Agilent ATF-58143 Low Noise
Enhancement Mode
Pseudomorphic HEMT in a
Surface Mount Plastic Package
Data Sheet
Description
Agilent Technologies’s
ATF-58143 is a high dynamic
range, low noise E-PHEMT
housed in a 4-lead SC-70
(SOT-343) surface mount plastic
package.
The combination of high gain,
high linearity and low noise
makes the ATF-58143 ideal as
low noise amplifier for cellular/
PCS/WCDMA base stations,
wireless local loop, and other
applications that require low
noise and high linearity perfor-
mance in the 450 MHz to 6 GHz
frequency range.
Features
Low noise and high linearity
performance
Enhancement Mode Technology[1]
Excellent uniformity in product
specifications
Low cost surface mount small
plastic package SOT-343 (4 lead
SC-70) in Tape-and-Reel packaging
option available
Lead-free option available
Specifications
2 GHz; 3V, 30 mA (Typ.)
30.5 dBm output 3rd order intercept
19 dBm output power at 1 dB
0.5 dB noise figure
16.5 dB associated gain
Applications
Q1 LNA for cellular/PCS/WCDMA
base stations
Q1, Q2 LNA and Pre-driver
amplifier for 3–4 GHz WLL
Other low noise and high linearity
applications at 450 MHz to 6 GHz
Note:
1. Enhancement mode technology requires
positive Vgs, thereby eliminating the need for
the negative gate voltage associated with
conventional depletion mode devices.
Surface Mount Package
SOT-343
Pin Connections and
Package Marking
SOURCE
DRAIN
GATE
SOURCE
8Fx
Note:
Top View. Package marking provides orientation
and identification
“8F” = Device Code
“x” = Date code character
identifies month of manufacture.
Attention:
Observe precautions for
handling electrostatic
sensitive devices.
ESD Machine Model (Class A)
ESD Human Body Model (Class 0)
Refer to Agilent Application Note A004R:
Electrostatic Discharge Damage and Control.
2
ATF-58143 Absolute Maximum Ratings[1]
Absolute
Symbol Parameter Units Maximum
VDS Drain-Source Voltage[2] V5
VGS Gate-Source Voltage[2] V -5 to 1
VGD Gate Drain Voltage[2] V -5 to 1
IDS Drain Current [2] mA 100
Pdiss Total Power Dissipation [3] mW 500
Pin max. RF Input Power dBm +135]
IGS Gate Source Current mA 2[5]
TCH Channel Temperature °C 150
TSTG Storage Temperature °C -65 to 150
θjc Thermal Resistance[4] °C/W 162
Notes:
1. Operation of this device above any one of
these parameters may cause permanent
damage.
2. Assumes DC quiescent conditions.
3. Source lead temperature is 25°C. Derate
6.2 mW/°C for TL > 33°C.
4. Thermal resistance measured using
150°C Liquid Crystal Measurement method.
5. The device can handle +13 dBm RF Input
Power provided I
GS
is limited to 2 mA. I
GS
at
P
1dB
drive level is bias circuit dependent. See
applications section for additional information.
Product Consistency Distribution Charts [6, 7]
Figure 1. Typical I-V Curves (V
GS
=0.1V per step)
V
DS
(V)
I
DS
(mA)
071 2 3 4 5 6
120
100
80
60
40
20
0
-150
-125
-100
-75
-50
-25
0
0.3 0.4 0.5 0.6
NF (dB)
0.7 0.8
Cpk=2.735
Stdev=0.049
Figure 2. NF @ 3V, 30 mA.
USL = 0.9, Nominal = 0.5
GAIN (dB)
15 16 17 18
Cpk=1.953
Stdev=0.2610
Figure 3. Gain @ 3V, 30 mA.
USL = 18.5, LSL = 15, Nominal = 16.5
OIP3 (dBm)
28 29 30 31 32 3433
Cpk=1.036
Stdev=0.509
Figure 4. OIP3 @ 3V, 30 mA.
LSL = 29, Nominal = 30.5
Notes:
6. Distribution data sample size is 500 samples taken from 3 different wafers. Future wafers allocated to this product may have nominal values anywhere
between the upper and lower limits.
7. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on
production test equipment. Circuit losses have been de-embedded from actual measurements.
3
ATF-58143 Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol Parameter and Test Condition Units Min. Typ.[2] Max.
