1
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
GENERAL DESCRIPTION
The AVX TransGuard®Transient Voltage Suppressors (TVS)
with unique high-energy multilayer construction represents
state-of-the-art overvoltage circuit protection. Monolithic
multilayer construction provides protection from voltage
transients caused by ESD, lightning, NEMP, inductive switch-
ing, etc. True surface mount product is provided in EIA
industry standard packages. Thru-hole components are
supplied as conformally coated axial devices.
TRANSGUARD®DESCRIPTION
TransGuard®products are zinc oxide (ZnO) based ceramic
semiconductor devices with non-linear voltage-current charac-
teristics (bi-directional) similar to back-to-back zener diodes.
They have the added advantage of greater current and energy
handling capabilities as well as EMI/RFI attenuation. Devices
are fabricated by a ceramic sintering process that yields a
structure of conductive ZnO grains surrounded by electrically
insulating barriers, creating varistor-like behavior.
The number of grain-boundary interfaces between conduct-
ing electrodes determines “Breakdown Voltage” of the
device. High voltage applications such as AC line protection
require many grains between electrodes while low voltage
requires few grains to establish the appropriate breakdown
voltage. Single layer ceramic disc processing proved to be a
viable production method for thick cross section devices
with many grains, but attempts to address low voltage
suppression needs by processing single layer ceramic disc
formulations with huge grain sites has had limited success.
AVX, the world leader in the manufacture of multilayer
ceramic capacitors, now offers the low voltage transient
protection marketplace a true multilayer, monolithic surface
mount varistor. Technology leadership in processing
thin dielectric materials and patented processes for
precise ceramic grain growth have yielded superior energy
dissipation in the smallest size. Now a varistor has voltage
characteristics determined by design and not just cell sorting
whatever falls out of the process.
Multilayer ceramic varistors are manufactured by mixing
ceramic powder in an organic binder (slurry) and casting it
into thin layers of precision thickness. Metal electrodes are
deposited onto the green ceramic layers which are then
stacked to form a laminated structure. The metal electrodes
are arranged so that their terminations alternate from one
end of the varistor to the other. The device becomes a
monolithic block during the sintering (firing) cycle providing
uniform energy dissipation in a small volume.
2
Important: For part number identification only, not for
construction of part numbers.
The information below only defines the numerical value of part number
digits, and cannot be used to construct a desired set of electrical limits.
Please refer to the TransGuard® part number data for the correct electri-
cal ratings.
Important: For part number identification only, not for
construction of part numbers.
The information below only defines the numerical value of part number
digits, and cannot be used to construct a desired set of electrical limits.
Please refer to the TransGuard® part number data for the correct electri-
cal ratings.
V C 1206 05 D 150 R P
TERMINATION FINISH:
P = Ni/Sn Alloy (Plated)
PACKAGING (Pcs/Reel):
STYLE “D” “R” “T” “W”
VC0402 N/A N/A N/A 10,000
VC0603 1,000 4,000 10,000 N/A
VC0805 1,000 4,000 10,000 N/A
VC1206 1,000 4,000 10,000 N/A
VC1210 1,000 2,000 10,000 N/A
CLAMPING VOLTAGE:
Where: 100 = 12V 500 = 50V
150 = 18V 560 = 60V
200 = 22V 580 = 60V
250 = 27V 620 = 67V
300 = 32V 650 = 67V
390 = 42V 101 = 100V
400 = 42V 121 = 120V
ENERGY:
Where: A = 0.1J J = 1.5J S = 1.9-2.0J
B = 0.2J K = 0.6J T = 0.01J
C = 0.3J L = 0.8J U = 4.0-5.0J
D = 0.4J M = 1.0J V = 0.02J
E = 0.5J N = 1.1J W = 6.0J
F = 0.7J P = 3.0J X = 0.05J
G = 0.9J Q = 1.3J Y = 12.0J
H = 1.2J R = 1.7J Z = 25.0J
WORKING VOLTAGE:
Where: 03 = 3.3 VDC 18 = 18.0 VDC
05 = 5.6 VDC 26 = 26.0 VDC
09 = 9.0 VDC 30 = 30.0 VDC
12 = 12.0 VDC 48 = 48.0 VDC
14 = 14.0 VDC 60 = 60.0 VDC
85 = 85.0 VDC
CASE SIZE DESIGNATOR:
SIZE LENGTH WIDTH
0402 1.00±0.10mm (0.040"±0.004") 0.5±0.10mm (0.020"±0.004")
0603 1.60±0.15mm (0.063"±0.006") 0.8±0.15mm (0.032"±0.006")
0805 2.01±0.2mm (0.079"±0.008") 1.25±0.2mm (0.049"±0.008")
1206 3.20±0.2mm (0.126"±0.008") 1.60±0.2mm (0.063"±0.008")
1210 3.20±0.2mm (0.126"±0.008") 2.49±0.2mm (0.098"±0.008")
CASE STYLE:
C = Chip
PRODUCT DESIGNATOR:
V = Varistor
MARKING:
All standard surface mount TransGuard®chips will not be marked.
