REV. B
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
a
AD10200
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 ©Analog Devices, Inc., 2001–2016
Dual Channel, 12-Bit 105 MSPS IF Sampling
A/D Converter with Analog Input
Signal Conditioning
FUNCTIONAL BLOCK DIAGRAM
50
D00B
(LSB)
49
D01B
48
D02B
47
D03B
46
D04B
45
D05B
42
D06B
41
D07B
40
D08B
39
D09B
38
D10B
37
D11B
(MSB)
34
D00A
(LSB)
D01A
D02A
D03A
D04A
D05A
D06A
D07A
D08A
D09A
D10A
D11A
(MSB)
21
33
32
31
30
29
28
25
24
23
22
ADC
7
50
A
IN
A2
T1A
ADC
63
50
A
IN
B2
T1B
AD10200
OUTPUT RESISTORS
12 12
18 17
ENCODEAENCODEA
REF
3
REF_A_OUT
TIMING
53 54
ENCODEBENCODEB
REF
56
REF_B_OUT
OUTPUT RESISTORS
12 12
T/H T/H
TIMING
FEATURES
Dual, 105 MSPS Minimum Sample Rate
Channel-Channel Isolation, >80 dB
AC-Coupled Signal Conditioning Included
Gain Flatness up to Nyquist: < 0.2 dB
Input VSWR 1.1:1 to Nyquist
80 dB Spurious-Free Dynamic Range
Two’s Complement Output Format
3.3 V or 5 V CMOS-Compatible Output Levels
0.850 W per Channel
Industrial and Military Grade
APPLICATIONS
Radar IF Receivers
Phased Array Receivers
Communications Receivers
Secure Communications
GPS Antijamming Receivers
Multichannel, Multimode Receivers
PRODUCT DESCRIPTION
The AD10200 is a full channel ADC solution with on-module
signal conditioning for improved dynamic performance and
fully matched channel-to-channel performance. The module
includes two wide-dynamic range ADCs. Each ADC has a
transformer coupled front-end optimized for Direct-IF sampling.
The AD10200 has on-chip track-and-hold circuitry, and utilizes
an innovative architecture to achieve 12-bit, 105 MSPS perfor-
mance. The AD10200 uses innovative high-density circuit
design to achieve exceptional matching and performance while
still maintaining excellent isolation, and providing for significant
board area savings.
The AD10200 operates with 5.0 V supply for the analog-to-
digital conversion. Each channel is completely independent
allowing operation with independent encode and analog inputs.
The AD10200 is packaged in a 68-lead ceramic chip carrier
package. Manufacturing is done on Analog Devices, Inc. MIL-
38534 Qualified Manufacturers Line (QML) and components
are available up to Class-H (–50°C to +125°C).
PRODUCT HIGHLIGHTS
1. Guaranteed sample rate of 105 MSPS.
2. Input signal conditioning with full power bandwidth to
250 MHz.
3. Fully tested/characterized performance at 121 MHz A
IN
.
4. Optimized for IF sampling.
REV. B
–2–
AD10200–SPECIFICATIONS
1
(VDD = 3.3 V, VCC = 5.0 V; ENCODE = 105 MSPS, unless otherwise noted)
Test MIL
Parameter Temp Level Subgroup Min Typ Max Unit
RESOLUTION 12 Bits
DC ACCURACY
Differential Nonlinearity Full IV 12 –0.99 ±0.5 +0.99 LSB
Integral Nonlinearity Full IV 12 –3 ±0.75 +3 LSB
No Missing Codes Full I 1, 2, 3 Guaranteed
Gain Error
2
Full I 1, 2, 3 –9 ±1+9% FS
Output Offset Full I 1, 2, 3 –12 +12 LSB
ANALOG INPUT
Input Voltage Range 25°C V 2.048 V p-p
Input Impedance 25°CV 50
Input VSWR
3
Full IV 12 1.1:1 1.25:1 Ratio
Analog Input Bandwidth, High Full IV 12 200 250 MHz
Analog Input Bandwidth, Low Full IV 12 1 MHz
ANALOG REFERENCE
Output Voltage Full I 1, 2, 3 2.4 2.5 2.6 V
Load Current 25°CV 5 mA
Tempco Full V 50 ppm/°C
SWITCHING PERFORMANCE
Maximum Conversion Rate Full I 4, 5, 6 105 MSPS
Minimum Conversion Rate Full IV 12 10 MSPS
Duty Cycle Full IV 12 45 50 55 %
Aperture Delay (t
A
)25°C V 1.0 ns
Aperture Uncertainty (Jitter) 25°C V 0.25 ps rms
Output Valid Time (t
V
)
4
Full IV 12 3.0 5.3 ns
Output Propagation Delay (
PD
)
4
Full IV 12 4.5 5.5 8.0 ns
Output Rise Time (t
R
)25°C V 12 3.5 ns
Output Fall Time (t
F
)25°C V 12 3.3 ns
DIGITAL INPUTS
Encode Input Common Mode Full IV 12 1.2 1.6 2.0 V
Differential Input (Enc, Enc) Full IV 12 0.4 5.0 V
Logic “1” Voltage Full IV 12 2.0 V
Logic “0” Voltage Full IV 12 0.8 V
Input Resistance Full IV 12 358k
Input Capacitance 25°C V 4.5 pF
DIGITAL OUTPUTS
Logic “1” Voltage
4
Full VI 1, 2, 3 3.1 3.3 V
Logic “0” Voltage
4
Full VI 1, 2, 3 0 0.2 V
Output Coding Two’s Complement
POWER SUPPLY
5
Power Dissipation
6
Full I 1, 2, 3 1800 2200 mW
Power Supply Rejection Ratio Full IV 12 ±0.5 ±5 mV/V
I (DV
DD
) Current Full I 1, 2, 3 25 40 mA
I (AV
CC
) Current Full I 1, 2, 3 340 410 mA
DYNAMIC PERFORMANCE
Signal-to-Noise Ratio (SNR)
7
(Without Harmonics)
f
IN
= 10 MHz 25°C V 67 dBFS
Full V 66 dBFS
f
IN
= 41 MHz 25°C I 4 64 66.5 dBFS
Full II 5, 6 62 65 dBFS
f
IN
= 71 MHz 25°C I 4 62.5 66.4 dBFS
Full II 5, 6 61.5 64 dBFS
f
IN
= 121 MHz 25°C I 4 61 65 dBFS
Full II 5, 6 61 64 dBFS
–3–
AD10200
Test MIL
Parameter Temp Level Subgroup Min Typ Max Unit
DYNAMIC PERFORMANCE
(Continued)
Signal-to-Noise Ratio (SINAD)
8
(With Harmonics)
f
IN
= 10 MHz 25°C V 66 dBFS
Full V 63 dBFS
f
IN
= 41 MHz 25°C I 4 63 65.5 dBFS
Full II 5, 6 60.5 63 dBFS
f
IN
= 71 MHz 25°C I 4 61 63.5 dBFS
Full II 5, 6 57 60 dBFS
f
IN
= 121 MHz 25°C I 4 56 58.5 dBFS
Full II 5, 6 53 55 dBFS
Spurious Free Dynamic Range
9
