Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel.
© INTEL CORPORATION, 2004 August 2004 Order Number: 272543-003
®
8XC196MH INDUSTRIAL MOTOR CONTROL
CHMOS MICROCONTROLLER
The 8XC196MH is a member of Intel’s family of 16-bit MCS® 96 microcontrollers. It is designed primarily to
control three-phase AC induction and DC brushless motors. It features an enhanced three-phase waveform
generator specifically designed for use in “invertermotor-control applications. This peripheral provides pulse-
width modulation and three-phase sine wave generation with minimal CPU intervention. It generates three
complementary non-overlapping PWM pulses with resolutions of 0.125 µs (edge triggered) or 0.250 µs
(centered).
The 8XC196MH has two dedicated serial port peripherals, allowing less software overhead. The watchdog timer
can be programmed with one of four time options.
The 8XC196MH is available as the 80C196MH, which does not have on-chip ROM, the 87C196MH,
which contains 32 Kbytes of on-chip OTPROM* or factory programmed ROM, and the 83C196MH, which
contains 32 Kbytes of factory programmed MASK ROM. It is available in 84-lead PLCC, 80-lead Shrink EIAJ/QFP,
and 64-lead SDIP. The 64-lead package does not contain pins for the P5.1/INST and P6.7/PWM1 signals.
Operational characteristics are guaranteed over the temperature range of – 40°C to +85°C.
*One-Time Programmable Read-Only Memory (OTPROM) is similar to EPROM but comes in an unwindowed package and
cannot be erased. It is user programmable.
High Performance CHMOS 16-bit CPU
16 MHz Operating Frequency
32 Kbytes of On-chip OTPROM/ROM
744 Bytes of On-chip Register RAM
Register-to-register Architecture
16 Prioritized Interrupt Sources
Peripheral Transaction Server (PTS) with 15
Prioritized Sources
Up to 52 I/O Lines
3-phase Complementary Waveform Generator
8-channel 8- or 10-bit A/D with Sample and
Hold
2-channel UART
Event Processor Array (EPA) with 2 High-
speed Capture/Compare Modules and 4 High-
speed Compare-only Modules
Two Programmable 16-bit Timers with
Quadrature Counting Inputs
Two Pulse-width Modulator (PWM) Outputs
with High Drive Capability
Flexible 8- or 16-bit External Bus
1.75 µs 16 × 16 Multiply
3µs 32/16 Divide
Extended Temperature Available
Idle and Powerdown Modes
Watchdog Timer
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
2
Figure 1. 8XC196MH Block Diagram
Timer 1
Timer 2 Event
Processor
Array
3-Phase
Waveform
Generator
Port 2
Microcode
Engine
RALU
CPU
Peripheral
Transaction
Server
32K
On-chip
ROM/
OTPROM
Port 4
AD15:8
Port 3
AD7:0
Port 5
Control
Signals
Interrupt
Controller
16
8
744
Byte
Register
File Memory
Controller
Queue
Port 6
Port 6
Waveform
Generator
A2542-01
Port 2
SIO, EPA
2 Capture/Compare
4 Compare
Port 1
SIO 0
SIO 1
Port 1
Serial I/O
Baud
Rate
Generator
Port 0
A/D
Port 0
8/10-Bit
A/D
Converter
Mux
S/H
24 Bytes
CPU SFRs
Watchdog
Timer
EXTINT
PWM0
PWM1
88
4
426
8
6
2
8
8
8XC196MH INDUSTRIAL MOTOR CONTROL CHMOS MICROCONTROLLER
®
3
PROCESS INFORMATION
This device is manufactured on PX29.5, a CHMOS IV
process. Additional process and reliability information
is available in Intel’s
Components Quality and
Reliability
Handbook (order number 210997).
All thermal impedance data is approximate for static
air conditions at 1 watt of power dissipation. Values
will change depending on operating conditions and
the application. The Intel
Packaging
Handbook (order
number 240800) describes Intel’s thermal impedance
test methodology.