V A 1000 05 D 150 R L
LEAD FINISH:
Copper clad steel, solder coated
PACKAGING (Pcs/Reel):
STYLE “D” “R” “T”
VA1000 1,000 3,000 7,500
VA2000 1,000 2,500 5,000
CLAMPING VOLTAGE:
Where: 100 = 12V 580 = 60V
150 = 18V 650 = 67V
300 = 32V 101 = 100V
400 = 42V 121 = 120V
ENERGY:
Where: A = 0.1J
D = 0.4J
K = 2.0J
WORKING VOLTAGE:
Where: 03 = 3.3 VDC 26 = 26.0 VDC
05 = 5.6 VDC 30 = 30.0 VDC
14 = 14.0 VDC 48 = 48.0 VDC
18 = 18.0 VDC 60 = 60.0 VDC
CASE SIZE DESIGNATOR:
SIZE LENGTH DIAMETER
1000 4.32mm (0.170") 2.54mm (0.100")
2000 4.83mm (0.190") 3.56mm (0.140")
CASE STYLE:
A = Axial
PRODUCT DESIGNATOR:
V = Varistor
MARKING:
All axial TransGuards®are marked with vendor identification, product
identification, voltage/energy rating code and date code (see example below):
Where: AVX = Always AVX (Vendor Identification)
TVS = Always TVS (Product Identification
- Transient Voltage Suppressor)
05D = Working VDC and Energy Rating (Joules)
Where: 05 = 5.6 VDC, D = 0.4J
725 = Three Digit Date Code
Where: 8 = Last digit of year (2008)
25 = Week of year
AVX
TVS
05D
825
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
PART NUMBER IDENTIFICATION
Surface Mount Devices Axial Leaded Devices
Not RoHS Compliant
LEAD-FREE COMPATIBLE
COMPONENT
For RoHS compliant products,
please select correct termination style.
3
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
ELECTRICAL CHARACTERISTICS
AVX PN VW(DC) VW(AC) VBVCIVC ILETIPCap Freq Case
VC060303A100 3.3 2.3 5.0±20% 12 1 100 0.1 30 1450 K 0603
VC080503A100 3.3 2.3 5.0±20% 12 1 100 0.1 40 1400 K 0805
VC080503C100 3.3 2.3 5.0±20% 12 1 100 0.3 120 5000 K 0805
VC120603A100 3.3 2.3 5.0±20% 12 1 100 0.1 40 1250 K 1206
VC120603D100 3.3 2.3 5.0±20% 12 1 100 0.4 150 4700 K 1206
VA100003A100 3.3 2.3 5.0±20% 12 1 100 0.1 40 1500 K 1000
VA100003D100 3.3 2.3 5.0±20% 12 1 100 0.4 150 4700 K 1000
VC040205X150 5.6 4.0 8.5±20% 18 1 35 0.05 20 175 M 0402
VC060305A150 5.6 4.0 8.5±20% 18 1 35 0.1 30 750 K 0603
VC080505A150 5.6 4.0 8.5±20% 18 1 35 0.1 40 1100 K 0805
VC080505C150 5.6 4.0 8.5±20% 18 1 35 0.3 120 3000 K 0805
VC120605A150 5.6 4.0 8.5±20% 18 1 35 0.1 40 1200 K 1206
VC120605D150 5.6 4.0 8.5±20% 18 1 35 0.4 150 3000 K 1206
VA100005A150 5.6 4.0 8.5±20% 18 1 35 0.1 40 1000 K 1000
VA100005D150 5.6 4.0 8.5±20% 18 1 35 0.4 150 2800 K 1000
VC040209X200 9.0 6.4 12.7±15% 22 1 25 0.05 20 175 M 0402
VC060309A200 9.0 6.4 12.7±15% 22 1 25 0.1 30 550 K 0603