f
IN
= 10 MHz 25°C V 81 dBFS
Full V 70 dBFS
f
IN
= 41 MHz 25°C I 4 73 81 dBFS
Full II 5, 6 67.5 dBFS
f
IN
= 71 MHz 25°C I 4 67 74 dBFS
Full II 5, 6 60 dBFS
f
IN
= 121 MHz 25°C I 4 61 65 dBFS
Full II 5, 6 55.5 58 dBFS
Two-Tone Intermodulation
Distortion
10
(IMD)
f
IN
= 10 MHz; f
IN
= 12 MHz 25°C V 86 dBc
Full V 81 dBc
f
IN
= 71 MHz; f
IN
= 72 MHz 25°C V 70 dBc
Full V 65 dBc
f
IN
= 121 MHz; f
IN
= 122 MHz 25°C I 4 55.5 62 dBc
Full II 5, 6 53 57 dBc
Channel-to-Channel Isolation
11
f
IN
= 121 MHz Full IV 12 80 85 dB
NOTES
1
All ac specifications tested by driving ENCODE and ENCODE differentially.
2
Gain Error measured at 2.5 MHz.
3
Input VSWR guaranteed 10 MHz to 200 MHz.
4
t
V
and t
PD
are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is
not to exceed an ac load of 10 pF or a dc current of ±40 mA.
5
Supply voltages should remain stable within ±5% for normal operation.
6
Power dissipation measured with encode at rated speed and 0 dBm analog input.
7
Analog Input signal power at –1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first 5 harmonic removed). Encode = 105 MSPS. SNR
is reported in dBFS, related back to converter full scale.
8
Analog Input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. Encode = 105 MSPS. SINAD
is reported in dBFS, related back to converter full scale.
9
Analog Input signal equal –1 dBFS; SFDR is ratio of converter full scale to worst spur.
10
Both input tones at –7 dBFS; two tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product. f1 = x MHz
± 100 kHz, f2 = x MHz ± 100 kHz.
11
Channel-to-Channel isolation tested with A Channel/50 terminated (A
IN
A2) grounded and a full-scale signal applied to B Channel (A
IN
B2).
Specifications subject to change without notice.
REV. B
AD10200
–4–
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the AD10200 features proprietary ESD protection circuitry, permanent damage may occur on
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
ABSOLUTE MAXIMUM RATINGS
1, 2
V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
V
CC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . 5 V
p-p(18 dBm)
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to V
DD
+ 0.5 V
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA
Operating Temperature . . . . . . . . . . . . . . . . –50°C to +125°C
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 175°C
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . . 150°C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions outside of those indicated in the operation
sections of this specification is not implied. Exposure to absolute maximum ratings
for extended periods may affect device reliability.
2
Typical thermal impedances for “Z” package:
θ
JC
= 2.22°C/W; θ
JA
= 24.3°C/W.
EXPLANATION OF TEST LEVELS
Test Level
I. 100% production tested.
II. 100% production tested at 25°C and sample tested at
specific temperatures.
III. Sample tested only.
IV. Parameter is guaranteed by design and characterization
testing.
V. Parameter is a typical value only.
VI. 100% production tested at 25°C; guaranteed by design and
characterization testing for industrial temperature range.
Table I. Output Coding (VREF = 2.5 V) (Two’s Complement)
Code A
IN
(V) Digital Output
+2047 +1.024 0111 1111 1111
••
••
0 0 0000 0000 0000
–1 –0.00049 1111 1111 1111
••
••
–2048 –1.024 1000 0000 0000
REV. B
Revision History
Page
Location
8/2016
Data Sheet changed from REV. A to REV. B.
Change Operating Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1, 4
Changes to Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Updated Outline D imensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Data Sheet changed from REV. 0 to REV. A.
Edit to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edit to Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Edit to ENCODE Inputs section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Edit to Figure 9a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Moved Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
AD10200
–5–
PIN CONFIGURATION
10
11
12
13
14
15
16
17
18
19
20
22
23
24
25
26
21
27 4328 29 30 31 32 33 34 35 36 37 38 39 40 41 42
9618 7 6 5 68 67 66 65 64 63 624321
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
PIN 1
IDENTIFIER
TOP VIEW
(Not to Scale)
AGNDB
AGNDB
DNC
DNC
REF_B_OUT
AGNDB
ENCODEB
AGNDA
AGNDA
DNC
AGNDA
AVCC
DNC
AGNDA
NC = NO CONNECT
ENCODEA
ENCODEA
AGNDA
DVCC
ENCODEB
AGNDB
DVCC
D0B (LSB)
AGNDA
AGNDA
NC
AGNDA
DNC
VREF_A_OUT
DNC
DNC
AVCC
AGNDB
AGNDB
AD10200
DNC
AINA2
AGNDB
SHIELD
NC
AINB2
(MSB) D11A
D10A
D9A
D8A
D7A
DGNDA
D1B
D2B
D3B
D4B
D5B
DGNDB
DGNDA
D6A
D5A
D4A
D3A
D2A
D1A
(LSB) D0A
AGNDA
AGNDB
(MSB) D11B
D10B
D9B
D8B
D7B
D6B
DGNDB
PIN FUNCTION DESCRIPTIONS
Pin No. Mnemonic Function
1 SHIELD Internal Ground Shield between Channels
2, 5, 9–11, 13, 16, 19, 35 AGNDA A Channel Analog Ground. A and B grounds should be connected as close to
the device as possible.
