 V < VCC < 28 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
INPUT characteristics
VIL
Input low level voltage
0.9
V
IIL
Low level input current
VIN = 0.9 V
1
µA
VIH
Input high level voltage
2.1
V
IIH
High level input current
VIN = 2.1 V
10
µA
VI(hyst)
Input hysteresis voltage
0.2
V
VICL
Input clamp voltage
IIN = 1 mA
5.3
7.5
V
IIN = -1 mA
-0.7
FR_DIAG characteristics (7 V < VCC < 18 V)
VFR_DIAGL
Input low level voltage
0.9
V
IFR_DIAGL
Low level input current
VIN = 0.9 V
1
µA
VFR_DIAGH
Input high level voltage
2.1
V
IFR_DIAGH
High level input current
VIN = 2.1 V
10
µA
VFR_DIAG(hyst)
Input hysteresis voltage
0.2
V
VFR_DIAGCL
Input clamp voltage
IIN = 1 mA
5.3
7.5
V
IIN = -1 mA
-0.7
VN7007ALH
Electrical specification
DocID027958 Rev 2
11/36
Table 9: Protections
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
ILIMH(1)
DC short circuit current
VCC = 13 V
70
100
140
A
4 V < VCC < 18 V (2)
140
ILIML
Short circuit current
during thermal cycling
VCC = 13 V;
TR < Tj < TTSD
33
A
TTSD
Shutdown temperature
150
175
200
°C
TR
Reset temperature(2)
TRS + 1
TRS + 7
°C
TRS
Thermal reset of fault
diagnostic indication
VFR_DIAG = 0 V
135
°C
THYST
Thermal hysteresis
(TTSD - TR)(2)
7
°C
ΔTJ_SD
Dynamic temperature
Tj = -40°C; VCC = 13 V
60
K
tLATCH_RST
Fault reset time for
output unlatch(2)
VFR_DIAG = 5 V to 0 V;
VIN = 5 V
3
10
20
µs
VDEMAG
Turn-off output voltage
clamp
IOUT = 2 A; L = 6 mH;
Tj = -40°C
VCC -
38
V
IOUT = 2 A; L = 6 mH;
Tj = 25°C to 150°C
VCC -
41
VCC -
46
VCC -
52
VON
Output voltage drop
limitation
IOUT = 1.2 A
20
mV
Notes:
(1)Parameter guaranteed by an indirect test sequence.
(2)Parameter guaranteed by design and characterization; not subject to production test.
Table 10: Current Sense
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VSENSE_CL
CurrentSense clamp
voltage
VFR_DIAG = 0 V;
ISENSE = 1 mA
-17
-12
V
VFR_DIAG = 0 V;
ISENSE = -1 mA
7
V
Current Sense characteristics
KOL1
IOUT/ISENSE
IOUT = 10 mA;
VSENSE = 0.5 V;
VSEn = 5 V
800
KOL2
IOUT/ISENSE
IOUT = 0.25 A;
VSENSE = 0.5 V;
VSEn = 5 V
10400
K0
IOUT/ISENSE
IOUT = 1 A; VSENSE = 4 V;
VSEn = 5 V
3390
6600
10180
dK0/K0(1)(2)
Current sense ratio drift
IOUT = 1 A; VSENSE = 4 V;
VSEn = 5 V
-25
25
%
Electrical specification
VN7007ALH
12/36
DocID027958 Rev 2
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
K1
IOUT/ISENSE
IOUT = 4.6 A; VSENSE = 4 V;
VSEn = 5 V
4080
6570
9530
dK1/K1(1)(2)
Current sense ratio drift
IOUT = 4.6 A; VSENSE = 4 V;
VSEn = 5 V
-20
20
%
K2
IOUT/ISENSE
IOUT = 9 A; VSENSE = 4 V;
VSEn = 5 V
4830
6350
8060
dK2/K2(1)(2)
Current sense ratio drift
IOUT = 9 A; VSENSE = 4 V;
VSEn = 5 V
-13
13
%
K3
IOUT/ISENSE
IOUT = 27 A; VSENSE = 4 V;
VSEn = 5 V
5600
6300
7150
dK3/K3(1)(2)
Current sense ratio drift
IOUT = 27 A; VSENSE = 4 V;
VSEn = 5 V
-8
8
%
ISENSE0
CurrentSense leakage
current
CurrentSense disabled:
VFR_DIAG = 0 V
0
0.5
µA
CurrentSense disabled:
-1 V < VSENSE < 5 V(1)
-0.5
0.5
µA
CurrentSense enabled:
VFR_DIAG = 5 V; VIN = 5 V;
IOUT = 0 A
0
2
µA
VOUT_CSD(1)
Output Voltage for
CurrentSense shutdown
VFR_DIAG = 5 V;
RSENSE = 2.7 kΩ; VIN = 5 V;
IOUT = 3 A
5
V
VSENSE_SAT
Multisense saturation
