Rev. 1.0 9/14 Copyright © 2014 by Silico n Laboratories Si5325
Si5325
µP-PROGRAMMABLE PRECISION CLOCK MULTIPLIER
Features
Applications
Description
The Si5325 is a low jitter, precision clock multiplier for applications requiring clock
multiplication without jitter attenuation. The Si5325 accepts dual clock inputs
ranging from 10 to 710 MHz and generates two clock outputs ranging from 2 kHz
to 945 MHz and select frequencies to 1.4 GHz. The two outputs are divided down
separately from a common source. The device provides frequency translation
combinations across this operating range. The Si5325 input clock frequency and
clock multiplication ratio are programmable through an I2C or SPI interface. The
Si5325 is based on Silicon Laboratories' 3rd-generation DSPLL® technology,
which provides frequency synthesis in a highly integrated PLL solution that
eliminates the need for external VCXO and loop filter components. The DSPLL
loop bandwidth is digitally programmable. Operating from a single 1.8, 2.5, or
3.3 V supply, the Si5325 is ideal for providing clock multiplication in high
performance timing applications.
Not recommended for new
designs. For alternatives, see the
Si533x family of products.
Generates frequencies from
2 kHz to 945 MHz and select
frequencies to 1.4 GHz from an
input frequency of 10 to 710 MHz
Low jitter clock outputs with jitter
generation as low as 0.5 ps rms
(12kHz20MHz)
Integrated loop filter with
selectable loop bandwidth
(150 kHz to 2 MHz)
Dual clock inputs w/manual or
automatically controlled
switching
Dual clock outputs with
selectable signal format
(LVPECL, LVDS, CML, CMOS)
Support for ITU G.709 and
custom FEC ratios (255/238,
255/237, 255/236)
LOS, FOS alarm outputs
I2C or SPI programmable
On-chip voltage regulator for
1.8 ±5%, 2.5 or 3.3 V ±10%
operation
Small size: 6 x 6 mm 36-lead
QFN
Pb-free, ROHS compliant
SONET/SDH OC-48/STM-16 and
OC-192/STM-64
line cards
GbE/10GbE, 1/2/4/8/10GFC line
cards
ITU G.709 and custom FEC line
cards
Optical modules
Wireless basestations
Data converter clocking
xDSL
SONET/SDH + PDH clock synthesis
Test and measurement
Ordering Information:
See page 56.
Pin Assignments
1
2
3
2930313233343536
20
21
22
23
24
25
26
27
10 11 12 13 14 15 16 17
4
5
6
7
8
NC
NC
RST
C2B
INT_C1B
GND
VDD
GND
VDD
VDD
CLKIN2+
CLKIN2–
NC
VDD
CLKIN1+
CLKIN1–
CS_CA
SCL
SDA_SDO
A1
A2_SS
SDI
CLKOUT1–
NC
GND
VDD
NC
CKOUT2–
CKOUT2+
CMODE
GND
Pad
A0
GND
9
18
19
28
NC
NC
GND
CLKOUT1+
Si5325
2 Rev. 1.0
Functional Block Diagram
DSPLL
®
CKOUT2
CKIN1
CKOUT1
CKIN2
÷ N31
÷ N2
÷ NC1_LS
Signal Detect
Device Interrupt
VDD (1.8, 2.5, or 3.3 V)
GND
÷ N32
Clock Select
I2C/SPI Port
Control
Alarms
N1_HS
÷ NC2_LS
Si5325
Rev. 1.0 3
TABLE OF CONTENTS
Section Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.1. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
3. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
5. Pin Descriptions: Si5325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
7. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
8. Land Pattern: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
9. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
9.1. Si5325 Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
9.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Si5325
4 Rev. 1.0
1. Electrical Specifications
Figure 1. Differential Voltage Characteristics
Figure 2. Rise/Fall Time Characteristics
Table 1. Recommended Operating Conditions
Parameter Symbol Test Condition Min Typ Max Unit
Ambient Temperature TA–40 25 85 C
Supply Voltage during
Normal Operation
VDD 3.3 V Nominal 2.97 3.3 3.63 V
2.5 V Nominal 2.25 2.5 2.75 V
1.8 V Nominal 1.71 1.8 1.89 V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.
V
ISE , VOSE
VID,VOD
Differential I/Os
VICM, VOCM
Single-Ended
Peak-to-Peak Voltage
Differential Peak-to-Peak Voltage
SIGNAL +
SIGNAL –
(SIGNAL +) – (SIGNAL –)
V
t
SIGNAL +
SIGNAL –
VID = (SIGNAL+) – (SIGNAL–)
V
ICM , VOCM
tFtR
80%
20%
CKIN, CKOUT
Si5325
Rev. 1.0 5
Table 2. DC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Supply Current1IDD LVPECL Format
622.08 MHz Out
Both CKOUTs Enabled
251 279 mA
LVPECL Format
622.08 MHz Out
1 CKOUT Enabled
217 243 mA
CMOS Format
19.44 MHz Out
Both CKOUTs Enabled
204 234 mA
CMOS Format
19.44 MHz Out
1 CKOUT Enabled
194 220 mA
Disable Mode 165 mA
CKINn Input Pins2
Input Common Mode
Voltage (Input Thresh-
old Voltage)
VICM 1.8 V ± 5% 0.9 1.4 V
2.5 V ± 10% 1 1.7 V
3.3 V ± 10% 1.1 1.95 V
Input Resistance CKNRIN Single-ended 20 40 60 k
Single-Ended Input
Voltage Swing
(See Absolute Specs)
VISE fCKIN < 212.5 MHz
See Figure 1.
0.2 VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25 VPP
Differential Input
Voltage Swing
(See Absolute Specs)
VID fCKIN < 212.5 MHz
See Figure 1.