3 VREF_A_OUT A Channel Internal Voltage Reference
6, 62 NC No Connection
7A
IN
A2 Analog Input for A Side ADC
4, 8, 12, 15, 57, 58, 64, 67 DNC Do Not Connect
14, 66 AV
CC
Analog Positive Supply Voltage (Nominally 5.0 V)
17 ENCODEA Complement of Encode
18 ENCODEA Data conversion initiated on the rising edge of ENCODE input.
20 DV
CC
Digital Positive Supply Voltage (Nominally 3.3 V)
21–25, 28–34 D11A–D7A, Digital Outputs for ADC A. D0 (LSB)
D6A–D0A
26, 27 DGNDA A Channel Digital Ground
36, 52, 55, 59–61, 65, 68 AGNDB B Channel Analog Ground. A and B grounds should be connected as close to
the device as possible.
37–42, 45–50 D11B–D6B, Digital Outputs for ADC B. D0 (LSB)
D5B–D0B
43, 44 DGNDB B Channel Digital Ground
51 DV
CC
Digital Positive Supply Voltage (Nominally 3.3 V)
53 ENCODEB Data conversion initiated on rising edge of ENCODE input.
54 ENCODEB Complement of Encode
56 VREF_B_OUT B Channel Internal Voltage Reference
63 A
IN
B2 Analog Input for B Side ADC
REV. B
REV. B
AD10200
–6–
DEFINITION OF SPECIFICATIONS
Analog Bandwidth
The analog input frequency at which the spectral power of the
fundamental frequency (as determined by the FFT analysis) is
reduced by 3 dB.
Aperture Delay
The delay between the 50% point on the rising edge of the
ENCODE command and the instant at which the analog input
is sampled.
Aperture Uncertainty (Jitter)
The sample-to-sample variation in aperture delay.
Differential Nonlinearity
The deviation of any code from an ideal 1 LSB step.
Encode Pulsewidth/Duty Cycle
Pulsewidth high is the minimum amount of time that the
ENCODE pulse should be left in Logic “1” state to achieve
rated performance; pulsewidth low is the minimum time
ENCODE pulse should be left in low state. At a given clock
rate, these specs define an acceptable Encode duty cycle.
Harmonic Distortion
The ratio of the rms signal amplitude to the rms value of the
worst harmonic component.
Integral Nonlinearity
The deviation of the transfer function from a reference line
measured in fractions of 1 LSB using a “best straight line”
determined by a least square curve fit.
Minimum Conversion Rate
The encode rate at which the SNR of the lowest analog signal
frequency drops by no more that 3 dB below the guaranteed limit.
Maximum Conversion Rate
The encode rate at which parametric testing is performed.
Output Propagation Delay
The delay between the 50% point of the rising edge of ENCODE
command and the time when all output data bits are within
valid logic levels.
Overvoltage Recovery Time
The amount of time required for the converter to recover to
0.02% accuracy after an analog input signal of the specified
percentage of full scale is reduced to midscale.
Power Supply Rejection Ratio
The ratio of a change in output offset voltage to a change in
power supply voltage.
Signal-to-Noise-and-Distortion (SINAD)
The ratio of the rms signal amplitude (set a 1 dB below full scale)
to the rms value of the sum of all other spectral components,
excluding the first five harmonics and dc. [May be reported in
dBc (i.e., degrades as signal levels is lowered) or in dBFS (always
related back to converter full scale)].
Signal-to-Noise Ratio (without Harmonics)
The ratio of the rms signal amplitude (set a I dB below full
scale) to the rms value of the sum of all other spectral compo-
nents, excluding the first five harmonics and dc. [May be
reported in dBc (i.e., degrades as signal levels is lowered) or in
dBFS (always related back to converter full scale).]
Spurious-Free Dynamic Range
The ratio of the rms signal amplitude to the rms value of the
peak spurious spectral component. The peak spurious compo-
nent may or may not be a harmonic. [May be reported in dBc
(i.e., degrades as signal levels is lowered) or in dBFS (always
related back to converter full scale).]
Transient Response
The time required for the converter to achieve 0.02% accu-
racy when a one-half full-scale step function is applied to the
analog input.
Two-Tone Intermodulation Distortion Rejection
The ratio of the rms value of either input tone to the rms value of
the worst third order intermodulation product; reported in dBc.
Voltage Standing-Wave Ratio (VSWR)
The ratio of the amplitude of the elective field at a voltage maxi-
mum to that at an adjacent voltage minimum.