Table 1. Thermal Characteristics
Package Type θJA θJC
84-lead PLCC 33°C/W 11°C/W
80-lead QFP 56°C/W 12°C/W
64-lead SDIP 56°C/W N/A
Figure 2. The 8XC196MH Family Nomenclature
X XX 8 X C 196 XX XX
Device Speed:
Product Family:
No Mark = 16 MHz
K
x
, M
x
, N
x
CHMOS Technology
Program Memory Options: 0 = ROMless, 3 = ROM, 7 = OTPROM
Package - Type Options:
Temperature and Burn In Options:
A2759-01
x = SDIP, x = PLCC, x = QFP
x = –40˚C – +85˚C Ambient
with Intel Standard Burn-In
To address the fact that many of the package prefix variables have changed,
all package prefix variables in this document are now indicated with an "x".
NOTE:
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
4
Table 2. 8XC196MH Memory Map
Address
(1) Description Notes
0FFFFH
0A000H External M emory
09FFFH
02080H Internal ROM /OT PRO M or External Memory
0207FH
0205EH Reserved 1, 2
0205DH
02040H PTS Vectors
0203FH
02030H Interrupt Ve ctor s (upper)
0202FH
02020H ROM/OTPROM Security Key
0201FH
0201CH Reserved 1, 2
0201BH Reserved (m ust contain 20H)
0201AH CCB1
02019H Reserved (m ust contain 20H)
02018H CCB0
02017H
02014H Reserved
02013H
02000H Interrupt Ve ctor s (low er)
01FFFH
01F00H Inter nal SFRs 1
1EFFH
300H External M emory
2FFH
18H Reg ister RAM 3
17H
00H CPU SFRs 1
NOTES:
1. Unless otherwise noted, write 0FF H to reser ved mem ory loc ations and write 0 to reserved SFR bits.
2. WARNING: The contents and/or function of reserved locations may change with future revisions of the
device.
3. Code executed in locations 0000H to 02FFH will be forced external.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
5
Table 3. Sign als Arrange d by Functi o nal Categ ori es
Address & Data Programming Control Input/Output Input/Output (Cont’d)
AD15:0 AINC# P0.0/ACH0 P2.5/COMP1
CPVER P0.1/ACH1 P2.6/COMP2
Bus Control & S tatus PACT# P0.2/ACH2 P2.7/SCLK1#/BCLK1
ALE/ADV# PALE# P0.3/ACH3 P3.7:0
BHE#/WRH# PBUS15:0 P0.4/ACH4 P4.7:0
BUSWIDTH PMODE.3:0 P0.5/ACH5 P5.7:0
INST PROG# P0.6/ACH6/T1CLK P6.0/WG1#
READY PVER P0.7/ACH7/T1DIR P6.1/WG1
RD# P1.0/TXD0 P6.2/WG2#
WR#/WRL# Processor Control P1.1/RXD0 P6.3/WG2
EA# P1.2/TXD1 P6.4/WG3#
Power & Ground EXTINT P1.3/RXD1 P6.5/WG3
ANGND NMI P2.0/EPA0 P6.6/PWM0
VCC ONCE# P2.1/SCLK0#/BCLK0 P6.7/PWM1
VPP RESET# P2.2/EPA1
VREF XTAL1 P2.3/COMP3
VSS XTAL2 P2.4/COMP0
NOTE: T he following signals are not available in the 64-pin package: P5.1, P6. 7, INST, and PWM1.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