0.2 VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25 VPP
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Si5325
6 Rev. 1.0
Output Clocks (CKOUTn)3
Common Mode CKOVCM LVPECL 100 load
line-to-line
VDD –1.42 VDD –1.25 V
Differential Output
Swing5
CKOVD LVPECL 100 load line-
to-line
1.1 1.9 VPP
Single-Ended Output
Swing5
CKOVSE LVPECL 100 load line-
to-line
0.5 0.93 VPP
Differential Output
Voltage
CKOVD CML 100 load line-to-
line
350 425 500 mVPP
Common Mode Output
Voltage
CKOVCM CML 100 load line-to-
line
—V
DD-0.36 V
Differential Output
Voltage
CKOVD LVDS
100 load line-to-line
500 700 900 mVPP
Low Swing LVDS
100 load line-to-line
350 425 500 mVPP
Common Mode Output
Voltage
CKOVCM LVDS 100 load line-to-
line
1.125 1.2 1.275 V
Differential Output
Resistance
CKORD CML, LVPECL, LVDS 200
Output Voltage Low CKOVOLLH CMOS 0.4 V
Output Voltage High CKOVOHLH VDD =1.71V
CMOS
0.8 x VDD ——V
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Si5325
Rev. 1.0 7
Output Drive Current
(CMOS driving into
CKOVOL for output low
or CKOVOH for output
high. CKOUT+ and
CKOUT– shorted
externally)
CKOIO ICMOS[1:0] =11
VDD =1.8V
—7.5 mA
ICMOS[1:0] =10
VDD =1.8V
—5.5 mA
ICMOS[1:0] =01
VDD =1.8V
—3.5 mA
ICMOS[1:0] =00
VDD =1.8V
—1.75 mA
ICMOS[1:0] =11
VDD =3.3V
—32 mA
ICMOS[1:0] =10
VDD =3.3V
—24 mA
ICMOS[1:0] =01
VDD =3.3V
—16 mA
ICMOS[1:0] =00
VDD =3.3V
—8 mA
2-Level LVCMOS Input Pins
Input Voltage Low VIL VDD =1.71V 0.5 V
VDD =2.25V 0.7 V
VDD =2.97V 0.8 V
Input Voltage High VIH VDD =1.89V 1.4 V
VDD =2.25V 1.8 V
VDD =3.63V 2.5 V
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Si5325
8 Rev. 1.0
3-Level Input Pins4
Input Voltage Low VILL 0.15 x VDD V
Input Voltage Mid VIMM 0.45 x VDD —0.55xV
DD V
Input Voltage High VIHH 0.85 x VDD ——V
Input Low Current IILL See Note 4 –20 µA
Input Mid Current IIMM See Note 4 –2 +2 µA
Input High Current IIHH See Note 4 20 µA
LVCMOS Output Pins
Output Voltage Low VOL IO = 2 mA
VDD =1.71V
——0.4V
Output Voltage Low IO = 2 mA
VDD =2.97V
——0.4V
Output Voltage High VOH IO = –2 mA
VDD =1.71V
VDD – 0.4 V
Output Voltage High IO = –2 mA
VDD =2.97V
VDD – 0.4 V
Disabled Leakage
Current
IOZ RSTb = 0 –100 100 µA
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference
Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Si5325
Rev. 1.0 9
Table 3. AC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
CKINn Input Pins
Input Frequency CKNF10 710 MHz
Input Duty Cycle
(Minimum Pulse
Width)
CKNDC Whichever is smaller
(i.e., the 40% / 60%
limitation applies only
to high frequency
clocks)
40 60 %
2—ns
Input Capacitance CKNCIN —— 3 pF
Input Rise/Fall Time CKNTRF 20–80%
See Figure 2
——11 ns
CKOUTn Output Pins
(See ordering section for speed grade vs frequency limits)
Output Frequency
(Output not config-
ured for CMOS or
Disabled)
CKOFN1 6 0.002 945 MHz
N1 = 5 970 1134 MHz
N1 = 4 1.213 1.4 GHz
Maximum Output
Frequency in CMOS
Format
CKOF 212.5 MHz
Output Rise/Fall
(20–80 %) @
622.08 MHz output
CKOTRF Output not configured for
CMOS or Disabled
See Figure 2
—230350 ps
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF CMOS Output
VDD =1.71
CLOAD =5pF
—— 8 ns
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF CMOS Output
VDD =2.97
CLOAD =5pF
—— 2 ns
Output Duty Cycle
Uncertainty @
622.08 MHz
CKODC 100 Load
Line-to-Line
Measured at 50% Point
(Not for CMOS)
——+/-40ps
Si5325
10 Rev. 1.0
LVCMOS Input Pins
Minimum Reset Pulse
Width
tRSTMN 1—µs
Reset to Microproces-
sor Access Ready
tREADY ——10ms
Input Capacitance Cin —— 3 pF
LVCMOS Output Pins
Rise/Fall Times tRF CLOAD =20pF
See Figure 2
—25 ns
LOSn Trigger Window LOSTRIG From last CKINn to
Internal detection of LOSn
N3 1
4.5 x N3 TCKIN
Time to Clear LOL
after LOS Cleared
tCLRLOL LOS to LOL
Fold = Fnew
Stable Xa/XB reference
—10ms
Device Skew
Output Clock Skew tSKEW of CKOUTn to of
CKOUT_m, CKOUTn
and CKOUT_m at same
frequency and signal
format
PHASEOFFSET =0
CKOUT_ALWAYS_ON =1
SQ_ICAL =1
——100ps
Phase Change due to
Temperature Variation
tTEMP Max phase changes from
–40 to +85 °C
—300500 ps
Table 3. AC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Si5325
Rev. 1.0 11
PLL Performance
(fin = fout = 622.08 MHz; BW = 120 Hz; LVPECL)
Lock Time tLOCKMP Start of ICAL to of LOL 35 1200 ms
Closed Loop Jitter
Peaking
JPK —0.050.1 dB
Jitter Tolerance JTOL Jitter Frequency Loop
Bandwidth
5000/BW ns pk-pk
Phase Noise
fout = 622.08 MHz
CKOPN
1 kHz Offset –90 dBc/Hz
10 kHz Offset –113 dBc/Hz
100 kHz Offset –118 dBc/Hz
1 MHz Offset –132 dBc/Hz
Subharmonic Noise SPSUBH Phase Noise @ 100 kHz
Offset
—–88 dBc
Spurious Noise SPSPUR Max spur @ n x F3
(n 1, n x F3 < 100 MHz)
—–93 dBc
Table 4. Microprocessor Control
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Un it
I2C Bus Lines (SDA, SCL)
Input Voltage Low VILI2C 0.25 x VDD V
Input Voltage High VIHI2C 0.7 x VDD —V
DD V
Hysteresis of Schmitt
trigger inputs
VHYSI2C VDD = 1.8V 0.1 x VDD —— V
VDD = 2.5 or 3.3 V 0.05 x VDD —— V
Output Voltage Low VOLI2C VDD =1.8V
IO = 3 mA
0.2 x VDD V
VDD =2.5 or 3.3V
IO = 3 mA
—— 0.4 V
Table 3. AC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Si5325
12 Rev. 1.0
SPI Specifications
Duty Cycle, SCLK tDC SCLK = 10 MHz 40 60 %
Cycle Time, SCLK tc100 ns
Rise Time, SCLK tr20–80% 25 ns
Fall Time, SCLK tf20–80% 25 ns
Low Time, SCLK tlsc 20–20% 30 ns
High Time, SCLK thsc 80–80% 30 ns
Delay Time, SCLK Fall
to SDO Active
td1 —— 25 ns
Delay Time, SCLK Fall
to SDO Transition
td2 —— 25 ns
Delay Time, SS Rise to
SDO Tri-state
td3 —— 25 ns
Setup Time, SS to
SCLK Fall
tsu1 25 ns
Hold Time, SS to
SCLK Rise
th1 20 ns
Setup Time, SDI to
SCLK Rise
tsu2 25 ns
Hold Time, SDI to
SCLK Rise
th2 20 ns
Delay Time between
Slave Selects
tcs 25 ns
Table 4. Microprocessor Control (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Un it
Si5325
Rev. 1.0 13
Table 5. Jitter Generation
Parameter Symbol Test Condition*Min Typ Max Unit
Measurement Filter
Jitter Gen
OC-192
JGEN 0.02–80 MHz .49 psrms
4–80 MHz .23 psrms
0.05–80 MHz .47 ps rms
Jitter Gen
OC-48
JGEN 0.12–20 MHz .48 ps rms
*Note: Test conditions:
1. fIN = fOUT = 622.08 MHz
2. Clock input: LVPECL
3. Clock output: LVPECL
4. PLL bandwidth: 877 kHz
5. VDD =2.5V
6. TA=8C
Table 6. Thermal Characteristics
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Value Unit
Thermal Resistance Junction to Ambient JA Still Air 32 C°/W
Thermal Resistance Junction to Case JC Still Air 14 C°/W
Table 7. Absolute Maximum Ratings
Parameter Symbol Value Unit
DC Supply Voltage VDD –0.5 to 3.8 V
LVCMOS Input Voltage VDIG –0.3 to (VDD + 0.3) V
CKINn Voltage Level Limits CKNVIN 0 to VDD V
XA/XB Voltage Level Limits XAVIN 0 to 1.2 V
Operating Junction Temperature TJCT –55 to 150 C
Storage Temperature Range TSTG –55 to 150 C
ESD HBM Tolerance (100 pF, 1.5 k); All pins except
CKIN+/CKIN–
2kV
ESD MM Tolerance; All pins except CKIN+/CKIN– 150 V
ESD HBM Tolerance (100 pF, 1.5 k); CKIN+/CKIN– 750 V
ESD MM Tolerance; CKIN+/CKIN– 100 V
Latch-Up Tolerance JESD78 Compliant
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods of time may affect device reliability.