VC080509A200 9.0 6.4 12.7±15% 22 1 25 0.1 40 750 K 0805
VC080512A250 12.0 8.5 16±15% 27 1 25 0.1 40 525 K 0805
VC040214X300 14.0 10.0 18.5±12% 32 1 15 0.05 20 100 M 0402
VC060314A300 14.0 10.0 18.5±12% 32 1 15 0.1 30 350 K 0603
VC080514A300 14.0 10.0 18.5±12% 32 1 15 0.1 40 325 K 0805
VC080514C300 14.0 10.0 18.5±12% 32 1 15 0.3 120 900 K 0805
VC120614A300 14.0 10.0 18.5±12% 32 1 15 0.1 40 600 K 1206
VC120614D300 14.0 10.0 18.5±12% 32 1 15 0.4 150 1050 K 1206
VA100014A300 14.0 10.0 18.5±12% 32 1 15 0.1 40 325 K 1000
VA100014D300 14.0 10.0 18.5±12% 32 1 15 0.4 150 1100 K 1000
VC13MA0160KBA 16.0 14.0 24.5±10% 40 2.5 25 1.6 400 1800 K 1210
VC121016J390 16.0 13.0 25.5±10% 40 2.5 10 1.6 500 3100 K 1210
VC181216P400 16.0 11.0 24.5±10% 42 5 10 2.9 1000 5000 K 1812
VC040218X400 18.0 13.0 25.5±10% 42 1 10 0.05 20 65 M 0402
VC060318A400 18.0 13.0 25.5±10% 42 1 10 0.1 30 150 K 0603
VC080518A400 18.0 13.0 25.5±10% 42 1 10 0.1 30 225 K 0805
VC080518C400 18.0 13.0 25.5±10% 42 1 10 0.3 100 550 K 0805
VC120618A400 18.0 13.0 25.5±10% 42 1 10 0.1 30 350 K 1206
VC120618D400 18.0 13.0 25.5±10% 42 1 10 0.4 150 900 K 1206
VC120618E380 18.0 13.0 22.0±10% 38 1 15 0.5 200 800 K 1206
VC121018J390 18.0 13.0 25.5±10% 42 5 10 1.6 500 3100 K 1210
VJ13MC0180KBA 18.0 13.0 24.0±10% 45 10 25 1.5 500 3000 K 1210
VA100018A400 18.0 13.0 25.5±10% 42 1 10 0.1 40 350 K 1000
VA100018D400 18.0 13.0 25.5±10% 42 1 10 0.4 150 900 K 1000
VC121022R440 22.0 17.0 27±10% 44 2.5 10 1.7 400 1600 K 1210
VC060326A580 26.0 18.0 34.5±10% 60 1 10 0.1 30 155 K 0603
VC080526A580 26.0 18.0 34.5±10% 60 1 10 0.1 30 120 K 0805
VC080526C580 26.0 18.0 34.5±10% 60 1 10 0.3 100 250 K 0805
VW(DC) DC Working Voltage (V)
VW(AC) AC Working Voltage (V)
VBTypical Breakdown Voltage (V @ 1mADC )
VB Tol V B Tolerance is ± from Typical Value
VCClamping Voltage (V @ IVC )
IVC Test Current for VC (A, 8x20μS)
ILMaximum Leakage Current at the
Working Voltage (μA)
ETTransient Energy Rating (J, 10x1000μS)
IPPeak Current Rating (A, 8x20μS)
Cap Typical Capacitance (pF) @ frequency specified
and 0.5 VRMS
Freq Frequency at which capacitance is measured
(K = 1kHz, M = 1MHz)
4
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
ELECTRICAL CHARACTERISTICS
AVX PN VW(DC) VW(AC) VBVCIVC ILETIPCap Freq Case
VC120626D580 26.0 18.0 34.5±10% 60 1 10 0.4 120 500 K 1206
VC120626F540 26.0 20.0 33.0±10% 54 1 15 0.7 200 600 K 1206