voltage
VCC = 7 V; RSENSE = 2.7 kΩ;
VFR_DIAG = 5 V; VIN = 5 V;
IOUT = 27 A; Tj = 150°C
5
V
ISENSE_SAT(1)
CS saturation current
VCC = 7 V; VSENSE = 4 V;
VIN = 5 V; VFR_DIAG = 5 V;
Tj = 150°C
4
mA
IOUT_SAT(1)
Output saturation current
VCC = 7 V; VSENSE = 4 V;
VIN = 5 V; VFR_DIAG = 5 V;
Tj = 150°C
45
A
OFF-state diagnostic
VOL
OFF-state open-load
voltage detection
threshold
VIN = 0 V; VFR_DIAG = 5 V
2
3
4
V
IL(off2)
OFF-state output sink
current
VIN = 0 V; VOUT = VOL;
Tj = -40°C to 125°C
-100
-15
µA
tDSTKON
OFF-state diagnostic
delay time from falling
edge of INPUT
(see Figure 5:
"TDSTKON")
VIN = 5 V to 0 V;
VFR_DIAG = 5 V; IOUT = 0 A;
VOUT = 4 V
100
350
700
µs
tD_OL_V
Settling time for valid
OFF-state open load
diagnostic indication
from rising edge of
FR_DIAG
VIN = 0 V; VFR = 0 V;
VOUT = 4 V; VFR_DIAG = 0 V
to 5 V
60
µs
VN7007ALH
Electrical specification
DocID027958 Rev 2
13/36
7 V < VCC < 18 V; -40°C < Tj < 150°C
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
tD_VOL
OFF-state diagnostic
delay time from rising
edge of VOUT
VIN = 0 V; VFR_DIAG = 5 V;
VOUT = 0 V to 4 V
5
30
µs
Fault diagnostic feedback (see Table 11: "Truth table")
VSENSEH
CurrentSense output
voltage in fault condition
VCC = 13 V; VIN = 0 V;
VFR_DIAG = 5 V; IOUT = 0 A;
VOUT = 4 V; RSENSE = 1
5
6.6
V
ISENSEH
CurrentSense output
current in fault condition
VCC = 13 V; VSENSE = 5 V
7
20
30
mA
CurrentSense timings (current sense mode)
tDSENSE2H
Current sense settling
time from rising edge of
INPUT
VIN = 0 V to 5 V;
VFR_DIAG = 5 V;
RSENSE = 1 kΩ; RL = 2.2 Ω
100
300
µs
DtDSENSE2H
Current sense settling
time from rising edge of
IOUT (dynamic response
to a step change of IOUT)
VIN = 5 V; VFR_DIAG = 5 V;
RSENSE = 1 kΩ;
ISENSE = 90 % of ISENSEMAX;
RL = 2.2 Ω
200
µs
tDSENSE2L
Current sense turn-off
delay time from falling
edge of INPUT
VIN = 5 V to 0 V;
VFR_DIAG = 5 V;
RSENSE = 1 kΩ; RL = 2.2 Ω
50
250
µs
Notes:
(1)Parameter guaranteed by design and characterization; not subject to production test.
(2)All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.
Figure 4: Switching times and Pulse skew
Electrical specification
VN7007ALH
14/36
DocID027958 Rev 2
Figure 5: TDSTKON
Table 11: Truth table
Mode
Conditions
IN
FR_DIAG
OUT
CurrentSense
Comments
Standby
All logic inputs
low
L
L
L
Hi-Z
Low quiescent current
consumption
Normal
Nominal load
connected;
Tj < 150°C
L
H
L
0
OFF-state diagnostic
enabled
H
L
H
ISENSE =
1/K * IOUT
Autorestart mode
H
H
H
ISENSE =
1/K * IOUT
Latch-off mode
Overload
Overload or
short to GND
causing:
Tj > TTSD or
ΔTj > ΔTj_SD
H
L
H
VSENSEH
Autorestart mode
H
H
H
VSENSEH
Latch-off mode
Under-
voltage
VCC < VUSD
(falling)
X
X
L
Hi-Z
Re-start when
VCC > VUSD + VUSDhyst
(rising)
OFF-state
diagnostics
Short to VCC
L
H
H
VSENSEH
Open-load
L
H
H
External pull-up
Negative
output
voltage
Inductive loads
turn-off
L
X
< 0 V
0
VN7007ALH
Electrical specification
DocID027958 Rev 2
15/36
Table 12: FR_DIAG functionality
FR_DIAG
Input
Diagnostic
Overload protection
0
0
Disabled
X (1)
0
1
Enabled
Auto-restart
1
0
Enabled (OFF-state diagnostic)
X(1)
1
1
Enabled
Latch-off
Notes:
(1)X: do not care.