Si5325
14 Rev. 1.0
Figure 3. Typical Phase Noise Plot
Table 8. Typical RMS Jitter Values
Jitter Bandwidth RMS Jitter (fs)
OC-48, 12 kHz to 20 MHz 374
OC-192, 20 kHz to 80 MHz 388
OC-192, 4 MHz to 80 MHz 181
OC-192, 50 kHz to 80 MHz 377
Broadband, 800 Hz to 80 MHz 420
622 MHz In, 622 MHz Out BW=877 kHz
-170
-150
-130
-110
-90
-70
-50
1000 10000 100000 1000000 10000000 100000000
O f fse t Fr equenc y ( Hz)
Phase Nois e ( dBc/
H
Si5325
Rev. 1.0 15
Figure 4. Si5325 Typical Application Circuit (I2C Control Mode)
Figure 5. Si5325 Typical Application Circuit (SPI Control Mode)
Si5325
INT_C1B
C2B
RST
CKOUT1+
CKOUT1–
VDD
GND
Serial Data
Serial Clock
Reset
Interrupt/CKIN_1 Invalid Indicator
CKIN_2 Invalid Indicator
Clock Outputs
CKOUT2+
CKOUT2–
SDA
SCL
I2C Interface
Serial Port AddressA[2:0]
CMODE
Control Mode (L)
CKIN1+
CKIN1
Input
Clock
Sources*
CKIN2+
CKIN2
Assumes differential LVPECL termination (3.3 V) on clock inputs.*Note:
Ferrite
Bead
System
Power
Supply
C3
C2
C1
C4
0.1 µF
0.1 µF
0.1 µF
1 µF
0.1 µF
100
0.1 µF +
0.1 µF
100
0.1 µF +
130 130
82 82
VDD = 3.3 V
130 130
82 82
VDD = 3.3 V
Si5325 INT_C1B
C2B
SPI Interface
RST
CKOUT1+
CKOUT1–
VDD
GND
Reset
Interrupt/CLKIN_1 Invalid Indicator
CLKIN_2 Invalid Indicator
CKOUT2+
CKOUT2–
Serial Data Out
Serial Data In
SDO
SDI
Serial ClockSCLK
Slave Select
SS
CMODEControl Mode (H)
CKIN1+
CKIN1–
Input
Clock
Sources*
CKIN2+
CKIN2–
Assumes differential LVPECL termination (3.3 V) on clock inputs.
*Note:
Clock Outputs
0.1 µF
100
0.1 µF +
0.1 µF
100
0.1 µF +
Ferrite
Bead
System
Power
Supply
C3
C2
C1
C4
0.1 µF
0.1 µF
0.1 µF
1 µF
130 130
82 82
VDD = 3.3 V
130 130
82 82
VDD = 3.3 V
Si5325
16 Rev. 1.0
2. Functional Description
The Si5325 is a low jitter, precision clock multiplier for
applications requiring clock multiplication without jitter
attenuation. The Si5325 accepts dual clock inputs
ranging from 10 to 710 MHz and generates two
synchronous clock outputs ranging from 2 kHz to
945 MHz and select frequencies to 1.4 GHz. The device
provides frequency translation across this operating
range. Independent dividers are available for each input
clock and output clock, so the Si5325 can accept input
clocks at different frequencies and it can generate
output clocks at different frequencies. The Si5325 input
clock frequency and clock multiplication ratio are
programmable through an I2C or SPI interface. Silicon
Laboratories offers a PC-based software utility,
DSPLLsim, that can be used to determine the optimum
PLL divider settings for a given input frequency/clock
multiplication ratio combination that minimizes phase
noise and power consumption. This utility can be
downloaded from http://www.silabs.com/timing (click on
Documentation).
The Si5325 is based on Silicon Laboratories' third-
generation DSPLL® technology, which provides
frequency synthesis in a highly integrated PLL solution
that eliminates the need for external VCXO and loop
filter components. The Si5325 PLL loop bandwidth is
digitally programmable and supports a range from
150kHz to 1.3MHz. The DSPLLsim software utility can
be used to calculate valid loop bandwidth settings for a
given input clock frequency/clock multiplication ratio.
In the case when the input clocks enter alarm
conditions, the PLL will freeze the DCO output
frequency near its last value to maintain operation with
an internal state close to the last valid operating state.
The Si5325 has two differential clock outputs. The
electrical format of each clock output is independently
programmable to support LVPECL, LVDS, CML, or
CMOS loads. If not required, the second clock output
can be powered down to minimize power consumption.
For system-level debugging, a bypass mode is available
which drives the output clock directly from the input
clock, bypassing the internal DSPLL. The device is
powered by a single 1.8, 2.5, or 3.3 V supply.
2.1. Further Documentation
Consult the Silicon Laboratories Any-Frequency
Precision Clock Family Reference Manual (FRM) for
detailed information about the Si5325. Additional design
support is available from Silicon Laboratories through
your distributor.
Silicon Laboratories has developed a PC-based
software utility called DSPLLsim to simplify device
configuration, including frequency planning and loop
bandwidth selection. The FRM and this utility can be
downloaded from http://www.silabs.com/timing; click on
Documentation.
Si5325
Rev. 1.0 17
3. Register Map
All register bits that are not defined in this map should always be written with the specified Reset Values. The
writing to these bits of values other than the specified Reset Values may result in undefined device behavior.
Registers not listed, such as Register 64, should never be written to.
Register D7 D6 D5 D4 D3 D2 D1 D0
0 CKOUT_ALWAYS_ON BYPASS_REG
1CK_PRIOR2[1:0] CK_PRIOR[1:0]
2 BWSEL_REG[3:0]
3 CKSEL_REG[1:0] SQ_ICAL
4 AUTOSEL_REG[1:0]
5 ICMOS[1:0]
6 SFOUT2_REG[2:0} SFOUT1_REG[2:0]
7FOSREFSEL[2:0]
8 HLOG_2[1:0] HLOG_1[1:0]
10 DSBL2_ REG DSBL1_ REG
11 PD_CK2 PD_CK1
19 FOS_EN FOS_THR[1:0] VALTIME[1:0]
20 CK2_BAD_PIN CK1_ BAD_ PIN INT_PIN
21 CK1_ACTV_PIN CKSEL_PIN
22 CK_ACTV_ POL CK_BAD_ POL INT_POL
23 LOS2_MSK LOS1_MSK
24 FOS2_MSK FOS1_MSK
25 N1_HS[2:0]
31 NC1_LS[19:16]
32 NC1_LS[15:8]
33 NC1_LS[7:0]
34 NC2_LS[19:16]
35 NC2_LS[15:8]
36 NC2_LS[7:0]
40 N2_LS[19:16]
41 N2_LS[15:8]
42 N2_LS[7:0]
43 N31[18:16]
44 N31[15:8]
45 N31[7:0]
46 N32[18:16]
47 N32[15:8]
48 N32[7:0]
55 CLKIN2RATE[2:0] CLKIN1RATE[2:0]
128 CK2_ACTV_REG CK1_ACTV_REG
Si5325
18 Rev. 1.0
129 LOS2_INT LOS1_INT
130 FOS2_INT FOS1_INT
131 LOS2_FLG LOS1_FLG
132 FOS2_FLG FOS1_FLG
134 PARTNUM_RO[11:4]
135 PARTNUM_RO[3:0] REVID_RO[3:0]
136 RST_REG ICAL
138 LOS2_EN [1:1] LOS1_EN [1:1]
139 LOS2_EN[0:0] LOS1_EN[0:0] FOS2_EN FOS1_EN
142 INDEPENDENTSKEW1[7:0]
143 INDEPENDENTSKEW2[7:0]
Register D7 D6 D5 D4 D3 D2 D1 D0
Si5325
Rev. 1.0 19
4. Register Descriptions
Reset value = 0001 0100
Register 0.