Vgs Operational Gate Voltage Vds = 3V, Ids = 30 mA V 0.4 0.51 0.75
Vth Threshold Voltage Vds = 3V, Ids = 4 mA V 0.18 0.38 0.52
Idss Saturated Drain Current Vds = 3V, Vgs = 0V µA—1 5
Gm Transconductance Vds = 3V, gm = Idss/Vgs; mmho 230 410 560
Vgs = 0.75 0.7 = 0.05V
Igss Gate Leakage Current Vgd = Vgs = -3V µA 200
NF Noise Figure [1] f = 2 GHz Vds = 3V, Ids = 30 mA dB 0.5 0.9
f = 900 MHz Vds = 3V, Ids = 30 mA dB 0.3
f = 2 GHz Vds = 4V, Ids = 30 mA dB 0.5
f = 900 MHz Vds = 4V, Ids = 30 mA dB 0.3
Ga Associated Gain [1] f = 2 GHz Vds = 3V, Ids = 30 mA dB 15 16.5 18.5
f = 900 MHz Vds = 3V, Ids = 30 mA dB 23.1
f = 2 GHz Vds = 4V, Ids = 30 mA dB 17.7
f = 900 MHz Vds = 4V, Ids = 30 mA dB 22.5
OIP3 Output 3rd Order f = 2 GHz Vds = 3V, Ids = 30 mA dBm 29 30.5
Intercept Point[1] f = 900 MHz Vds = 3V, Ids = 30 mA dBm 28.6
f = 2 GHz Vds = 4V, Ids = 30 mA dBm 31.5
f = 900 MHz Vds = 4V, Ids = 30 mA dBm 31.0
P1dB 1dB Compressed f = 2 GHz Vds = 3V, Ids = 30 mA dBm 19
Output Power[1] f = 900 MHz Vds = 3V, Ids = 30 mA dBm 18
f = 2 GHz Vds = 4V, Ids = 30 mA dBm 21
f = 900 MHz Vds = 4V, Ids = 30 mA dBm 19
Notes:
1. Measurements obtained using production test board described in Figure 5.
2. Typical values determined from a sample size of 500 parts from 3 wafers.
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain,
P1dB and OIP3 measurements. This circuit represents a trade-off between an optimal noise
match and associated impedance matching circuit losses.
RFin
RFout
output
matching
0.7 dB loss
input
matching
0.6 dB loss
28.2 + j9.4 51 – j3.3
4
ATF-58143 Typical Performance Curves
3V
4V
3V
4V
3V
4V
3V
4V
Figure 7. Fmin vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 2 GHz.
Ids (mA)
Fmin (dB)
07010 20 30 40 50 60
0.7
0.6
0.5
0.4
0.3
0.2
Figure 8. Fmin vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 900 MHz.
Ids (mA)
Fmin (dB)
07010 20 30 40 50 60
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Figure 9. Gain vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 2 GHz.
Ids (mA)
GAIN (dB)
07010 20 30 40 50 60
19
18
17
16
15
14
13
12
Figure 10. Gain vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 900 MHz.
Ids (mA)
GAIN (dB)
07010 20 30 40 50 60
25
24
23
22
21
20
19
18
Figure 11. OIP3 vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 2 GHz.
Ids (mA)
OIP3 (dBm)
07010 20 30 40 50 60
42
37
32
27
22
17
12
3V
4V
Figure 12. OIP3 vs. Ids and Vds Tuned for
Max OIP3 and Fmin at 900 MHz.
Ids (mA)
OIP3 (dBm)
07010 20 30 40 50 60
40
35
30
25
20
15
3V
4V
Figure 6. Close-up of Production Test Board.
C4
J2
C2 L1 C5
ATF-58143
S
AGILENT
TECHNOLOGIES
C3
J1
G
S
C1
R1
C1 : 2.7 pF Cap (0603)
: 1 pF Cap (0603)
: 1200 pF Cap (0603)
: 120 pF Cap (0402)
: 1200 pF Cap (0603)
: 49.9 Ohm (0603)
: 56 nH (0603)
: 0 Ohm, Jumper (0805)
: 0 Ohm, Jumper (0805)
: 0 Ohm, Jumper (0402)
: 0 Ohm, Jumper (0402)
C2
C3
C4
C5
R1
L1
J1
J2
J3
J4
A
5
ATF-58143 Typical Performance Curves, continued
Figure 13. P1dB vs. Idq and Vds Tuned for
Max OIP3 and Fmin at 2 GHz.