REV. B–7–
AD10200Typical Performance Characteristics
FREQUENCY – MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5 101520253035404550
ENCODE = 105 MSPS
A
IN
= 10MHz (–1dBFS)
SNR = 66.84dBFS
SFDR = 82.28dBc
TPC 1. Single Tone @ 10 MHz
FREQUENCY MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5 101520253035404550
ENCODE = 105 MSPS
A
IN
= 71MHz (1dBFS)
SNR = 66.04dBFS
SFDR = 79.71dBc
TPC 2. Single Tone @ 71 MHz
FREQUENCY MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5 101520253035404550
ENCODE = 105 MSPS
A
IN
= 121MHz (6dBFS)
SNR = 66.9dBFS
SFDR = 65.57dBc
TPC 3. Single Tone @ 121 MHz
FREQUENCY MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5 101520253035404550
ENCODE = 105 MSPS
A
IN
= 41MHz (1dBFS)
SNR = 66.06dBFS
SFDR = 80.59dBc
TPC 4. Single Tone @ 41 MHz
FREQUENCY MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5 101520253035404550
ENCODE = 105 MSPS
A
IN
= 121MHz (1dBFS)
SNR = 64.92dBFS
SFDR = 64.73dBc
TPC 5. Single Tone @ 121 MHz
FREQUENCY MHz
0
130
dB
20
80
100
110
120
40
60
0
10
30
90
50
70
5 101520253035404550
ENCODE = 105 MSPS
A
IN
= 201MHz (10dBFS)
SNR = 66.84dBFS
SFDR = 64.57dBc
TPC 6. Single Tone @ 201 MHz
REV. B
AD10200
–8–
FREQUENCY MHz
0
130
dBc
20
80
100
110
120
40
60
0
10
30
90
50
70
5 10152025 3035404550
ENCODE = 105 MSPS
A
IN
= 37MHz & 38MHz (10dBFS)
SFDR = 79.84dBc
TPC 7. Two-Tone @ 37 MHz/38 MHz
FREQUENCY MHz
0
130
dBc
20
80
100
110
120
40
60
0
10
30
90
50
70
5 101520253035404550
ENCODE = 105 MSPS
AIN = 120MHz & 121MHz (7dBFS)
SFDR = 63.8dBc
TPC 8. Two-Tone @ 120 MHz/121 MHz
3
3
LSB
0
2
2
0
1
1
512 1024 1536 2048 2560 3072 3584 4096
ENCODE = 105 MSPS
INL MAX = 0.874 Codes
INL MIN = 0.895 Codes
TPC 9. Integral Nonlinearity
FREQUENCY MHz
0
130
dBc
20
80
100
110
120
40
60
0
10
30
90
50
70
5 101520253035404550
ENCODE = 105 MSPS
A
IN
= 71MHz & 72MHz (7dBFS)
SFDR = 74.8dBc
TPC 10. Two-Tone @ 71 MHz/72 MHz
3.0
1.0
LSB
1.5
0.5
0.0
0.5
2.5
0
1.0
2.0
512 1024 1536 2048 2560 3072 3584 4096
ENCODE = 105 MSPS
DNL MAX = 0.486 Codes
DNL MIN = 0.431 Codes
TPC 11. Differential Nonlinearity
0
10
dBFS
6
9
2
3.0
8
4
32.7 62.4 92.1 121.8 151.5 181.2 210.9 240.6
MHz
270.3 300.0
1
7
3
5
ENCODE = 105 MSPS
3dB = 261MHz
TPC 12. Gain Flatness
REV. B
AD10200
–9–
10MHz = 50.22 + j.173
50MHz = 48.79 j4.2
100MHz = 46.95 j5.9
150MHz = 48.55 j4.66
TPC 13. Input Impedance S11
1
3.0 32.7 62.4 92.1 121.8 151.5 181.2 210.9 240.6
MHz
270.3 300.0
10MHz = 1.0149
50MHz = 1.085
100MHz = 1.130
150MHz = 1.092
2
3
4
5
6
7
8
9
10
11
TPC 14. Voltage Standing Wave Ratio (VSWR)
t
PD
AIN
ENCODE
ENCODE
D11D0
SAMPLE N1SAMPLE N SAMPLE N+10 SAMPLE N+11
SAMPLE N+9
SAMPLE N+1
1/f
S
DATA N11 DATA N10 N9 DATA N1 DATA N DATA N + 1
t
V
N2
Figure 1. Timing Diagram
V
CC
17k
8k
100100
17k
8k
ENCODE ENCODE
Figure 2. Equivalent Encode Input Circuit
VCC
100DIGITAL
OUTPUT
Figure 3. Equivalent Digital Output Circuit
V
CC
Q1
NPN
V
REF
OUTPUT
V
CC
Figure 4. Equivalent Voltage Reference Output Circuit
V
CC
A
IN
7k
50
7k
5k
5k
Figure 5. Equivalent Analog Input Circuit
REV. B
AD10200
–10–
APPLICATION NOTES
Theory of Operation
The AD10200 is a high-dynamic range dual 12-bit, 105 MHz
subrange pipeline converter that uses switched capacitor
architecture. The analog input section uses A
IN
A2/A
IN
B2 at
2.048 V p-p with an input impedance of 50 . The analog input
includes an ac-coupled wide-band 1:1 transformer, which provides
high-dynamic range and SNR while maintaining VSWR and
gain flatness. The ADC includes a high-bandwidth linear track/
hold that gives excellent spurious performance up to and beyond
the Nyquist rate. The high-bandwidth track/hold has a low jitter
of 0.25 ps rms, leading to excellent SNR and SFDR performance.
AC-coupled differential PECL/ECL encode inputs are recom-
mended for optimum performance.
USING THE AD10200
ENCODE Input
Any high speed A/D converter is extremely sensitive to the quality
of the sampling clock provided by the user. A track/hold circuit
is essentially a mixer, and any noise, distortion, or timing jitter
on the clock will be combined with the desired signal at the A/D
output. For that reason, considerable care has been taken in the
design of the ENCODE input of the AD10200, and the user is
advised to give commensurate thought to the clock source. The
ENCODE input are fully TTL/CMOS compatible. For opti-
mum performance, the AD10200 must be clocked differentially.
Note that the ENCODE inputs cannot be driven directly from
PECL level signals (V
IHD
is 3.5 V max). PECL level signals can
easily be accommodated by ac coupling as shown in Figure 6.
Good performance is obtained using an MC10EL16 in the
circuit to drive the encode inputs.