BitD7 D6 D5 D4D3D2 D1 D0
Name CKOUT_ALWAYS_ON BYPASS_REG
Type RR R/W RRR R/W R
Bit Name Function
7:6 Reserved
5 CKOUT_ALWAYS_ON CKOUT Always On.
This will bypass the SQ_ICAL function. Output will be available even if SQ_I-
CAL is on and ICAL is not complete or successful. See Table 9 on page 51.
0: Squelch output until part is calibrated (ICAL).
1: Provide an output. Note: The frequency may be significantly off until the
part is calibrated.
4:2 Reserved
1 BYPASS_REG Bypass Register.
This bit enables or disables the PLL bypass mode. Use only when the device
is in VCO freeze or before the first ICAL. Bypass mode is not supported for
CMOS output clocks.
0: Normal operation
1: Bypass mode. Selected input clock is connected to CKOUT buffers,
bypassing PLL. Bypass mode is not supported for CMOS outputs.
0 Reserved
Si5325
20 Rev. 1.0
Reset value = 1110 0100
Reset value = 0100 0010
Register 1.
BitD7D6D5D4D3D2D1D0
Name CK_PRIOR2 [1:0] CK_PRIOR1 [1:0]
Type RRRR R/W R/W
Bit Name Function
7:4 Reserved
3:2 CK_PRIOR2 [1:0] CK_PRIOR 2.
Selects which of the input clocks will be 2nd priority in the autoselection state
machine.
00: CKIN1 is 2nd priority.
01: CKIN2 is 2nd priority.
10: Reserved
11: Reserved
1:0 CK_PRIOR1 [1:0] CK_PRIOR 1.
Selects which of the input clocks will be 1st priority in the autoselection state
machine.
00: CKIN1 is 1st priority.
01: CKIN2 is 1st priority.
10: Reserved
11: Reserved
Register 2.
BitD7D6D5D4D3D2D1D0
Name BWSEL_REG [3:0]
Type R/W R R R R
Bit Name Function
7:4 BWSEL_REG [3:0] BWSEL_REG.
Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After
BWSEL_REG is written with a new value, an ICAL is required for the change to take
effect.
3:0 Reserved
Si5325
Rev. 1.0 21
Reset value = 0000 0101
Register 3.
BitD7D6D5D4D3D2D1D0
Name CKSEL_REG [1:0] SQ_ICAL
Type R/W R R/W R R R R
Bit Name Function
7:6 CKSEL_REG [1:0] CKSEL_REG.
If the device is operating in register-based manual clock selection mode
(AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input
clock will be the active input clock. If CKSEL_PIN = 1 and AUTOSEL_REG = 00,
the CS_CA input pin continues to control clock selection and CKSEL_REG is of no
consequence.
00: CKIN_1 selected.
01: CKIN_2 selected.
10: Reserved
11: Reserved
5 Reserved
4 SQ_ICAL SQ_ICAL.
This bit determines if the output clocks will remain enabled or be squelched (dis-
abled) during an internal calibration. See Table 9 on page 51.
0: Output clocks enabled during ICAL.
1: Output clocks disabled during ICAL.
3:0 Reserved
Si5325
22 Rev. 1.0
Reset value = 0001 0010
Reset value = 1110 1101
Register 4.
BitD7D6D5D4D3D2D1D0
Name AUTOSEL_REG [1:0]
Type R/W RRRRRR
Bit Name Function
7:6 AUTOSEL_REG [1:0] AUTOSEL_REG [1:0].
Selects method of input clock selection to be used.
00: Manual (either register or pin controlled, see CKSEL_PIN)
01: Automatic Non-Revertive
10: Automatic Revertive
11: Reserved
5:0 Reserved
Register 5.
BitD7D6D5D4D3D2D1D0
Name ICMOS [1:0]
Type R/W RRRRRR
Bit Name Function
7:6 ICMOS [1:0] ICMOS [1:0].
When the output buffer is set to CMOS mode, these bits determine the output buffer drive
strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation.
These values assume CKOUT+ is tied to CKOUT-.
00: 8 mA/2 mA.
01: 16 mA/4 mA
10: 24 mA/6 mA
11: 32 mA/8 mA
5:0 Reserved
Si5325
Rev. 1.0 23
Reset value = 0010 1101
Register 6.
BitD7D6D5D4D3D2D1D0
Name SFOUT2_REG [2:0] SFOUT1_REG [2:0]
Type RR R/W R/W
Bit Name Function
7:6 Reserved
5:3 SFOUT2_REG [2:0] SFOUT2_REG [2:0 ].
Controls output signal format and disable for CKOUT2 output buffer. Bypass
mode is not supported for CMOS output clocks.
000: Reserved
001: Disable
010: CMOS (Bypass mode is not supported for CMOS outputs)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
2:0 SFOUT1_REG [2:0] SFOUT1_REG [2:0 ].
Controls output signal format and disable for CKOUT1 output buffer. Bypass
mode is not supported for CMOS output clocks.
000: Reserved
001: Disable
010: CMOS (Bypass mode is not supported for CMOS outputs)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
Si5325
24 Rev. 1.0
Reset value = 0010 1010
Register 7.
BitD7D6D5D4D3D2D1D0
Name FOSREFSEL [2:0]
Type RRRRR R/W
Bit Name Function
7:3 Reserved
2:0 FOSREFSEL [2:0] FOSREFSEL [2:0].
Selects which input clock is used as the reference frequency for Frequency Off-Set
(FOS) alarms.
000: XA/XB (External reference)
001: CKIN1
010: CKIN2
011: Reserved
100: Reserved
101: Reserved
110: Reserved
111: Reserved
Si5325
Rev. 1.0 25
Reset value = 0000 0000
Register 8.
BitD7D6D5D4D3D2D1D0
Name HLOG_2[1:0] HLOG_1[1:0]
Type R/W R/W RRRR
Bit Name Function
7:6 HLOG_2 [1:0] HLOG_2 [1:0].
00: Normal operation
01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10:Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur
without glitches or runt pulses.
11: Reserved
5:4 HLOG_1 [1:0].
00: Normal operation
01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur
without glitches or runt pulses.
11: Reserved
3:0 Reserved
Si5325
26 Rev. 1.0
Reset value = 0000 0000
Reset value = 0100 0000
Register 10.
BitD7D6D5D4 D3 D2 D1 D0
Name DSBL2_REG DSBL1_REG Reserved Reserved
Type RRRR R/W R/W R R
Bit Name Function
7:4 Reserved
3 DSBL2_REG DSBL2_REG.
This bit controls the powerdown of the CKOUT2 output buffer. If disable mode is
selected, the NC2 output divider is also powered down.
0: CKOUT2 enabled
1: CKOUT2 disabled
2 DSBL1_REG DSBL1_REG.
This bit controls the powerdown of the CKOUT1 output buffer. If disable mode is
selected, the NC1 output divider is also powered down.
0: CKOUT1 enabled
1: CKOUT1 disabled
1:0 Reserved
Register 11.
BitD7D6D5D4D3D2D1D0
Name PD_CK2 PD_CK1
Type RRRRRRR/WR/W
Bit Name Function
7:2 Reserved
1PD_CK2PD_CK2.
This bit controls the powerdown of the CKIN2 input buffer.
0: CKIN2 enabled
1: CKIN2 disabled
0PD_CK1PD_CK1.
This bit controls the powerdown of the CKIN1 input buffer.
0: CKIN1 enabled
1: CKIN1 disabled
Si5325
Rev. 1.0 27
Reset value = 0010 1100
Register 19.
BitD7 D6D5D4D3D2D1D0
Name FOS_EN FOS_THR [1:0] VALTIME [1:0]
Type R/W R/W R/W RRR
Bit Name Function
7:5 FOS_EN FOS_EN.