[1]
Idq (mA)
P1dB (dBm)
07010 20 30 40 50 60
24
22
20
18
16
14
12
3V
4V
Figure 14. P1dB vs. Idq and Vds Tuned for
Max OIP3 and Fmin at 900 MHz.
[1]
Idq (mA)
P1dB (dBm)
07010 20 30 40 50 60
23
22
21
20
19
18
17
16
15
3V
4V
Figure 15. Fmin vs. Frequency and Temp.
Tuned for Max OIP3 and Fmin at 3V, 30 mA.
FREQUENCY (GHz)
Fmin (dB)
061 2 3 4 5
1.5
1.0
0.5
0
25°C
-40°C
85°C
25°C
-40°C
85°C
Figure 16. Gain vs. Frequency and Temp.
Tuned for Max OIP3 and Fmin at 3V, 30 mA.
Note:
1. When plotting P1dB, the drain current was
allowed to vary dependent on the RF input power.
FREQUENCY (GHz)
GAIN (dB)
062 3 4 51
30
25
20
15
10
5
Figure 17. OIP3 vs. Frequency and Temp.
Tuned for Max OIP3 and Fmin at 3V, 30 mA.
FREQUENCY (GHz)
OPI3 (dBm)
062 3 4 51
35
30
25
20
15
10
Figure 18. P1dB vs. Frequency and Temp.
Tuned for Max OIP3 and Fmin at 3V, 30 mA.
FREQUENCY (GHz)
P1dB (dBm)
0623451
20.0
19.5
19.0
18.5
18.0
17.5
17.0
16.5
16.0
25°C
-40°C
85°C
25°C
-40°C
85°C
6
ATF-58143 Typical Scattering Parameters, VDS = 3V, IDS = 30 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. dB
0.1 0.98 -17.1 27.29 23.14 168.7 -40.10 0.010 80.8 0.67 -12.1 33.69
0.5 0.81 -92.0 25.25 18.31 123.7 -28.10 0.039 45.7 0.42 -46.6 26.68
0.9 0.75 -126.4 21.87 12.40 103.4 -26.12 0.049 34.8 0.32 -66.7 23.99
1.0 0.73 -132.2 21.18 11.46 99.8 -25.87 0.051 33.4 0.31 -72.3 23.52
1.5 0.69 -153.2 18.38 8.31 85.1 -24.70 0.058 29.4 0.25 -90.8 21.54
1.9 0.66 -165.9 16.74 6.88 75.4 -23.86 0.064 27.4 0.23 -103.6 20.30
2.0 0.65 -169.3 16.40 6.61 73.1 -23.65 0.066 26.9 0.22 -106.0 20.03
2.5 0.63 176.3 14.83 5.51 61.9 -22.71 0.073 24.4 0.19 -118.1 18.77
3.0 0.61 160.7 13.51 4.74 50.9 -21.87 0.081 21.1 0.17 -133.3 17.69
3.5 0.61 147.4 12.35 4.15 40.4 -21.10 0.088 17.7 0.15 -145.4 16.73
4.0 0.62 133.8 11.28 3.66 30.2 -20.45 0.095 13.5 0.13 -155.7 15.86
4.5 0.64 123.7 10.32 3.28 20.5 -19.86 0.102 9.3 0.13 -175.4 15.09
5.0 0.66 112.5 9.41 2.96 11.1 -19.39 0.107 4.9 0.13 166.2 14.40
5.5 0.68 103.7 8.61 2.70 2.1 -18.87 0.114 0.7 0.14 152.8 13.74
6.0 0.69 93.0 7.84 2.47 -7.3 -18.44 0.120 -4.4 0.14 140.7 13.14
7.0 0.71 77.2 6.47 2.11 -24.8 -17.63 0.131 -14.6 0.17 120.7 12.06
8.0 0.74 58.3 5.14 1.81 -43.1 -17.13 0.139 -26.1 0.19 95.4 11.14
9.0 0.78 39.7 3.77 1.54 -60.7 -16.67 0.147 -37.0 0.24 70.1 10.22
10.0 0.84 25.1 2.55 1.34 -78.8 -16.21 0.155 -50.2 0.34 52.4 9.39
11.0 0.87 10.2 1.25 1.16 -97.1 -16.04 0.158 -64.2 0.41 37.3 8.65
12.0 0.89 -3.9 0.19 1.02 -114.0 -15.72 0.164 -78.3 0.46 21.5 7.96
13.0 0.90 -20.0 -1.09 0.88 -132.2 -15.86 0.161 -93.6 0.52 2.5 7.39
14.0 0.93 -31.4 -2.53 0.75 -148.3 -16.22 0.154 -106.5 0.58 -14.1 6.85
15.0 0.96 -43.9 -4.00 0.63 -162.8 -16.73 0.146 -118.2 0.66 -26.0 6.36
16.0 0.94 -54.2 -5.46 0.53 -176.5 -17.15 0.139 -128.6 0.72 -36.3 5.85
17.0 0.96 -65.1 -7.14 0.44 168.6 -17.68 0.131 -142.4 0.74 -49.0 5.27