GND
510
510
0.1F
0.1F
PECL
GATE
ENCODE
ENCODE
AD10200
Figure 6. AC Coupling to ENCODE Inputs
ENCODE Voltage Level Definition
The voltage level definitions for driving ENCODE and ENCODE
in differential mode are shown in Figure 7.
ENCODE Inputs
Differential Signal Amplitude (V
ID
) 500 mV min,
750 mV nom
High Differential Input Voltage (V
IHD
) 5.0 V max
Low Differential Input Voltage (V
ILD
) 0 V min
Common-Mode Input (V
ICN
) 1.25 V min, 1.6 V nom
ENCODE
0.1F
VIHS
VILS
ENCODE
ENCODE
VID
VIHD
VILD
VICM
Figure 7. Differential Input Levels
Often, the cleanest clock source is a crystal oscillator producing
a pure sine wave. In this configuration, or with any roughly
symmetrical clock input, the input can be ac-coupled and biased
to a reference voltage that also provides the ENCODE. This
ensures that the reference voltage is centered on the encode signal.
Digital Outputs
The digital outputs are TTL/CMOS-compatible and a separate
output power supply pin supports interfacing with 3.3 V logic.
Analog Input
The analog input is a single ended ac-coupled high performance
1:1 transformer with an input impedance of 50 to 105 MHz.
The nominal full scale input is 2.048 V p-p.
Special care was taken in the design of the analog input section
of the AD10200 to prevent damage and corruption of data when
the input is overdriven.
Voltage Reference
A stable and accurate 2.5 V voltage reference is designed into
the AD10200 (VREFOUT). An external voltage reference is
not required.
Timing
The AD10200 provides latched data outputs, with 10 pipeline
delays. Data outputs are available one propagation delay (t
PD
)
after the rising edge of the encode command (see Figure 1). The
length of the output data lines and loads placed on them should
be minimized to reduce transients within the AD10200; these
transients can detract from the converter's dynamic performance.
The minimum guaranteed conversion rate of the AD10200 is
10 MSPS. At internal clock rates below 10 MSPS, dynamic
performance may degrade. Therefore, input clock rates below
10 MHz should be avoided.
GROUNDING AND DECOUPLING
Analog and Digital Grounding
Proper grounding is essential in any high speed, high resolution
system. Multilayer printed circuit boards (PCBs) are recom-
mended to provide optimal grounding and power schemes. The
use of ground and power planes offers distinct advantages:
1. The minimization of the loop area encompassed by a signal
and its return path.
2. The minimization of the impedance associated with ground
and power paths.
3. The inherent distributed capacitor formed by the power
plane, PCB insulation and ground plane.
These characteristics result in both a reduction of electromagnetic
interference (EMI) and an overall improvement in performance.
It is important to design a layout that prevents noise from cou-
pling to the input signal. Digital signals should not be run in
parallel with input signal traces and should be routed away from
the input circuitry. The PCB should have a ground plane covering
all unused portions of the component side of the board to pro-
vide a low impedance path and manage the power and ground
currents. The ground plane should be removed from the area
near the input pins to reduce stray capacitance.
REV. B
AD10200
–11–
LAYOUT INFORMATION
The schematic of the evaluation board (Figure 8) represents
a typical implementation of the AD10200. The pinout of the
AD10200 is very straightforward and facilitates ease of use and
the implementation of high frequency/high resolution design
practices. It is recommended that high quality ceramic chip
capacitors be used to decouple each supply pin to ground directly
at the device. All capacitors can be standard high quality ceramic
chip capacitors.
Care should be taken when placing the digital output runs.
Because the digital outputs have such a high-slew rate, the
capacitive loading on the digital outputs should be minimized.
Circuit traces for the digital outputs should be kept short and
connect directly to the receiving gate. Internal circuitry buffers
the outputs of the ADC through a resistor network to eliminate
the need to externally isolate the device from the receiving gate.
Figure 8. Evaluation Board Mechanical Layout
EVALUATION BOARD
The AD10200 evaluation board (Figure 9) is designed to
provide optimal performance for evaluation of the AD10200
analog-to-digital converter. The board encompasses everything
needed to ensure the highest level of performance for evaluating
the AD10200. The board requires an analog input signal, encode
clock and power supply inputs. The clock is buffered on-board
to provide clocks for the latches. The digital outputs and out
clocks are available at the standard 40-pin connectors J1 and J2.
Power to the analog supply pins is connected via banana jacks.
The analog supply powers the associated components and the
analog section of the AD10200. The digital outputs of the
AD10200 are powered via banana jacks with 3.3 V. Contact the
factory if additional layout or applications assistance is required.