Frequency Offset Enable globally disables FOS. See the individual FOS enables
(FOSX_EN, register 139).
0: FOS disable
1: FOS enabled by FOSx_EN
6:5 FOS_THR [1:0] FOS_THR [1:0].
Frequency Offset at which FOS is declared:
00: ± 11 to 12 ppm (Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK
01: ± 48 to 49 ppm (SMC)
10: ± 30 ppm (SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK.
11: ± 200 ppm
4:3 VALTIME [1:0] VALTIME [1:0].
Sets amount of time for input clock to be valid before the associated alarm is
removed.
00: 2 ms
01: 100 ms
10: 200 ms
11: 13 seconds
2:0 Reserved
Si5325
28 Rev. 1.0
Reset value = 0011 1110
Register 20.
BitD7D6D5D4 D3 D2 D1 D0
Name CK2_BAD_PIN CK1_BAD_PIN INT_PIN
Type R R R R R/W R/W R R/W
Bit Name Function
7:4 Reserved
3 CK2_BAD_PIN CK2_BAD_PIN.
The CK2_BAD status can be reflected on the C2B output pin.
0: C2B output pin tristated
1: C2B status reflected to output pin
2 CK1_BAD_PIN CK1_BAD_PIN.
The CK1_BAD status can be reflected on the C1B output pin.
0: C1B output pin tristated
1: C1B status reflected to output pin
1 Reserved
0INT_PININT_PIN.
Reflects the interrupt status on the INT_C1B output pin.
0: Interrupt status not displayed on INT_C1B output pin. If CK1_BAD_PIN = 0,
INT_C1B output pin is tristated.
1: Interrupt status reflected to output pin. Instead, the INT_C1B pin indicates when
CKIN1 is bad.
Si5325
Rev. 1.0 29
Reset value = 1111 1111
Register 21.
BitD7 D6D5D4D3D2 D1 D0
Name CK1_ACTV_PIN CKSEL_ PIN
Type R Force 1 R R R R R/W R/W
Bit Name Function
7:2 Reserved
1 CK1_ACTV_PIN CK1_ACTV_PIN.
The CK1_ACTV_REG status bit can be reflected to the CS_CA output pin using the
CK1_ACTV_PIN enable function. CK1_ACTV_PIN is of consequence only when pin
controlled clock selection is not being used.
0: CS_CA output pin tristated.
1: Clock Active status reflected to output pin.
0 CKSEL_PIN CKSEL_PIN.
If manual clock selection is being used, clock selection can be controlled via the
CKSEL_REG[1:0] register bits or the CS_CA input pin. This bit is only active when
AUTOSEL_REG = Manual.
0: CS_CA pin is ignored. CKSEL_REG[1:0] register bits control clock selection.
1: CS_CA input pin controls clock selection.
Si5325
30 Rev. 1.0
Reset value = 1101 1111
Register 22.
Bit D7D6D5D4 D3 D2 D1 D0
Name CK_ACTV_POL CK_BAD_ POL INT_POL
Type RRRR R/W R/W R R/W
Bit Name Function
7:4 Reserved
3 CK_ACTV_ POL CK_ACTV_POL.
Sets the active polarity for the CS_CA signals when reflected on an output pin.
0: Active low
1: Active high
2 CK_BAD_ POL CK_BAD_POL.
Sets the active polarity for the INT_C1B and C2B signals when reflected on output
pins.
0: Active low
1: Active high
1 Reserved
0INT_POLINT_POL.
Sets the active polarity for the interrupt status when reflected on the INT_C1B output
pin.
0: Active low
1: Active high
Si5325
Rev. 1.0 31
Reset value = 0001 1111
Register 23.
BitD7D6D5D4D3 D2 D1 D0
Name LOS2_ MSK LOS1_ MSK Reserved
Type RRRRR R/W R/W R
Bit Name Function
7:3 Reserved
2LOS2_MSKLOS2_MSK.
Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOS2_FLG register.
0: LOS2 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).
1: LOS2_FLG ignored in generating interrupt output.
1LOS1_MSKLOS1_MSK.
Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOS1_FLG register.
0: LOS1 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).
1: LOS1_FLG ignored in generating interrupt output.
0 Reserved
Si5325
32 Rev. 1.0
Reset value = 0011 1111
Register 24.
BitD7D6D5D4D3 D2 D1 D0
Name FOS2_MSK FOS1_MSK
Type RRRRR R/W R/W R
Bit Name Function
7:3 Reserved
2 FOS2_MSK FOS2_MSK.
Determines if the FOS2_FLG is used to in the generation of an interrupt. Writes to this
register do not change the value held in the FOS2_FLG register.
0: FOS2 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).
1: FOS2_FLG ignored in generating interrupt output.
1 FOS1_MSK FOS1_MSK.
Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this reg-
ister do not change the value held in the FOS1_FLG register.
0: FOS1 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).
1: FOS1_FLG ignored in generating interrupt output.
0 Reserved
Si5325
Rev. 1.0 33
Reset value = 0010 0000
Reset value = 0000 0000
Register 25.
BitD7D6D5D4D3D2D1D0
Name N1_HS [2:0]
Type R/W RRRRR
Bit Name Function
7:5 N1_HS [2:0] N1_HS [2:0].
Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 2) low-speed divider.
000: N1 = 4 Note: Changing the coarse skew via the INC pin is disabled for this value.
001: N1 = 5
010: N1 = 6
011: N1 = 7
100: N1 = 8
101: N1 = 9
110: N1 = 10
111: N1 = 11
4:0 Reserved
Register 31.
BitD7D6D5D4D3D2D1D0
Name NC1_LS [19:16]
Type RRRR R/W
Bit Name Function
7:4 Reserved
3:0 NC1_LS
[19:16]
NC1_LS [19:16].
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220]
Si5325
34 Rev. 1.0
Reset value = 0000 0000
Reset value = 0011 0001
Register 32.
BitD7D6D5D4D3D2D1D0
Name NC1_LS [15:8]
Type R/W
Bit Name Function
7:0 NC1_LS [15:8] NC1_LS [15:8].
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or
odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220]
Register 33.
BitD7D6D5D4D3D2D1D0
Name NC1_LS [7:0]
Type R/W
Bit Name Function
7:0 NC1_LS [19:0] NC1_LS [7:0].
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220]
Si5325
Rev. 1.0 35
Reset value = 0000 0000
Reset value = 0000 0000
Register 34.
BitD7D6D5D4D3D2D1D0
Name NC2_LS [19:16]
Type RRRR R/W
Bit Name Function
7:4 Reserved
3:0 NC2_LS [19:16] NC2_LS [1 9: 16 ] .
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or
odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220]
Register 35.
BitD7D6D5D4D3D2D1D0
Name NC2_LS [15:8]
Type R/W
Bit Name Function
7:0 NC2_LS [15:8] NC2_LS [15:8].
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or
odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220]
Si5325
36 Rev. 1.0
Reset value = 0011 0001
Reset value = 1100 0000
Register 36.
BitD7D6D5D4D3D2D1D0
Name NC2_LS [7:0]
Type R/W
Bit Name Function
7:0 NC2_LS [7:0] NC2_LS [7:0].
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 220
Valid divider values = [1, 2, 4, 6, ..., 220]
Register 40.
BitD7D6D5D4D3D2D1D0
Name N2_LS [19:16]
Type RR/W
Bit Name Function
7:4 Reserved
3:0 N2_LS [19:16] N2_LS [19:16 ].
Sets the value for the N2 low-speed divider, which drives the phase detector.
Must be an even number ranging from 32 to 512 (inclusive).
00000000000000100000 = 32
00000000000000100010 = 34
00000000000000100100 = 36
...
00000000001000000000 = 512
Valid divider values = [32, 34, 36...512]
Si5325
Rev. 1.0 37
Reset value = 0000 0000
Reset value = 1111 1001
Register 41.