VC121026H560 26.0 18.0 34.5±10% 60 5 10 1.2 300 2150 K 1210
VJ13MC0260KBA 26.0 18.0 33.0±10% 62 10 25 1.2 300 1120 K 1210
VC181226P540 26.0 20.0 33.0±10% 54 5 15 3.0 800 3000 K 1812
VA100026D580 26.0 18.0 34.5±10% 60 1 10 0.4 120 650 K 1000
VC060330A650 30.0 21.0 41.0±10% 67 1 10 0.1 30 125 K 0603
VC080530A650 30.0 21.0 41.0±10% 67 1 10 0.1 30 90 M 0805
VC080530C650 30.0 21.0 41.0±10% 67 1 10 0.3 80 250 K 0805
VC120630D650 30.0 21.0 41.0±10% 67 1 10 0.4 120 400 K 1206
VC121030G620 30.0 21.0 41.0±10% 67 5 10 0.9 220 1750 K 1210
VC121030H620 30.0 21.0 41.0±10% 67 5 10 1.2 280 1850 K 1210
VC121030S620 30.0 21.0 41.0±10% 67 5 10 1.9 300 1500 K 1210
VJ13MC0300KBA 30.0 21.0 39.0±10% 73 10 25 0.9 220 1020 K 1210
VJ13PC0300KBA 30.0 21.0 39.0±10% 73 10 25 1.2 280 1150 K 1210
VA100030D650 30.0 21.0 41.0±10% 67 1 10 0.4 120 550 K 1000
VC080531C650 31.0 25.0 39.0±10% 65 1 10 0.3 80 250 K 0805
VC120631M650 31.0 25.0 39.0±10% 65 1 15 1.0 200 500 K 1206
VC080538C770 38.0 30.0 47.0±10% 77 1 10 0.3 80 200 K 0805
VC120638N770 38.0 30.0 47.0±10% 77 1 15 1.1 200 400 K 1206
VC121038S770 38.0 30.0 47.0±10% 77 2.5 15 2.0 400 1000 K 1210
VC181238U770 38.0 30.0 47.0±10% 77 5 15 4.2 800 1300 K 1812
VC222038Y770 38.0 30.0 47.0±10% 77 10 15 12 2000 4200 K 2220
VC120642L800 42.0 32.0 51.0±10% 80 1 15 0.8 180 600 K 1206
VC120645K900 45.0 35.0 56.0±10% 90 1 15 0.6 200 260 K 1206
VC181245U900 45.0 35.0 56.0±10% 90 5 15 4.0 500 1200 K 1812
VC120648D101 48.0 34.0 62.0±10% 100 1 10 0.4 100 225 K 1206
VC121048G101 48.0 34.0 62.0±10% 100 5 10 0.9 220 450 K 1210
VC121048H101 48.0 34.0 62.0±10% 100 5 10 1.2 250 500 K 1210
VJ13MC0480KBA 48.0 34.0 60.0±10% 110 10 25 0.9 220 800 K 1210
VJ13PC0480KBA 48.0 34.0 60.0±10% 110 10 25 1.2 250 840 K 1210
VA100048D101 48.0 34.0 62.0±10% 100 1 10 0.4 100 200 K 1000
VC120656F111 56.0 40.0 68.0±10% 110 1 15 0.7 100 180 K 1206
VC181256U111 56.0 40.0 68.0±10% 110 5 15 4.8 500 800 K 1812
VC121060J121 60.0 42.0 76.0±10% 120 5 10 1.5 250 400 K 1210
VJ13MC06000KBA 60.0 42.0 75.0±10% 126 10 25 1.5 250 600 K 1210
VA200060K121 60.0 42.0 76.0±10% 120 1 10 2.0 300 400 K 2000
VC120665L131 65.0 50.0 82.0±10% 135 1 15 0.8 100 120 K 1206
VC120665M131 65.0 50.0 82.0±10% 135 1 15 1.0 150 250 K 1206
VC121065P131 65.0 50.0 82±10% 135 2.5 15 2.7 350 600 K 1210
VC121085S151 85.0 60.0 100±10% 150 1 35 2.0 250 275 K 1210
5
Dimensions
L
W
T
t
Dimensions: Millimeters
(Inches)
D
Max.
0.51 ±0.05
(0.020" ±0.002")
L
Max.