REV. B
AD10200
–12–
Figure 9a. Evaluation Board
AGNDB
AGNDB
VFU_B
SDOUT_B
REF_B
AGNDB
ENCBB
ENCB
AGNDB
3.3VDB
D0B (LSB)
D1B
D2B
D3B
D4B
D5B
DGNDB
AGNDA
AGNDA
SDOUT_A
AGNDA
5VAA
SCLK_A
AGNDA
ENCAB
ENCA
AGNDA
3.3VDA
D11A (MSBA)
D10A
D9A
D8A
D7A
DGNDA
AGNDA
AGNDA
A
IN
A1
AGNDA
SDIN_A
REF_A
SCLK_B
SDIN_B
5VAB
AGNDB
AGNDB
VFU_A
A
IN
A2
AGNDB
SHIELD
A
IN
B1
A
IN
B2
U1
AD10200
DGNDA
D6A
D5A
D4A
D3A
D2A
D1A
D0A (LSBA)
AGNDA
AGNDB
D11B (MSBB)
D10B
D9B
D8B
D7B
D6B
DGNDB
9
5
7
6
5
4
3
2
1
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
43
C37
DNS
AGNDA
AGNDA
J4
SMA
AGNDA
J3
SMA
DNS
AGNDA
(NC)
0.1F
C33
AGNDA
E49
AGNDA
J7
SMA
AGNDB
J6
SMA
DNS
AGNDB
(NC)
5VAB_
AGNDB
(NC)
AGNDA
LID
AGNDA
AGNDB
C36
DNS
AGNDB AGNDB
NC
0.1F
C35
AGNDB
E50
AGNDB
ENCBB
ENCB
AGNDB
D0B
D1B
D2B
D3B
D4B
D5B
DGNDB
C18
0.1F
U17
DGNDB
DUT_3.3VDB
D0A
DUT_3.3VDA
C10
0.1F
U1
DGNDA
5VAA_
C34
0.1F
AGNDA
AGNDA
AGNDA
NC
NC
AGNDA
ENCAB
ENCA
AGNDA
D11A
D10A
D9A
D8A
D7A
DGNDA
AGNDA
AGNDA
DGNDA
D6A
D5A
D4A
D3A
D2A
D1A
D10B
D9B
D8B
D7B
D6B
DGNDB
AGNDA
AGNDB
D11B
U1
C20
0.1F
AGNDA
5AA_
U1
C21
0.1F
AGNDB
5AB_
L3
47
20%
@100MHz
C3
10F
AGNDA
5AA
E6
DUT_3.3VDA
L1
47
20%
@100MHz
U1
C12
0.1F
DGNDA
C29
10F
3.3VDA
E25
L4
47
20%
@100MHz
C4
10F
AGNDB
5AB
E5
DUT_3.3VDB
L2
47
20%
@100MHz
U8
C16
0.1F
DGNDB
C30
10F
3.3VDB
E26
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
DGNDA
H40DM
J1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
(MSB) B11A
B10A
B9A
B8A
B7A
B6A
B5A
B4A
B3A
B2A
B1A
(LSB) B0A
F3A
F2A
F1A
F0A
DGNDA
R71
50
BUFLATA
C15
10F
DGNDA
3.3VDA
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
DGNDB
H40DM
J2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
(MSB) B11B
B10B
B9B
B8B
B7B
B6B
B5B
B4B
B3B
B2B
B1B
(LSB) B0B
F3B
F2B
F1B
F0B
DGNDB
R72
50
BUFLATB
C14
10F
DGNDB
3.3VDB
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
R18
100B11B (MSB)
R17
100B10B
OE2
O15
O14
GND
O13
O12
VCC
O11
O10
GND
O9
O8
O7
O6
GND
O5
O4
VCC
O3
O2
GND
O1
O0
OE1
U17
74LCX16374
LE2
I15
I14
GND
I13
I12
VCC
I11
I10
GND
I9
I8
I7
I6
GND
I5
I4
VCC
I3
I2
GND
I1
I0
LE1
DUT_3.3VDB
DGNDB
DGNDB
DGNDB
DUT_3.3VDB
DGNDB
DGNDB
DGNDB
R16
100B9B
R45
100B6B
R46
100B5B
R14
100B3B
R40
100B8B
R44
100B7B
R15
100B4B
R13
100B2B
R24
100B1B (LSB)
R23
100B0B
R22
DNS F3B
R20
DNS F1B
R21
DNS F2B
R19
DNS F0B
DGNDB
DGNDB
DGNDB
DGNDB
DUT_3.3VDB
(LSB) D0A
D1A
D2A
D3A
D4A
D5A
D6A
D7A
D8A
D9A
D10A
D11A
DUT_3.3VDB
R53
0
R54
0
R49
0
R50
0
DGNDB R8
50
LATCHB
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
R18
100B11A (MSB)
R17
100B10A
OE2
O15
O14
GND
O13
O12
VCC
O11
O10
GND
O9
O8
O7
O6
GND
O5
O4
VCC
O3
O2
GND
O1
O0
OE1
U16
74LCX16374
LE2
I15
I14
GND
I13
I12
VCC
I11
I10
GND
I9
I8
I7
I6
GND
I5
I4
VCC
I3
I2
GND
I1
I0
LE1
DUT_3.3VDA
DGNDA
DGNDA
DGNDA
DUT_3.3VDA
DGNDA
DGNDA
DGNDA
R16
100B9A
R45
100B6A
R46
100B5A
R14
100B3A
R40
100B8A
R44
100B7A
R15
100B4A
R13
100B2A
R24
100B1A (LSB)
R23
100B0A
R22
DNS F3A
R20
DNS F1A
R21
DNS F2A
R19
DNS F0A
DGNDA
DGNDA
DGNDA
DGNDA
DUT_3.3VDA
(LSB) D0A
D1A
D2A
D3A
D4A
D5A