BitD7D6D5D4D3D2D1D0
Name N2_LS [15:8]
Type R/W
Bit Name Function
7:0 N2_LS [15:8] N2_LS [15:8].
Sets the value for the N2 low-speed divider, which drives the phase detector.
Must be an even number ranging from 32 to 512 (inclusive).
00000000000000100000 = 32
00000000000000100010 = 34
00000000000000100100 = 36
...
00000000001000000000 = 512
Valid divider values = [32, 34, 36...512]
Register 42.
BitD7D6D5D4D3D2D1D0
Name N2_LS [7:0]
Type R/W
Bit Name Function
7:0 N2_LS [7:0] N2_LS [7:0].
Sets the value for the N2 low-speed divider, which drives the phase detector.
Must be an even number ranging from 32 to 512 (inclusive).
00000000000000100000 = 32
00000000000000100010 = 34
00000000000000100100 = 36
...
00000000001000000000 = 512
Valid divider values = [32, 34, 36...512]
Si5325
38 Rev. 1.0
Reset value = 0000 0000
Reset value = 0000 0000
Register 43.
BitD7D6D5D4D3D2D1D0
Name N31 [18:16]
Type RRRRR R/W
Bit Name Function
7:3 Reserved
2:0 N31 [18:16] N31 [18:16].
Sets value for input divider for CKIN1.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values = [1, 2, 3, ..., 219]
Register 44.
BitD7D6D5D4D3D2D1D0
Name N31_[15:8]
Type R/W
Bit Name Function
7:0 N31_[15:8] N31_[15:8].
Sets value for input divider for CKIN1.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values = [1, 2, 3, ..., 219]
Si5325
Rev. 1.0 39
Reset value = 0000 1001
Reset value = 0000 0000
Register 45.
BitD7D6D5D4D3D2D1D0
Name N31_[7:0]
Type R/W
Bit Name Function
7:0 N31_[7:0 N31_[7:0].
Sets value for input divider for CKIN1.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values=[1, 2, 3, ..., 219]
Register 46.
BitD7D6D5D4D3D2D1D0
Name N32_[18:16]
Type RRRRR R/W
Bit Name Function
7:3 Reserved
2:0 N32_[18:16] N32_[18:16].
Sets value for input divider for CKIN2.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values = [1, 2, 3, ..., 219]
Si5325
40 Rev. 1.0
Reset value = 0000 0000
Reset value = 0000 1001
Register 47.
BitD7D6D5D4D3D2D1D0
Name N32_[15:8]
Type R/W
Bit Name Function
7:0 N32_[15:8] N32_[15:8].
Sets value for input divider for CKIN2.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values=[1, 2, 3, ..., 219]
Register 48.
BitD7D6D5D4D3D2D1D0
Name N32_[7:0]
Type R/W
Bit Name Function
7:0 N32_[7:0] N32_[7:0].
Sets value for input divider for CKIN2.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 219
Valid divider values = [1, 2, 3, ..., 219]
Si5325
Rev. 1.0 41
Reset value = 0000 0000
Register 55h.
BitD7D6D5D4D3D2D1D0
Name CLKIN2RATE_[2:0] CLKIN1RATE[2:0]
Type RR R/W R/W
Bit Name Function
7:6 Reserved
5:3 CLKIN2RATE[2:0] CLKIN2RATE[2:0].
CKINn frequency selection for FOS alarm monitoring.
000: 10–27 MHz
001: 25–54 MHz
002: 50–105 MHz
003: 95–215 MHz
004: 190–435 MHz
005: 375–710 MHz
006: Reserved
007: Reserved
2:0 CLKIN1RATE [2:0] CLKIN1RATE[2:0].
CKINn frequency selection for FOS alarm monitoring.
000: 10–27 MHz
001: 25–54 MHz
002: 50–105 MHz
003: 95–215 MHz
004: 190–435 MHz
005: 375–710 MHz
006: Reserved
007: Reserved
Si5325
42 Rev. 1.0
Reset value = 0010 0000
Reset value = 0000 0110
Register 128.
BitD7D6D5D4D3D2 D1 D0
Name CK2_ACTV_REG CK1_ACTV_REG
Type RRRRRR R R
Bit Name Function
7:2 Reserved
1 CK2_ACTV_REG CK2_ACTV_REG.
Indicates if CKIN2 is currently the active clock for the PLL input.
0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1.
1: CKIN2 is the active input clock.
0 CK1_ACTV_REG CK1_ACTV_REG.
Indicates if CKIN1 is currently the active clock for the PLL input.
0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1.
1: CKIN1 is the active input clock.
Register 129.
BitD7D6D5D4D3D2D1D0
Name LOS2_INT LOS1_INT
Type RRRRRRRR
Bit Name Function
7:3 Reserved
2 LOS2_INT LOS2_INT.
Indicates the LOS status on CKIN2.
0: Normal operation.
1: Internal loss-of-signal alarm on CKIN2 input.
1 LOS1_INT LOS1_INT.
Indicates the LOS status on CKIN1.
0: Normal operation.
1: Internal loss-of-signal alarm on CKIN1 input.
0 Reserved
Si5325
Rev. 1.0 43
Reset value = 0000 0001
Register 130.
BitD7D6D5D4D3D2D1D0
Name FOS2_INT FOS1_INT
Type RRRRRRRR
Bit Name Function
7:3 Reserved
2FOS2_INTCKIN2 Frequency Offset Status.
0: Normal operation.
1: Internal frequency offset alarm on CKIN2 input.
1FOS1_INTCKIN1 Frequency Offset Status.
0: Normal operation.
1: Internal frequency offset alarm on CKIN1 input.
0 Reserved
Si5325
44 Rev. 1.0
Reset value = 0001 1111
Register 131.
BitD7D6D5D4D3D2D1D0
Name LOS2_FLG LOS1_FLG
Type RRRRRR/WR/WR
Bit Name Function
7:3 Reserved
2LOS2_FLGCKIN2 Loss-of-Signal Flag.
0: Normal operation.
1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOS2_MSK bit. Flag cleared by writing 0 to
this bit.
1LOS1_FLGCKIN1 Loss-of-Signal Flag.
0: Normal operation
1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOS1_MSK bit. Flag cleared by writing 0 to
this bit.
0 Reserved
Si5325
Rev. 1.0 45
Reset value = 0000 0010
Register 132.
BitD7D6D5D4D3D2D1D0
Name FOS2_FLG FOS1_FLG
Type RRRRR/WR/WRR
Bit Name Function
7:4, 0 Reserved
3FOS2_FLGCLKIN_2 Frequency Offse t Flag.
0: Normal operation.
1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing 0 to
this bit.
2FOS1_FLGCLKIN_1 Frequency Offse t Flag.
0: Normal operation
1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing 0 to
this bit.
1 Reserved
Si5325
46 Rev. 1.0
Reset value = 0000 0001
Reset value = 1010 0010
Register 134.
BitD7D6D5D4D3D2D1D0
Name PARTNUM_RO [11:4]
Type R
Bit Name Function
7:0 PARTNUM_RO [11:0] Device ID (1 of 2).
0000 0001 1001: Si5325
Register 135.
BitD7D6D5D4D3D2D1D0
Name PARTNUM_RO [3:0] REVID_RO [3:0]
Type RR
Bit Name Function
7:4 PARTNUM_RO [11:0] Device ID (2 of 2).
0000 0001 1001: Si5325
3:0 REVID_RO [3:0] Indicates Revision Number of Device.
0000: Revision A
0001: Revision B
0010: Revision C
Others: Reserved
Si5325
Rev. 1.0 47
Reset value = 0000 0000
Register 136.
BitD7D6D5D4D3D2D1D0
Name RST_REG ICAL
Type R/WR/WRRRRRR
Bit Name Function
7 RST_REG Internal Reset (Same as Pin Reset).
Note: The I2C (or SPI) port may not be accessed until 10 ms after RST_REG is asserted.