25.4 (1.0")
Min. Lead Length
DIMENSIONS: mm (inches)
AVX Style VA1000 VA2000
(L) Max Length mm 4.32 4.83
(in.) (0.170) (0.190)
(D) Max Diameter mm 2.54 3.56
(in.) (0.100) (0.140)
DIMENSIONS: mm (inches)
AVX Style 0402 0603 0805 1206 1210 1812 2220
(L) Length mm 1.00±0.10 1.60±0.15 2.01±0.20 3.20±0.20 3.20±0.20 4.50±0.20 5.70±0.20
(in.) (0.040±0.004) (0.063±0.006) (0.079±0.008) (0.126±0.008) (0.126±0.008) (0.177±0.008) (0.224±0.008)
(W) Width mm 0.50±0.10 0.80±0.15 1.25±0.20 1.60±0.20 2.49±0.20 3.20±0.20 5.00±0.20
(in.) (0.020±0.004) (0.031±0.006) (0.049±0.008) (0.063±0.008) (0.098±0.008) (0.126±0.008) (0.197±0.008)
(T) Max Thickness mm 0.6 0.9 1.02 1.02 1.70 1.70 1.70
(in.) (0.024) (0.035) (0.040) (0.040) (0.067) (0.067) (0.067)
(t) Land Length mm 0.25±0.15 0.35±0.15 0.71 max. 0.94 max. 1.14 max. 0.50±0.25 0.50±0.25
(in.) (0.010±0.006) (0.014±0.006) (0.028 max.) (0.037 max.) (0.045 max.) (0.020±0.010) (0.020±0.010)
Lead Finish: Copper Clad Steel, Solder Coated
6
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Multilayer construction and improved grain structure result in
excellent transient clamping characteristics up to 20 amps
peak current, while maintaining very low leakage currents
under DC operating conditions. The VI curves below show the
voltage/current characteristics for the 5.6V, 9V, 14V, 18V and
low capacitance StaticGuard parts with currents ranging from
parts of a micro amp to tens of amps.
Traditionally varistors have suffered degradation of electrical
performance with repeated high current pulses resulting in
decreased breakdown voltage and increased leakage cur-
rent. It has been suggested that irregular intergranular
boundaries and bulk material result in restricted current
paths and other non-Schottky barrier paralleled conduction
paths in the ceramic. Repeated pulsing of TransGuard®tran-
sient voltage suppressors with 150Amp peak 8 x 20μS
waveforms shows negligible degradation in breakdown
voltage and minimal increases in leakage current. This
does not mean that TransGuard®suppressors do not suffer
degradation, but it occurs at much higher current.
TYPICAL PERFORMANCE CURVES (0402 CHIP SIZE)
VOLTAGE/CURRENT CHARACTERISTICS PULSE DEGRADATION
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
100
80
60
40
20
0
10-9 10-7 10-5 10-3 10-1 10 103105
Current (A)
Voltage (V)
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
10 100 1000 10000
8kV ESD STRIKES
BREAKDOWN VOLTAGE (Vb)
35
30
25
20
15
10
5
VC040205X
VC04LC18V
VC040214X
VC040218X
VC040209X
0
-5
-10
-15
-20
-25
0.01 0.1 1 10
Frequency (GHz)
dB
VC04LC18V500
VC040214X300
VC040218X400
VC040205X150
VC040209X200
1300
1200
10 100 1000
IMPULSE DURATION (μS)
PEAK POWER (W)
1100
1000
900
800
700
600
500
400
300
200
100
0
PEAK POWER VS PULSE DURATION
INSERTION LOSS CHARACTERISTICS
ESD TEST OF 0402 PARTS
7
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
VOLTAGE/CURRENT CHARACTERISTICS
Multilayer construction and improved grain structure result in excellent transient clamping characteristics up to 500 amps peak
current, depending on case size and energy rating, while maintaining very low leakage currents under DC operating condi-
tions. The VI curve below shows the voltage/current characteristics for the 3.3V, 5.6V, 12V, 14V, 18V, 26V, 30V, 48V and
60VDC parts with currents ranging from parts of a micro amp to tens of amps.
VI Curves - 9V, 12V, and 14V Products
50
40
30
20
10
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
9V, 0.1J 12V, 0.1J 14V, 0.1J 14V, >0.1J
VI Curves - 3.3V and 5.6V Products
25
20
15
10
5
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
3.3V, 0.1J 3.3V, >0.1J 5.6V, 0.1J 5.6V, >0.1J
VI Curves - 30V, 48V, and 60V Products
200
150
100
50
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
30V, 0.1J 30V, >0.1J 48V 60V
VI Curves - 18V and 26V Products
100
80
60
40
20
0
10-9 10-6 10-3 10+0 10+3
Current (A)
Voltage (V)
18V, 0.1J 18V, >0.1J 26V, 0.1J 26V, >0.1J
8
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
3.3V
9
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Temperature Dependence of Voltage
10
20
30
40
50
60
70
80
90
100
Voltage as a Percent of
Average Breakdown Voltage
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
Current (A)
-40 C 25 C 85 C 125 C
-60 -40 -20 0 20 40 60 80 100 120 140 160
1.25�
1�
0.8�
0.6�
0.4�
0.2
0
o
TYPICAL ENERGY DERATING VS TEMPERATURE
Temperature ( C)
Energy Derating
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
TEMPERATURE CHARACTERISTICS
TransGuard®suppressors are designed to operate over the full temperature range from -55°C to +125°C. This operating
temperature range is for both surface mount and axial leaded products.