18.0 0.93 -79.8 -8.81 0.36 153.8 -18.36 0.121 -155.6 0.77 -64.8 4.77
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.12 0.39 17.775 0.04 25.33
0.9 0.18 0.37 46.9 0.04 22.26
1.0 0.20 0.36 53.525 0.04 21.54
1.5 0.32 0.32 80 0.04 19.16
1.9 0.43 0.30 101 0.04 17.65
2.0 0.45 0.30 107.7 0.04 17.33
2.4 0.51 0.29 125.2 0.04 16.23
3.0 0.58 0.31 154.475 0.05 14.77
3.9 0.75 0.35 -156.95 0.06 13.39
5.0 0.87 0.42 -120.93 0.09 11.92
5.8 1.01 0.50 -100.83 0.15 11.07
6.0 1.04 0.53 -97.15 0.18 10.93
Notes:
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to
the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate
lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source
landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed
within 0.010 inch from each source lead contact point, one via on each side of that point.
Typical Noise Parameters, VDS = 3V, IDS = 30 mA
Figure 19. MSG/MAG and S21 vs. Frequency
at 3V, 30 mA.
FREQUENCY (GHz)
MSG/MAG and S
21
(dB)
02010 155
40
35
30
25
20
15
10
5
0
-5
-10
-15
S
21
MSG
7
ATF-58143 Typical Scattering Parameters, VDS = 4V, IDS = 30 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. dB
0.1 0.99 -16.3 28.16 25.6 169.65 -41.08 0.01 81.1 0.65 -10.17 34.62
0.5 0.83 -94.5 25.82 19.5 125.68 -28.95 0.04 46.2 0.45 -54.83 27.39
0.9 0.76 -133.1 22.52 13.4 104.58 -27.00 0.04 33.9 0.33 -76.45 24.76
1 0.75 -139.7 21.83 12.3 100.73 -26.74 0.05 32.0 0.31 -80.28 24.29
1.5 0.72 -162.2 18.94 8.9 85.42 -25.79 0.05 26.9 0.24 -95.17 22.37
1.9 0.71 -172.7 17.18 7.2 75.68 -25.25 0.05 24.8 0.21 -104.27 21.21
2 0.70 -174.9 16.79 6.9 73.47 -25.09 0.06 24.4 0.21 -106.18 20.94
2.5 0.69 173.5 14.67 5.4 59.58 -24.15 0.06 21.7 0.18 -117.35 19.41
3 0.68 161.6 13.05 4.5 46.88 -23.33 0.07 19.0 0.16 -124.85 18.19
4 0.67 141.9 11.00 3.5 28.55 -22.14 0.08 14.1 0.13 -137.33 16.57
5 0.69 123.1 9.29 2.9 10.32 -21.13 0.09 7.3 0.12 -42.65 15.21
6 0.73 108.9 7.73 2.4 -7.48 -20.28 0.10 -1.3 0.13 158.73 14.00
7 0.76 96.3 6.16 2.0 -23.78 -19.80 0.10 -9.7 0.17 125.87 12.98
8 0.79 82.4 4.74 1.7 -39.33 -19.32 0.11 -16.9 0.20 104.88 12.03
9 0.82 71.2 3.63 1.5 -55.93 -18.49 0.12 -26.7 0.25 83.12 11.06
10 0.85 60.1 2.63 1.4 -73.30 -17.74 0.13 -39.3 0.31 61.03 10.19
11 0.87 47.2 1.52 1.2 -90.53 -17.31 0.14 -52.2 0.38 41.33 9.42
12 0.89 36.2 0.38 1.0 -106.67 -17.12 0.14 -64.5 0.44 22.65 8.75
13 0.91 26.6 -0.80 0.9 -121.58 -17.09 0.14 -75.2 0.49 6.28 8.15
14 0.93 17.2 -2.01 0.8 -135.15 -17.15 0.14 -84.2 0.54 -7.48 7.57
15 0.94 9.2 -3.24 0.7 -148.98 -17.22 0.14 -94.3 0.59 -22.78 6.99
16 0.94 1.2 -4.43 0.6 -164.25 -17.36 0.14 -106.1 0.64 -39.22 6.46
17 0.92 -10.5 -5.79 0.5 -59.55 -17.68 0.13 -119.3 0.68 -53.35 5.94
18 0.91 17.6 -6.74 0.5 170.70 -17.94 0.13 -127.5 0.69 -71.73 5.60
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.5 0.14 0.38 9.7 0.03 24.85