0: Normal operation.
1: Reset of all internal logic. Outputs disabled or tristated during reset.
6ICALSt art an Internal Calibration Sequence.
For proper operation, the device must go through an internal calibration sequence. ICAL
is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibration is
complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be
present to begin ICAL.
Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take
effect.
0: Normal operation.
1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-calibra-
tion, LOL will go low.
5:0 Reserved
Si5325
48 Rev. 1.0
Reset value = 0000 1111
Register 138.
BitD7D6D5D4D3D2 D1 D0
Name LOS2_EN [1:1] LOS1_EN [1:1]
Type RRRRRR R/W R/W
Bit Name Function
7:2 Reserved
1 LOS2_EN [1:0] Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2).
Note: LOS2_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. SEe the Family Reference Man-
ual for details.
0 LOS1_EN [1:0] Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the Family Reference Man-
ual for details.
Si5325
Rev. 1.0 49
Reset value = 1111 1111
Register 139.
Bit D7 D6 D5 D4 D3 D2 D1 D0
Name LOS2_EN [0:0] LOS1_EN [0:0] FOS2_EN FOS1_EN
Type R R R/W R/W R R R/W R/W
Bit Name Function
7:6,
3:2
Reserved
5 LOS2_EN [1:0] Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2).
Note: LOS2_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the family reference manual
for details
4 LOS1_EN [1:0] Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring.
01: Reserved.
10: Enable LOSA monitoring.
11: Enable LOS monitoring.
LOSA is a slower and less sensitive version of LOS. See the family reference manual
for details.
1FOS2_ENEnables FOS on a Per Channel Basis.
0: Disable FOS monitoring.
1: Enable FOS monitoring.
0FOS1_ENEnables FOS on a Per Channel Basis.
0: Disable FOS monitoring.
1: Enable FOS monitoring.
Si5325
50 Rev. 1.0
Reset value = 0000 0000
Reset value = 0000 0000
Register 142.
BitD7D6D5D4D3D2D1D0
Name INDEPENDENTSKEW1 [7:0]
Type R/W
Bit Name Function
7:0 INDEPENDENTSKEW1 [7:0] INDEPENDENTSKEW1.
8 bit field that represents a twos complement of the phase offset in terms
of clocks from the high speed output divider. Default = 0.
Register 143.
BitD7D6D5D4D3D2D1D0
Name INDEPENDENTSKEW2 [7:0]
Type R/W
Bit Name Function
7:0 INDEPEND-ENTSKEW2 [7:0] INDEPENDENTSKEW2.
8 bit field that represents a twos complement of the phase offset in
terms of clocks from the high speed output divider. Default = 0.
Si5325
Rev. 1.0 51
Table 10 lists all of the register locations that should be followed by an ICAL after their contents are changed.
Table 9. CKOUT_ALWAYS_ON and SQICAL Truth Table
CKOUT_ALWAYS_ON SQICAL Result s Output to Output
Skew Preserved?
0 0 CKOUT OFF until after the first ICAL N
0 1 CKOUT OFF until after the first successful
ICAL (i.e., when LOL is low)
Y
1 0 CKOUT always ON, including during an ICAL N
1 1 CKOUT always ON, including during an ICAL Y
Table 10. Register Locations Requiring ICAL
Addr Register
0 BYPASS_REG
0 CKOUT_ALWAYS_ON
1 CK_PRIOR2
1 CK_PRIOR1
2 BWSEL_REG
4HIST_DEL
5ICMOS
7 FOSREFSEL
9HIST_AVG
10 DSBL2_REG
10 DSBL1_REG
11 PD_CK2
11 PD_CK1
19 FOS_EN
19 FOS_THR
19 VALTIME
19 LOCKT
25 N1_HS
31 NC1_LS
34 NC2_LS
40 N2_HS
40 N2_LS
43 N31
46 N32
55 CLKIN2RATE
55 CLKIN1RATE
Si5325
52 Rev. 1.0
5. Pin Descriptions: Si5325
Table 11. Si5325 Pin Descriptions
Pin # Pin Name I/O Signal Level Description
1RST
ILVCMOSExternal Reset.
Active low input that performs external hardware reset of
device. Resets all internal logic to a known state and forces
the device registers to their default value. Clock outputs are
tristated during reset. The part must be programmed after a
reset or power-on to get a clock output. See Family Refer-
ence Manual for details.
This pin has a weak pull-up.
2, 7, 9, 14,
18, 30, 33
NC No Connect.
This pin must be left unconnected for normal operation.
3 INT_C1B O LVCMOS Interrupt/CKIN1 Invalid Indicator.
This pin functions as a device interrupt output or an alarm
output for CKIN1. If used as an interrupt output, INT_PIN
must be set to 1. The pin functions as a maskable interrupt
output with active polarity controlled by the INT_POL register
bit.
If used as an alarm output, the pin functions as a LOS (and
optionally FOS) alarm indicator for CKIN1. Set
CK1_BAD_PIN = 1 and INT_PIN =0.
0 = CKIN1 present.
1 = LOS (FOS) on CKIN1.
The active polarity is controlled by CK_BAD_POL. If no func-
tion is selected, the pin tristates.
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map.
Si5325
Rev. 1.0 53
4C2BOLVCMOSCKIN2 Invalid Indicator.
This pin functions as a LOS (and optionally FOS) alarm indi-
cator for CKIN2 if CK2_BAD_PIN =1.
0 = CKIN2 present.
1 = LOS (FOS) on CKIN2.
The active polarity can be changed by CK_BAD_POL. If
CK2_BAD_PIN = 0, the pin tristates.
5, 10, 11,
15, 32
VDD VDD Supply Supply.
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass
capacitors should be associated with the following VDD pins:
50.1µF
10 0.1 µF
32 0.1 µF
A 1.0 µF should also be placed as close to device as is prac-
tical.
6, 8, 19,
20 31
GND GND Supply Ground.
Must be connected to system ground. Minimize the ground
path impedance for optimal performance of this device.
12
13
CKIN2+
CKIN2–
IMultiClock Input 2.
Differential input clock. This input can also be driven with a
single-ended signal. Input frequency range is 10 to 710 MHz.
16
17
CKIN1+
CKIN1–
IMultiClock Input 1.
Differential input clock. This input can also be driven with a
single-ended signal. Input frequency range is 10 to 710 MHz.
Table 11. Si5325 Pin Descriptions (Continued)
Pin # Pin Name I/O Signal Level Description
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map.
Si5325
54 Rev. 1.0
21 CS_CA I/O LVCMOS Input Clock Select/Active Clock Indicator.
Input: In manual clock selection mode, this pin functions as
the manual input clock selector if the CKSEL_PIN is
set to 1.
0 = Select CKIN1.
1 = Select CKIN2.
If CKSEL_PIN =0, the CKSEL_REG register bit
controls this function. If configured as input, must be
set high or low.
Output: In automatic clock selection mode, this pin indicates
which of the two input clocks is currently the active
clock. If alarms exist on both clocks, CA will indicate
the last active clock that was used before entering
the VCO freeze state. The CK_ACTV_PIN register
bit must be set to 1 to reflect the active clock status
to the CA output pin.
0 = CKIN1 active input clock.
1 = CKIN2 active input clock.
If CK_ACTV_PIN = 0, this pin will tristate. The CA
status will always be reflected in the CK_ACT-
V_REG read only register bit.
22 SCL I LVCMOS Serial Clock/Serial Clock.
This pin functions as the serial clock input for both SPI and
I2C modes.
This pin has a weak pulldown.
23 SDA_SDO I/O LVCMOS Serial Data.
In I2C control mode (CMODE = 0), this pin functions as the
bidirectional serial data port.
In SPI control mode (CMODE = 1), this pin functions as the
serial data output.