2.4 Electrical characteristics curves
Figure 6: OFF-state output current
Figure 7: Standby current
Figure 8: IGND(ON) vs. Tcase
Figure 9: Logic Input high level voltage
Electrical specification
VN7007ALH
16/36
DocID027958 Rev 2
Figure 10: Logic Input low level voltage
Figure 11: High level logic input current
Figure 12: Low level logic input current
Figure 13: Logic Input hysteresis voltage
Figure 14: Undervoltage shutdown
Figure 15: On-state resistance vs. Tcase
VN7007ALH
Electrical specification
DocID027958 Rev 2
17/36
Figure 16: On-state resistance vs. VCC
Figure 17: Turn-on voltage slope
Figure 18: Turn-off voltage slope
Figure 19: Won vs Tcase
Figure 20: Woff vs Tcase
Figure 21: ILIMH vs. Tcase
Electrical specification
VN7007ALH
18/36
DocID027958 Rev 2
Figure 22: Turn-off output voltage clamp
Figure 23: OFF-state open-load voltage
detection threshold
Figure 24: Vsense clamp vs Tcase
Figure 25: Vsenseh vs Tcase
VN7007ALH
Protections
DocID027958 Rev 2
19/36
3 Protections
3.1 Power limitation
The basic working principle of this protection consists of an indirect measurement of the
junction temperature swing ΔTj through the direct measurement of the spatial temperature
gradient on the device surface in order to automatically shut off the output MOSFET as
soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the
FR_DIAG pin, the output MOSFET switches on and cycles with a thermal hysteresis
according to the maximum instantaneous power which can be handled (FR_DIAG = Low)
or remains off (FR_DIAG = High). The protection prevents fast thermal transient effects
and, consequently, reduces thermo-mechanical fatigue.
3.2 Thermal shutdown
In case the junction temperature of the device exceeds the maximum allowed threshold
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.
According to the voltage level on the FR_DIAG pin, the device switches on again as soon
as its junction temperature drops to TR (FR_DIAG = Low) or remains off (FR_DIAG = High).
3.3 Current limitation
The device is equipped with an output current limiter in order to protect the silicon as well
as the other components of the system (e.g. bonding wires, wiring harness, connectors,
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the
output power MOSFET in the active region.
3.4 Negative voltage clamp
In case the device drives inductive load, the output voltage reaches negative value during
turn off. A negative voltage clamp structure limits the maximum negative voltage to a
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the
device.
Application information
VN7007ALH
20/36
DocID027958 Rev 2
4 Application information
Figure 26: Application diagram
4.1 GND protection network against reverse battery
Figure 27: Simplified internal structure
VN7007ALH
Application information
DocID027958 Rev 2
21/36
The device does not need any external components to protect the internal logic in case of a
reverse battery condition. The protection is provided by internal structures.
In addition, due to the fact that the output MOSFET turns on even in reverse battery mode,
thus providing the same low ohmic path as in regular operating conditions, no additional
power dissipation has to be considered.
4.2 Immunity against transient electrical disturbances
The immunity of the device against transient electrical emissions, conducted along the
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)
and ISO 16750-2:2010.
The related function performance status classification is shown in Table 13: "ISO 7637-2 -
electrical transient conduction along supply line".
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present
device only, without components and accessed through VCC and GND terminals.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as
follows: “The function does not perform as designed during the test but returns
automatically to normal operation after the test”.
Table 13: ISO 7637-2 - electrical transient conduction along supply line
Test
Pulse
2011(E)
Test pulse severity
level with Status II
functional
performance status
Minimum
number of
pulses or test
time
Burst cycle /
pulse repetition
time
Pulse duration and
pulse generator
internal impedance
Level
US(1)
min
max
1
III
-112V
500 pulses
0,5 s
2ms, 10Ω
2a
III
+55V
500 pulses
0,2 s
5 s
50μs, 2Ω
3a
IV
-220V
1h
90 ms
100 ms
0.1μs, 50Ω
3b
IV
+150V
1h
90 ms
100 ms
0.1μs, 50Ω
4(2)
IV
-7V
1 pulse
100ms, 0.01Ω
Load dump according to ISO 16750-2:2010
Test
B(3)
40V
5 pulse
1 min
400ms, 2Ω
Notes:
(1)US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
(2)Test pulse from ISO 7637-2:2004(E).