0.9 0.23 0.36 44.4 0.04 22.21
1.0 0.25 0.35 54.0 0.04 21.51
1.5 0.35 0.32 78.7 0.04 19.21
1.9 0.47 0.3 100.7 0.04 17.71
2.0 0.49 0.3 105.4 0.04 17.39
2.4 0.55 0.28 124.0 0.04 16.25
3.0 0.61 0.3 153.9 0.05 14.86
3.9 0.78 0.35 -157.2 0.07 13.51
5.0 0.91 0.42 -120.8 0.1 12.05
5.8 1.05 0.49 -101.2 0.16 11.14
6.0 1.11 0.53 -97.4 0.19 11.14
Notes:
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to
the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate
lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source
landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed
within 0.010 inch from each source lead contact point, one via on each side of that point.
Typical Noise Parameters, VDS = 4V, IDS = 30 mA
Figure 20. MSG/MAG and S21 vs. Frequency
at 4V, 30 mA.
FREQUENCY (GHz)
MSG/MAG and S
21
(dB)
02010 155
40
35
30
25
20
15
10
5
0
-5
-10
S
21
MSG
8
Ordering Information
Part Number No. of Devices Container
ATF-58143-TR1 3000 7" Reel
ATF-58143-TR2 10000 13" Reel
ATF-58143-BLK 100 antistatic bag
ATF-58143-TR1G 3000 7” Reel
ATF-58143-TR2G 10000 13”Reel
ATF-58143-BLKG 100 antistatic bag
Package Dimensions Outline 43 (SOT-343/SC70 4 lead)
Symbol MIN. (mm) MAX. (mm)
E 1.15 1.35
D 1.85 2.25
HE 1.80 2.40
A 0.80 1.10
A2 0.80 1.00
A1 0.00 0.10
b 0.25 0.40
b1 0.55 0.70
c 0.10 0.20
L 0.10 0.46
Notes:
1. All dimensions are in mm.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold flash and metal blurr.
4. All specifications comply to EIAJ SC70.
5. Die is facing up for mold and facing down for trim/form, i.e., reverse trim/form.
6. Package surface to be mirror finish.
9
Recommended PCB Pad Layout for Agilent's SC70 4L/SOT-343 Products
(Dimensions in inches/mm)
Device Orientation
USER
FEED 
DIRECTION
COVER TAPE
CARRIER
TAPE
REEL
END VIEW
8 mm
4 mm
TOP VIEW

Tape Dimensions For Outline 4T
For product information and a complete list of Agilent
contacts and distributors, please go to our web site.
www.agilent.com/semiconductors
E-mail: SemiconductorSupport@agilent.com
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5988-1922EN
December 10, 2004
5989-1919EN
Tape Dimensions and Product Orientation
Description Symbol Size (mm) Size (inches)
Cavity Length Ao2.40 ± 0.10 0.094 ± 0.004
Width Bo2.40 ± 0.10 0.094 ± 0.004
Depth Ko1.20 ± 0.10 0.047 ± 0.004
Pitch P 4.00 ± 0.10 0.157 ± 0.004
Bottom Hole Diameter D11.00 + 0.25 0.039 + 0.010
Perforlation Diameter D 1.50 + 0.10 0.061 + 0.002
Pitch PO4.00 ± 0.10 0.157 ± 0.004
Position E 1.75 ± 0.10 0.069 ± 0.004
Carrier Tape Width W 8.00 + 0.30 - 0.10 0.315 + 0.012
Thickness t10.254 ± 0.02 0.0100 ± 0.0008
Cover Tape Width C 5.40 ± 0.010 0.205 + 0.004
Thickness Tt0.062 ± 0.001 0.0025 ± 0.0004
Distance Cavity to Perforation F 3.50 ± 0.05 0.138 ± 0.002
(Width Direction)
Cavity to Perforation P22.00 ± 0.05 0.079 ± 0.002
(Length Direction)