25
24
A1
A0
ILVCMOSSerial Port Address.
In I2C control mode (CMODE = 0), these pins function as
hardware controlled address bits. The I2C address is 1101
[A2] [A1] [A0].
In SPI control mode (CMODE = 1), these pins are ignored.
This pin has a weak pulldown.
26 A2_SS ILVCMOSSerial Port Address/Slave Select.
In I2C control mode (CMODE = 0), this pin functions as a
hardware controlled address bit [A2].
In SPI control mode (CMODE = 1), this pin functions as the
slave select input.
This pin has a weak pulldown.
Table 11. Si5325 Pin Descriptions (Continued)
Pin # Pin Name I/O Signal Level Description
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map.
Si5325
Rev. 1.0 55
27 SDI I LVCMOS Serial Data In.
In I2C control mode (CMODE = 0), this pin is ignored.
In SPI control mode (CMODE = 1), this pin functions as the
serial data input.
This pin has a weak pulldown.
29
28
CKOUT1–
CKOUT1+
OMultiOutput Clock 1.
Differential output clock with a frequency range of 10 MHz to
1.4175 GHz. Output signal format is selected by
SFOUT1_REG register bits. Output is differential for
LVPECL, LVDS, and CML compatible modes. For CMOS for-
mat, both output pins drive identical single-ended clock out-
puts.
34
35
CKOUT2–
CKOUT2+
OMultiOutput Clock 2.
Differential output clock with a frequency range of 10 MHz to
1.4175 GHz. Output signal format is selected by
SFOUT2_REG register bits. Output is differential for
LVPECL, LVDS, and CML compatible modes. For CMOS for-
mat, both output pins drive identical single-ended clock out-
puts.
36 CMODE I LVCMOS Control Mode.
Selects I2C or SPI control mode for the Si5325.
0=I
2C Control Mode.
1 = SPI Control Mode.
Must not float.
GND PAD GND GND Supply Ground Pad.
The ground pad must provide a low thermal and electrical
impedance to a ground plane.
Table 11. Si5325 Pin Descriptions (Continued)
Pin # Pin Name I/O Signal Level Description
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map.
Si5325
56 Rev. 1.0
6. Ordering Guide
Ordering Part
Number Output Clock
Frequency Range Package ROHS6,
Pb-Free Temperature Range
Si5325A-C-GM* .002–945 MHz
970–1134 MHz
1.213–1.4 GHz
36-Lead 6 x 6 mm QFN Yes –40 to 85 °C
Si5325B-C-GM* .002–808 MHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C
Si5325C-C-GM* .002–346 MHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C
*Note: Not recommended for new designs. For alternatives, see the Si533x family.
Si5325
Rev. 1.0 57
7. Package Outline: 36-Pin QFN
Figure 6 illustrates the package details for the Si5325. Table 12 lists the values for the dimensions shown in the
illustration.
Figure 6. 36-Pin Quad Flat No-lead (QFN)
Table 12. Package Dimensions
Symbol Millimeters Symbol Millimeters
Min Nom Max Min Nom Max
A 0.80 0.85 0.90 L 0.50 0.60 0.70
A1 0.00 0.02 0.05 ——12º
b 0.18 0.25 0.30 aaa 0.10
D 6.00 BSC bbb 0.10
D2 3.95 4.10 4.25 ccc 0.08
e 0.50 BSC ddd 0.10
E 6.00 BSC eee 0.05
E2 3.95 4.10 4.25
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VJJD.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body
Components.
Si5325
58 Rev. 1.0
8. Land Pattern: 36-Pin QFN
Figure 7. 36-Pin QFN Land Pattern
Si5325
Rev. 1.0 59
Table 13. PCB Land Pattern Dimensions
Dimension MIN MAX
e 0.50 BSC.
E 5.42 REF.
D 5.42 REF.
E2 4.00 4.20
D2 4.00 4.20
GE 4.53
GD 4.53
X 0.28
Y 0.89 REF.
ZE 6.31
ZD 6.31
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on IPC-SM-782 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
Solder Mask Design
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
Stencil Design
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be
used to assure good solder paste release.
7. The stencil thickness should be 0.125 mm (5 mils).
8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
9. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the
center ground pad.
Card Assembly
10. A No-Clean, Type-3 solder paste is recommended.
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for
Small Body Components.
Si5325
60 Rev. 1.0
9. Top Marking
9.1. Si5325 Top Marking (QFN)
9.2. Top Marking Explanation
Mark Method: Laser
Font Size: 0.80 mm
Right-Justified
Line 1 Marking: Si5325Q Customer Part Number
Q = Speed Code: A, B, C
See Ordering Guide for options.
Line 2 Marking: C-GM C = Product Revision
G = Temperature Range –40 to 85 °C (RoHS6)
M = QFN Package
Line 3 Marking: YYWWRF YY = Year
WW = Work Week
R = Die Revision
F = Internal code
Assigned by the Assembly House. Corresponds to the year
and work week of the mold date.
Line 4 Marking: Pin 1 Identifier Circle = 0.75 mm Diameter
Lower-Left Justified
XXXX Internal Code
Si5325
Rev. 1.0 61
DOCUMENT CHANGE LIST
Revision 0.23 to Revision 0.24
Clarified that the two outputs have a common, higher
frequency source on page 1.
Changed LVTTL to LVCMOS in Table 2, “Absolute
Maximum Ratings,” on page 5.
Added Figure 1, “Typical Phase Noise Plot,” on page
4.
Updated “5. Pin Descriptions: Si5325”.
Removed references to latency control, INC, and DEC.
Changed font for register names to underlined italics.
Updated "6. Ordering Guide" on page 56.
Added “8. Land Pattern: 36-Pin QFN”.
Revision 0.24 to Revision 0.25
Updated Section "5. Pin Descriptions: Si5325" on
page 52.
Revision 0.25 to Revision 0.26
Removed Figure 1. “Typical Phase Noise Plot.”
Changed pins 11 and 15 from NC to VDD in “5. Pin
Descriptions: Si5325”.
Revision 0.26 to Revision 0.3
Changed 1.8 V operating range to ±5%.
Updated Table 1 on page 4.
Updated Table 2 on page 5.
Added page 14.
Updated "2. Functional Description" on page 16.
Clarified "5. Pin Descriptions: Si5325" on page 52
including pull-up/pull-down.
Revision 0.3 to Revision 0.4
Added register map
Lowered minimum CKOUT frequency
Updated spec tables
ESD tolerance, Table 2 on page 5
Minimum input and output clock frequencies, Table 1 on
page 4
Absolute maximum VDD voltage, Table 2 on page 5
Added to spec table
CKIN voltage limits, Table 2 on page 5
Typical jitter and phase noise values, Table 1 on page 4
No bypass mode with CMOS outputs
Revision 0.4 to Revision 0.5
Expanded electrical specification tables 1 through 7.
Removed support for CMOS outputs in Bypass
mode.
Corrected minor errors in register map section.
Updated " Features" on page 1“.
Added “not recommended for new designs” language.
Updated Table 5 on page 52.
Updated "6. Ordering Guide" on page 56.
Removed note from "5. Pin Descriptions: Si5325" on
page 52.
Revision 0.5 to Revision 1.0
Updated logo.
Transitioned to full production.
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
http://www.silabs.com
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).
www.silabs.com/CBPro
Timing Portfolio
www.silabs.com/timing SW/HW
www.silabs.com/CBPro Quality
www.silabs.com/quality Support and Community
community.silabs.com
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Silicon Laboratories:
Si5325C-C-GM Si5325A-C-GM Si5325B-C-GM SI5325A-C-GMR SI5325B-C-GMR SI5325C-C-GMR Si5325/26-
EVB SI5325A-C-GM SI5325B-C-GM SI5325C-C-GM SI5325/26-EVB