(3)With 40 V external suppressor referred to ground (-40°C < Tj < 150°C).
4.3 MCU I/Os protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to
prevent the microcontroller I/O pins from latch-up and to protect the HSD inputs.
The value of these resistors is a compromise between the leakage current of
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with
the latch-up limit of microcontroller I/Os.
Application information
VN7007ALH
22/36
DocID027958 Rev 2
Equation
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak = -150 V; Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
7.5 kΩ ≤ Rprot 140 kΩ.
Recommended values: Rprot = 15
4.4 CS - analog current sense
Diagnostic information on device and load status are provided by an analog output pin (CS)
delivering the following signal:
Current monitor: current minitor of channel output current
Figure 28: CurrentSense and diagnostic block diagram
VN7007ALH
Application information
DocID027958 Rev 2
23/36
4.4.1 Principle of CurrentSense signal generation
Figure 29: CurrentSense block diagram
Current sense
This output is capable to provide:
Current mirror proportional to the load current in normal operation, delivering
current proportional to the load according to known ratio named K
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH
The current delivered by the current sense circuit, ISENSE, can be easily converted to a
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load
monitoring and abnormal condition detection.
Normal operation (channel ON, no fault)
While device is operating in normal conditions (no fault intervention), VSENSE calculation can
be done using simple equations
Current provided by CurrentSense output: ISENSE = IOUT/K
Voltage on RSENSE: VSENSE = RSENSE ∙ ISENSE = RSENSE IOUT/K
Application information
VN7007ALH
24/36
DocID027958 Rev 2
Where :
VSENSE is voltage measurable on RSENSE resistor
ISENSE is current provided from CS pin in current output mode
IOUT is current flowing through output
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its
spread includes geometric factor spread, current sense amplifier offset and process
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE.
Failure flag indication
In case of power limitation/overtemperature, the fault is indicated by the CS pin which is
switched to a “current limited” voltage source, VSENSEH.
In any case, the current sourced by the CS in this condition is limited to ISENSEH.
Figure 30: Analogue HSD open-load detection in off-state
VN7007ALH
Application information
DocID027958 Rev 2
25/36
Figure 31: Open-load / short to VCC condition
Table 14: CurrentSense pin levels in off-state
Condition
Output
CurrentSense
FR_DIAG
Open-load
VOUT > VOL
Hi-Z
L
VSENSEH
H
VOUT < VOL
Hi-Z
L
0
H
Short to VCC
VOUT > VOL
Hi-Z
L
VSENSEH
H
Nominal
VOUT < VOL
Hi-Z
L
0
H
4.4.2 Short to VCC and OFF-state open-load detection
Short to VCC
A short circuit between VCC and output is indicated by the relevant current sense pin set to
VSENSEH during the device off-state. Small or no current is delivered by the current sense
during the on-state depending on the nature of the short circuit.
OFF-state open-load with external circuitry
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting
the output to a positive supply voltage VPU.
It is preferable VPU to be switched off during the module standby mode in order to avoid the
overall standby current consumption to increase in normal conditions, i.e. when load is
connected.
Application information
VN7007ALH
26/36
DocID027958 Rev 2
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following
equation:
Equation
VN7007ALH
Maximum demagnetization energy (VCC = 16 V)
DocID027958 Rev 2
27/36
5 Maximum demagnetization energy (VCC = 16 V)
Figure 32: Maximum turn off current versus inductance
Values are generated with RL = 0 Ω.
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of
every pulse must not exceed the temperature specified above for curves A and B.