-55 -40 -20 0 20 40 60 80 100 120 140 150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 18V
18V
Temperature ( C)
Typical Breakdown (V )
and Clamping (V ) Voltages
B
C
o
50
40
30
20
V
VB
C
( )
( )
-55 -40 -20 0 20 40 60 80 100 120 140 150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 5.6V
5.6V
Temperature ( C)
Typical Breakdown (V )
and Clamping (V ) Voltages
V
VB
B
C
C
o
20
15
10
5
-55 -40 -20 0 20 40 60 80 100 120 140 150
TYPICAL BREAKDOWN AND CLAMPING VOLTAGES
VS TEMPERATURE - 26V
Temperature (C)
Typical Breakdown (V )
and Clamping (V ) Voltages
B
C
26V
V
VB
C
( )
( )
60
50
40
30
Average
25° C Reference
+25
+20
+15
+10
+5
0
-5
-10
-15
-20
-25 -40 -20 0 20 40 60 80 100 120 140
Temperature (°C)
Capacitance Relative to 25°C
TYPICAL CAPACITANCE VS TEMPERATURE
10
TransGuard®
AVX Multilayer Ceramic Transient Voltage Suppressors
Repetitive Peak Current Strikes
TransGuard®1210 1.5J Product
10%
8%
4%
2%
0%
6%
0 100 200 300 400 500 600
Number of Strikes
Change in Breakdown Voltage (%)
VC121018J390
Figure 3
30%
25%
15%
5%
10%
0%
20%
0 100 200 300 400 500 600
Number of Strikes
Change in Breakdown Voltage (%)
VC08LC18A500
Figure 4
Repetitive Peak Current Strikes
StaticGuard 0805 0.1J Product
PULSE DEGRADATION
Traditionally varistors have suffered degradation of electrical perfor-
mance with repeated high current pulses resulting in decreased
breakdown voltage and increased leakage current. It has been
suggested that irregular intergranular boundaries and bulk material
result in restricted current paths and other non-Schottky barrier
paralleled conduction paths in the ceramic. Repeated pulsing of
both 5.6 and 14V TransGuard®transient voltage suppressors with
150 Amp peak 8 x 20μS waveforms shows negligible degradation
in breakdown voltage and minimal increases in leakage current.
This does not mean that TransGuard®suppressors do not suffer
degradation, but it occurs at much higher current. The plots
of typical breakdown voltage vs number of 150A pulses are
shown below.
TYPICAL PERFORMANCE CURVES (0603, 0805, 1206 & 1210 CHIP SIZES)
VC060305A150
VC060326A580
VC06LC18X500
100
80
60
40
20
0
02040
Frequency (MHz)
60 80 100
Capacitance Change (%)
VC080518C400
VC080514A300
VC080505C150
100
80
60
40
20
0
02040
Frequency (MHz)
60 80 100
Capacitance Change (%)
VC120648D101
VC12LC18A500
VC120614D300
100
80
60
40
20
0
02040
Frequency (MHz)
60 80 100
Capacitance Change (%)
TransGuard®Capacitance vs Frequency 0603 TransGuard®Capacitance vs Frequency 0805 TransGuard®Capacitance vs Frequency 1206
10%
8%
4%
2%
0%
6%
0 100 200 300 400 500 600
Number of Strikes
Change in Breakdown Voltage (%)
VC120618D400
VC120626D580
VC120614D300
VC120605D150
Figure 1
Repetitive Peak Current Strikes
TransGuard®0805 0.1J and 0.3J Products
0%
5%
10%
15%
0 100 200 300 400 500 600
Number of Strikes
Change in Breakdown Voltage (%)
VC080518C400
VC080518A400
Figure 2
Repetitive Peak Current Strikes
TransGuard®1206 0.4J Product
CAPACITANCE/FREQUENCY
CHARACTERISTICS