050-7599 Rev B 10-2005
APT15GN120K(G)TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 0.5mA)
Gate Threshold Voltage (VCE = VGE, IC = 600µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 15A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 15A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
Symbol
V(BR)CES
VGE(TH)
VCE(ON)
ICES
IGES
RGINT
Units
Volts
µA
nA
Symbol
VCES
VGE
IC1
IC2
ICM
SSOA
PD
TJ,TSTG
TL
APT15GN120K(G)
1200
±30
45
22
45
45A @ 1200V
195
-55 to 150
300
UNIT
Volts
Amps
Watts
°C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ TC = 25°C
Continuous Collector Current @ TC = 110°C
Pulsed Collector Current 1
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and a
slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive
design and minimizes losses.
1200V Field Stop
Trench Gate: Low VCE(on)
Easy Paralleling
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MIN TYP MAX
1200
5.0 5.8 6.5
1.4 1.7 2.1
2.0
100
TBD
120
N/A
1200V
APT15GN120K
APT15GN120KG*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
®
G
C
E
TO-220
050-7599 Rev B 10-2005
APT15GN120K(G)
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452)
APT Reserves the right to change, without notice, the specifications and information contained herein.
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
°C/W
gm
MIN TYP MAX
.64
1.18
5.9
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
Symbol
RθJC
RθJC
WT
DYNAMIC CHARACTERISTICS
Symbol
Cies
Coes
Cres
VGEP
Qg
Qge
Qgc
SSOA
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
Test Conditions
Capacitance
VGE = 0V, VCE = 25V
f = 1 MHz
Gate Charge
VGE = 15V
VCE = 600V
IC = 15A
TJ = 150°C, RG = 4.37, VGE =
15V, L = 100µH,VCE = 1200V
Inductive Switching (25°C)
VCC = 800V
VGE = 15V
IC = 15A
RG = 4.37
TJ = +25°C
Inductive Switching (125°C)
VCC = 800V
VGE = 15V
IC = 15A
RG = 4.37
TJ = +125°C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge 3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4
Turn-on Switching Energy (Diode) 5
Turn-off Switching Energy 6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4 4
Turn-on Switching Energy (Diode) 55
Turn-off Switching Energy 66
MIN TYP MAX
1200
65
50
9.0
90
5
55
45
10
9
150
110
410
730
950
10
9
170
185
475
1310
1300
UNIT
pF
V
nC
A
ns
µJ
ns
µJ
050-7599 Rev B 10-2005
APT15GN120K(G)TYPICAL PERFORMANCE CURVES
250µs PULSE
TEST<0.5 % DUTY
CYCLE
15V
9V
8V
7V
10V
TJ = 125°C
TJ = 25°C
TJ = -55°C
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
TJ = 125°C
TJ = 25°C
TJ = -55°C
IC = 15A
TJ = 25°C
VCE = 600V
VCE = 240V
VCE =960V
VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C) FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics FIGURE 4, Gate Charge
VGE, GATE-TO-EMITTER VOLTAGE (V) TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature
TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature
IC = 15A
IC = 30A
IC = 7.5A
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A)
VOLTAGE (NORMALIZED)
IC, DC COLLECTOR CURRENT(A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A)
60
50
40
30
20
10
0
80
70
60
50
40
30
20
10
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
1.10
1.05
1.00
0.95
0.90
IC = 30A
IC = 15A
IC = 7.5A
0 1 2 3 4 5 6 0 2 4 6 8 10
0 4 8 12 16 20 0 20 40 60 80 100
8 10 12 14 16 -50 -25 0 25 50 75 100 125
-50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 150
60
50
40
30
20
10
0
16
14
12
10
8
6
4
2
0
3.0
2.5
2.0
1.5
1.0
0.5
0
60
50
40
30
20
10
0
13V
11V
12V
VGE = 15V
050-7599 Rev B 10-2005