D6A
D7A
D8A
D9A
D10A
D11A
DUT_3.3VDA
R52
0
R51
0
R47
0
R48
0
DGNDA R7
50
LATCHA
NC = NO CONNECT
REV. B
AD10200
–13–
DGNDA
E42
E44
E48
E67
E70
E72
E73
E76
E81
E41
E43
E47
E68
E69
E71
E74
E75
E82
AGNDA
E65E66
DGNDB
E36
E38
E40
E79
E84
E35
E37
E39
E80
E83
AGNDB
E29 E30
E46E45
SO2 SO5
SO3 SO6
SO1 SO4
STAND OFFS ON THE BOARD
E33
DGNDB
DGNDB
DGNDB
E3
E4
AGNDB
AGNDA
E34
DGNDA
DGNDA
DGNDA
BANANA JACKS FOR GNDS AND PWRS
2IN
+5VAA_
ERR
SD
NR
OUT 1
U14
3
ADP3330
5
6
SD
4
NC
D
DB
VBB
VCC
Q
QB
VEE
MC10EL16
U2 8
7
6
5
1
2
3
4
AGNDA
R56
33k
R58
33k
DGNDA C6
0.1FR3
100
DGNDA
NC
D
DB
VBB
VCC
Q
QB
VEE
U3 8
7
6
5
1
2
3
4
DGNDA
+3.3VA
R4
100
DGNDA
R41
50
AGNDA
J12
SMA C2
0.1F
C1
0.1F
R1
50
AGNDA
J5
ENCODE
SMA
AGNDA
C13
0.47F
AGNDA
+3.3VA
AGNDA R42
100
R43
100
ENCAB
ENCAB
C7
0.1F
C8
0.1F
AGNDA
D0
D0B
D1B
D1
VCC
Q0
Q1
VEE
MC100EPT23
8
7
6
5
1
2
3
4
DGNDA
+3.3VA
C5
0.1F
DGNDA
E23
E19
LATCHA
BUFLATA
U4
1
2IN
+5VAB_
ERR
SD
NR
OUT 1
U15
3
ADP3330
5
6
SD
4
NC
D
DB
VBB
VCC
Q
QB
VEE
MC10EL16
U11 8
7
6
5
1
2
3
4
AGNDB
R38
33k
R39
33k
DGNDB
C25
0.1FR3
100
DGNDA
NC
D
DB
VBB
VCC
Q
QB
VEE
MC10EL16
8
7
6
5
1
2
3
4
DGNDB
+3.3VDB
R66
100
DGNDB
R61
50
AGNDB
J11
SMA C23
0.1F
C22
0.1F
R60
50
AGNDB
J10
ENCODE
SMA
AGNDB
C27
0.47F
AGNDB
+3.3VB
AGNDB R63
100
R64
100
ENCBB
ENCB
C24
0.1F
C28
0.1F
AGNDB
D0
D0B
D1B
D1
VCC
Q0
Q1
VEE
MC100EPT23
8
7
6
5
1
2
3
4
DGNDB
+3.3VB
C26
0.1F
DGNDB
E24
E22
LATCHB
BUFLATB
U10
2
NC = NO CONNECT
NC = NO CONNECT
MC10EL16
U9
Figure 9b. Evaluation Board
REV. B
AD10200
–14–
BILL OF MATERIALS LIST FOR AD10200 EVAL BOARD
Qty. Component Name Ref Des Value Description M/S P/Ns
2 74LCX16373MTD U16, U17 74LCX16374MTD (Fairchild)
1 AD10200BZ U1 AD10200BZ
2 ADP3330 U14, U15 SM 3.3 V Regulator ADP3330ART-3.3-RL7 (Analog)
4 BRES0805 R38, R39, R56, R58 33 kSM 0805 Resistor ERJ6GEYJ333V (Panasonic)
4 BRES0805 R1, R41, R60, 50 SM 0805 Resistor ERJ6GEYJ510V (Panasonic)
R61
8 BRES0805 R3, R4, R42, R43, 100 SM 0805 Resistor ERJ6GEYJ101V (Panasonic)
R63, R64, R65, R66
23 CAP2 C1, C2, C5, C6, 0.1 µF SM 0805 Capacitor GRM40X7R104K025BL
C7, C8, C9, C10, (MENA)
C12, C16, C17, C18,
C20, C21, C22, C23,
C24, C25, C26, C28,
C33, C34, C35
4 CAP2 C13, C27, C38, C39 0.47 µF SM 1206 Capacitor VJ1206U474MFXMB
(VITRAMON)
2 N49DM J1, J2 2×20×100 Male Connector TSW-120-08G-D (Samtec)
4 IND2 L1, L2, L3, L4 47 Inductor 2743019447 (Fair Ride)
4 MC10EL16 U2, U3 U9, U11 MC1016EP16D (Motorola)
10 BJACK BJ1 – BJ10 POWER JACK 108-0740-001 (Johnson Comp.)
2 MC100ELT23 U4, U10 SY100ELT23L (Micrel-Synergy)
6 POLCAP2 C3, C4, C14, C15, 10 µF SM 1812 Polar Capacitor T491C106M016A57280
C29, C30 (KEMET)
8 RES2 R47, R48, R49, 0 SM 0805 Resistor ERJ-6GEY0R00V (Panasonic)
R50, R51, R52,
R53, R54
4 RES4 R7, R8, R71, R72 50 SM 0805 Resistor ERJ-6GEYJ510V (Panasonic)
24 RES2 R9, R10, R11, R12,
R13, R14, R15, R16,
R17, R18, R23, R24,
R25, R26, R27, R28,
R29, R30, R35, R36,
R40, R44, R45, R46
1 SMA J4 A
IN
A2 142-0701-201 (Johnson Comp.)
1 SMA J7 A
IN
B2 142-0701-201 (Johnson Comp.)