0.1
1
10
100
0.1 1 10 100 1000
I (A)
L (mH)
VN7007Ax - Maximumturn off current versus inductance
VN7007Ax - Single Pulse
Repetitive pulse Tjstart=10C
Repetitive pulse Tjstart=12C
Package and PCB thermal data
VN7007ALH
28/36
DocID027958 Rev 2
6 Package and PCB thermal data
6.1 Octapak thermal data
Figure 33: Octapak on two-layers PCB (2s0p to JEDEC JESD 51-5)
Figure 34: Octapak on four-layers PCB (2s2p to JEDEC JESD 51-7)
Table 15: PCB properties
Dimension
Value
Board finish thickness
1.6 mm +/- 10%
Board dimension
77 mm x 86 mm
Board Material
FR4
Copper thickness (top and bottom layers)
0.070 mm
Copper thickness (inner layers)
0.035 mm
Thermal vias separation
1.2 mm
Thermal via diameter
0.3 mm +/- 0.08 mm
Copper thickness on vias
0.025 mm
Footprint dimension (top layer)
6.4 mm x 7 mm
Heatsink copper area dimension (bottom layer)
Footprint, 2 cm2 or 8 cm2
VN7007ALH
Package and PCB thermal data
DocID027958 Rev 2
29/36
Figure 35: Rthj-amb vs PCB copper area in open box free air conditions
Figure 36: Octapak thermal impedance junction ambient single pulse
Equation: pulse calculation formula
ZTHδ = RTH · δ + ZTHtp (1 - δ)
where δ = tP/T
30
35
40
45
50
55
60
65
70
75
80
0 2 4 6 8 10
RTHjamb
RTHjamb
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 1001000
ZTH (°C/W)
Time (s)
Cu=foot print
Cu=2 cm2
Cu=8 cm2
4Layer
Package and PCB thermal data
VN7007ALH
30/36
DocID027958 Rev 2
Figure 37: Thermal fitting model for Octapak
The fitting model is a simplified thermal tool and is valid for transient evolutions
where the embedded protections (power limitation or thermal cycling during
thermal shutdown) are not triggered.
Table 16: Thermal parameters
Area/island (cm2)
Footprint
2
8
4L
R1 (°C/W)
0.2
0.2
0.2
0.2
R2 (°C/W)
0.78
0.78
0.78
0.78
R3 (°C/W)
1.5
1.5
1.5
1.5
R4 (°C/W)
10
10
10
2.5
R5 (°C/W)
28
20
12
5
R6 (°C/W)
36
26
18
6
C1 (W.s/°C)
0.0015
0.0015
0.0015
0.0015
C2 (W.s/°C)
0.0018
0.0018
0.0018
0.0018
C3 (W.s/°C)
0.15
0.15
0.15
0.15
C4 (W.s/°C)
0.6
0.6
0.6
0.8
C5 (W.s/°C)
0.8
1.4
2.2
3
C6 (W.s/°C)
3
6
9
25
VN7007ALH
Package information
DocID027958 Rev 2
31/36
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 Octapak package information
Figure 38: Octapak package dimensions
Table 17: Octapak mechanical data
Symbol
Millimeters
Min.
Typ.
Max.
A
2.20
2.30
2.40
A1
0.90
1.00
1.10
A2
0.03
0.15
b
0.38
0.45
0.52
Package information
VN7007ALH
32/36
DocID027958 Rev 2
Symbol
Millimeters
Min.
Typ.
Max.
b1
0.70
b4
5.20
5.30
5.40
c
0.45
0.50
0.60
c2
0.75
0.80
0.90
D
6.00
6.10
6.20
D1
5.15
E
6.40
6.50
6.60
E1
5.30
e
0.85 BSC
e1
1.60
1.70
1.80
e2
3.30
3.40
3.50
e3
5.00
5.10
5.20
H
9.35
9.70
10.10
L
1.00
(L1)
2.80
L2
0.80
L3
0.85
R
0.40 BSC
V2
7.2 Octapak packing information
Figure 39: Octapack reel 13"
VN7007ALH
Package information
DocID027958 Rev 2
33/36
Table 18: Reel dimensions
Description
Value(1)
Base quantity
2500
Bulk quantity
2500
A (max)
330
B (min)
1.5
C (+0.5, -0.2)
13
D
20.2
N
100
W1 (+2 /-0)
16.4
W2 (max)
22.4
Notes:
(1)All dimensions are in mm.
Figure 40: Octapak carrier tape
Package information
VN7007ALH
34/36
DocID027958 Rev 2
Figure 41: Octapak schematic drawing of leader and trailer tape
7.3 Octapak marking information
Figure 42: Octapak marking information
Parts marked as "&" are not yet qualified and therefore not yet ready to be used in
production and any consequences deriving from such usage will not be at ST charge. In no
event, ST will be liable for any customer usage of these engineering samples in production.
ST Quality has to be contacted prior to any decision to use these Engineering Samples to
run qualification activity.
VN7007ALH
Revision history
DocID027958 Rev 2
35/36
8 Revision history
Table 19: Document revision history
Date
Revision
Changes
22-Jun-2015
1
Initial release.
02-Nov-2016
2
Added AEC Q100 qualified in Features section
Updated Applications section
VN7007ALH
36/36
DocID027958 Rev 2
IMPORTANT NOTICE PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics All rights reserved