APT15GN120K(G)
VGE =15V,TJ=125°C
VGE =15V,TJ=25°C
VCE = 800V
RG = 4.3
L = 100 µH
SWITCHING ENERGY LOSSES (µJ) EON2, TURN ON ENERGY LOSS (µJ) tr, RISE TIME (ns) td(ON), TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (µJ) EOFF, TURN OFF ENERGY LOSS (µJ) tf, FALL TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns)
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current FIGURE 10, Turn-Off Delay Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current FIGURE 12, Current Fall Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current FIGURE 14, Turn Off Energy Loss vs Collector Current
RG, GATE RESISTANCE (OHMS) TJ, JUNCTION TEMPERATURE (°C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance FIGURE 16, Switching Energy Losses vs Junction Temperature
RG = 4.3, L = 100µH, VCE = 800V
VCE = 800V
TJ = 25°C, TJ =125°C
RG = 4.3
L = 100 µH
VGE = 15V
TJ = 25 or 125°C,VGE = 15V
5 10 15 20 25 30 35 5 10 15 20 25 30 35
5 10 15 20 25 30 35 5 10 15 20 25 30 35
5 10 15 20 25 30 35 5 10 15 20 25 30 35
0 10 20 30 40 50 0 25 50 75 100 125
RG = 4.3, L = 100µH, VCE = 800V
12
10
8
6
4
2
0
16
14
12
10
8
6
4
2
0
3000
2500
2000
1500
1000
500
0
5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
200
180
160
140
120
100
80
60
40
20
0
300
250
200
150
100
50
0
3500
3000
2500
2000
1500
1000
500
0
3500
3000
2500
2000
1500
1000
500
0
VCE = 800V
VGE = +15V
RG = 4.3
TJ = 125°C
TJ = 25°C
VCE = 800V
VGE = +15V
RG = 4.3
TJ = 125°C
TJ = 25°C
Eon2,30A
Eoff,30A
Eon2,15A
Eoff,15A Eon2,7.5A
Eoff,7.5A
VCE = 800V
VGE = +15V
TJ = 125°C
VCE = 800V
VGE = +15V
RG = 4.3
Eon2,30A
Eoff,30A
Eon2,15A
Eoff,15A
Eon2,7.5A
Eoff,7.5A
050-7599 Rev B 10-2005
APT15GN120K(G)TYPICAL PERFORMANCE CURVES
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0
ZθJC, THERMAL IMPEDANCE (°C/W)
0.3
D = 0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5 10-4 10-3 10-2 10-1 1.0
2,000
1,000
500
100
50
10
50
45
40
35
30
25
20
15
10
5
0
C, CAPACITANCE (PF)
IC, COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage Figure 18,Minimim Switching Safe Operating Area
0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400
0.5
0.1
0.05
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
Cies
Cres
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
0 5 10 15 20 25 30
FMAX, OPERATING FREQUENCY (kHz)
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 4.3
140
100
50
10
6
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
Pdiss - Pcond
Eon2 + Eoff
fmax2 =
Pdiss = TJ - TC
RθJC
0.323
0.258
0.0600
0.00192
0.0312
0.389
Power
(watts)
Junction
temp. (°C)
RC MODEL
Case temperature. (°C)
Coes
050-7599 Rev B 10-2005
APT15GN120K(G)
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
TJ = 125°C
Collector Current
Collector Voltage
Gate Voltage
Switching Energy
5%
10%
td(on)
90%
10%
tr
5%
TJ = 125°C
Collector Voltage
Collector Current
Gate Voltage
Switching Energy
0
90%
td(off)
10%
tf
90%
APT15DQ120
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
Emitter
10.66 (.420)
9.66 (.380)
5.33 (.210)
4.83 (.190)
14.73 (.580)
12.70 (.500)
1.01 (.040) 3-Plcs.
0.83 (.033)
2.79 (.110)
2.29 (.090)
4.82 (.190)
3.56 (.140)
1.39 (.055)
0.51 (.020)
4.08 (.161) Dia.
3.54 (.139)
Dimensions in Millimeters and (Inches)
Gate
Collector
6.85 (.270)
5.85 (.230)
1.77 (.070) 3-Plcs.
1.15 (.045)
2.92 (.115)
2.04 (.080)
3.42 (.135)
2.54 (.100)
0.50 (.020)
0.41 (.016)
5.33 (.210)
4.83 (.190)
Drain
12.192 (.480)
9.912 (.390)
3.683 (.145)
MAX.
TO-220 (K) Package Outline
e3 100% Sn