2 SMA J11, J12 ENCODE 142-0701-201 (Johnson Comp.)
2 SMA J5, J10 ENCODE 142-0701-201 (Johnson Comp.)
4 Stand-Off S01–S04 Stand-Off 313-2477-016 (Johnson Comp.)
4 Screws Screws (Stand-Off) MPMS 0040005PH (Building
Fasteners)
1 PCB AD10200 Eval Board GS03363 Rev. A
REV. B
AD10200
–15–
Figure 10a. Bottom View
C14
C4
C30
R72
R61
C3
C27 R38
U15
C22
R60
C23
R63
C35
U11
C33
C36
C24
C21
C20
C34
U14
C13 R56
C37
U2
R42
C7
C2
C1
R1
R41
R3
C6
R58
U4
C10
E48
R4
U3
R43
C8
U16
C9 R7
R51
R52
E40 C18
R65
C28
U9
U10
R39
R66
C25
R64
R53
R54
R49
R50
R8
C17
R48
R47
U17
C15
R71
C29
GND TIE
GND TIE
GND TIES
GND TIES
GND TIE
GND TIE
GND TIE
GND TIE
Figure 10b. Bottom Assembly
REV. B
AD10200
–16–
Figure 10c. Ground 1
AGNDA
DGNDBAGNDB
DGNDA
Figure 10d. Ground 2
REV. B
AD10200
–17–
C14
C4
C30
R72
R61
C3
C27 R38
U15
C22
R60
C23
R63
C35
U11
C33
C36
C24
C21
C20
C34
U14
C13 R56
C37
U2
R42
C7
C2
C1
R1
R41
R3
C6
R58
U4
C10
E48
R4
U3
R43
C8
U16
C9 R7
R51
R52
E40 C18
R65
C28
U9
U10
R39
R66
C25
R64
R53
R54
R49
R50
R8
C17
R48
R47
U17
C15
R71
C29
GND TIE
GND TIE
GND TIES
GND TIES
GND TIE
GND TIE
GND TIE
GND TIE
Figure 10e. Bottom Silk
Figure 10f. Top View
REV. B
AD10200
–18–
E5
E63
E27
L4
C16
E33
E55
E58
E59
E60
U6
C39
E61
E62
E3
E1E2
E26
R11
E80
E46
E37
E35
E30
E79
E45
E38
E36
E29
J10 J11
L2
E4
L3
E28
E6
E64
E11
E47
E39
E8
J6
J7
E50
E49
J5
J4
J3
PIN 1
U1
J12
E9 E10
E66
E42
E41
E65
E81E82
C5
E56
E54
E52
U5
E53
E51
C38
R22
R21
R19
R20
E19
E23
E57
E83 E84
C26
R30
R10
E22
E24
E77
E78
R27
R28
R29
R36
R35
E7
E12
R26
R25
R9
R12
J2
R31
R32
R33
R34
R23
R44
R15
R45
R46
R40
R17
R16
R14
R13
R24
R18
L1
E25
J1
E68 E67
E75
E70
E72
E73
E74
E76
E69
E34
C12
E71
E43 E44
AINB1
AINA1
BJ1
EXTRA
BJ2
EXTRA
AINB2
REF_A
AINA2
REF_B
2/10 00
GS03363 (A)
AD10200 EVALUATION BOARD
BEL
ANALOG
DEVICES
COPYRIGHT
AGNDB
+5VAB DGNDB 3.3VDB
ENCA ENCABAR
3.3VDA
DGNDAAGNDA+5VAA
ENCB
GND TIES GND TIES
GND TIE GND TIE GND TIE
LATCHA
BUFLATA
LATCHB
BUFLATB
ENCBBAR
GND TIE
Figure 10g. Top Assembly
E5
E63
E27
L4
C16
E33
E55
E58
E59
E60
U6
C39
E61
E62
E3
E1E2
E26
R11
E80
E46
E37
E35
E30
E79
E45
E38
E36
E29
J10 J11
L2
E4
L3
E28
E6
E64
E11
E47
E39
E8
J6
J7
E50
E49
J5
J4
J3
PIN 1
U1
J12
E9 E10
E66
E42
E41
E65
E81E82
C5
E56
E54
E52
U5
E53
E51
C38
R22
R21
R19
R20
E19
E23
E57
E83 E84
C26
R30
R10
E22
E24
E77
E78
R27
R28
R29
R36
R35
E7
E12
R26
R25
R9
R12
J2
R31
R32
R33
R34
R23
R44
R15
R45
R46
R40
R17
R16
R14
R13
R24
R18
L1
E25
J1
E68 E67
E75
E70
E72
E73
E74
E76
E69
E34
C12
E71
E43 E44
AINB1
AINA1
BJ1
EXTRA
BJ2
EXTRA
AINB2
REF_A
AINA2
REF_B
2/10 00
GS03363 (A)
AD10200 EVALUATION BOARD
BEL
ANALOG
DEVICES
COPYRIGHT
AGNDB
+5VAB DGNDB 3.3VDB
ENCA ENCABAR
3.3VDA
DGNDAAGNDA+5VAA
ENCB
GND TIES GND TIES
GND TIE GND TIE GND TIE
LATCHA
BUFLATA
LATCHB
BUFLATB
ENCBBAR
GND TIE
Figure 10h. Top Silk
AD10200 Data Sheet
Rev. B | Page 19 of 19
OUTLINE DIMENSIONS
CONTRO L LI NG DIM E NS IO NS ARE IN IN CHE S ; M IL L IME T E R DIME NS I ONS
(I N PARENTHES ES) ARE ROUN DED-OFF I NCH EQUIVALENTS FOR
REF ERENCE ONL Y AND ARE N OT APPROPRIATE FOR USE IN DE SIGN
0.06 0 ( 1.52)
0.05 0 ( 1.27)
0.04 0 ( 1.02)
TOE DOWN
ANGLE
0–8 DEGREES
0.01 0 ( 0.254)
30°
0
.050 (1.27)
0.020 (0. 508)
DETAIL A
ROTATED 90° CCW
1.190 (30.23)
1.180 (29.97) SQ
1.170 (29.72)
PIN 1
10
26
961 60
43
27
44
TOP V I EW
(PINS DOWN)
0.800
(20.32)
BSC
0.960 (24.38)
0.950 (24.13) SQ
0.940 (23.88)
0.05 5 ( 1.40)
0.05 0 ( 1.27)
0.04 5 ( 1.14)
0.02 0 ( 0.508)
0.01 7 ( 0.432)
0.01 4 ( 0.356)
0.23 0 ( 5.84)
MAX
0.290 (7. 37)
MAX
DETAIL A
0.010 (0.25)
0.008 (0.20)
0.007 (0.18)
1.070
(27.18)
MIN
072908-A
Figure 8. 68-Lead Ceramic Leaded Chip Carrier [CLCC]
(ES-68-3)
Dimensions shown in inches and (millimeters)
ORDERING GUIDE
Model Temperature Range Package Description Package Option
AD10200BZ −40°C to +85°C 68-Lead Ceramic Leaded Chip Carrier [CLCC] ES-68-3
5962-9961002HXA −40°C to +85°C 68-Lead Ceramic Leaded Chip Carrier [CLCC] ES-68-3
5962-9961003HXA −50°C to +125°C 68-Lead Ceramic Leaded Chip Carrier [CLCC] ES-68-3
©2001–2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D01634-0-8/16(B)