6
Figure 3. 8XC196MH 64-lead Shrink DIP (SDIP) Package
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
xx8XC196MH
TOP VIEW
(Looking down
on component side of
PC board)
P5.6/READY
P5.4/ONCE#
EXTINT
V
SS
XTAL1
XTAL2
P6.6/PWM0
P2.7/SCLK1#/BCLK1
P2.6/COMP2/CPVER
P2.5/COMP1/PACT#
P2.4/COMP0/AINC#
P2.3/COMP3
P2.2/EPA1/PROG#
P2.1/SCLK0#/BCLK0/PALE#
P2.0/EPA0/PVER
P0.0/ACH0
P0.1/ACH1
P0.2/ACH2
P0.3/ACH3
P0.4/ACH4/PMODE.0
P0.5/ACH5/PMODE.1
V
REF
ANGND
P0.6/ACH6/T1CLK/PMODE.2
P0.7/ACH7/T1DIR/PMODE.3
P1.0/TXD0
P1.1/RXD0
P1.2/TXD1
P1.3/RXD1
P6.0/WG1#
P6.1/WG1
P6.2/WG2#
V
SS
P5.0/ALE/ADV#
V
PP
P5.3/RD#
P5.5/BHE#/WRH#
P5.2/WR#/WRL#
P5.7/BUSWIDTH
P4.6/AD14/PBUS.14
P4.5/AD13/PBUS.13
P4.7/AD15/PBUS.15
V
CC
P4.4/AD12/PBUS.12
P4.3/AD11/PBUS.11
P4.2/AD10/PBUS.10
P4.1/AD9/PBUS.9
P4.0/AD8/PBUS.8
P3.7/AD7/PBUS.7
P3.6/AD6/PBUS.6
P3.5/AD5/PBUS.5
P3.4/AD4/PBUS.4
P3.3/AD3/PBUS.3
P3.2/AD2/PBUS.2
P3.1/AD1/PBUS.1
P3.0/AD0/PBUS.0
RESET#
NMI
EA#
V
SS
V
CC
P6.5/WG3
P6.4/WG3#
P6.3/WG2
A2572-01
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
7
Table 4. 64-lead Sh ri nk DI P (SDI P) Pin Assig nme nt
Pin Name Pin Name Pin Name Pin Name
1V
SS 17 P3.7/AD7
/PBUS.7 33 P6.2/WG2# 49 P0.0/ACH0
2 P5.0/ALE/ADV# 18 P3.6/AD6
/PBUS.6 34 P6.1/WG1 50 P2.0/EPA0/PVER
3V
PP 19 P3.5/AD5
/PBUS.5 35 P6.0/WG1# 51 P2.1/SCLK0#
/BCLK0/PALE#
4 P5.3/RD# 20 P3.4/AD4
/PBUS.4 36 P1.3/RXD1 52 P2.2/EPA1
/PROG#
5 P5.5/BHE#/WRH# 21 P3.3/AD3
/PBUS.3 37 P1.2/TXD1 53 P2.3/COMP3
6 P5.2/WR#/WRL# 22 P3.2/AD2
/PBUS.2 38 P1.1/RXD0 54 P2.4/COMP0
/AINC#
7 P5.7/BUSWIDTH 23 P3.1/AD1
/PBUS.1 39 P1.0/TXD0 55 P2.5/COMP1
/PACT#
8 P4.6/AD14
/PBUS.14 24 P3.0/AD0
/PBUS.0 40 P0.7/ACH7/T1DIR
/PMODE.3 56 P2.6/COMP2
/CPVER
9 P4.5/AD13
/PBUS.13 25 RESET# 41 P0.6/ACH6
/T1CLK/PMODE.2 57 P2.7/SCLK1#
/BCLK1
10 P4.7/AD15
/PBUS.15 26 NMI 42 ANGND 58 P6.6/PWM0
11 VCC 27 EA# 43 VREF 59 XTAL2
12 P4.4/AD12
/PBUS.12 28 VSS 44 P0.5/ACH5
/PMODE.1 60 XTAL1
13 P4.3/AD11
/PBUS.11 29 VCC 45 P0.4/ACH4
/PMODE.0 61 VSS
14 P4.2/AD10
/PBUS.10 30 P6.5/WG3 46 P0.3/ACH3 62 EXTINT
15 P4.1/AD9/PBUS.9 31 P6.4/WG3# 47 P0.2/ACH2 63 P5.4/ONCE#
16 P4.0/AD8/PBUS.8 32 P6.3/WG2 48 P0.1/ACH1 64 P5.6/READY
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
8
Figure 4. 8XC196MH 84-lead PLCC Package
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
11
10
9
8
7
6
5
4
3
2
1
84
83
82
81
80
79
78
77
76
75
P2.5/COMP1/PACT#
P2.4/COMP0/AINC#
NC
NC
P2.7/SCLK1#/BCLK1
P2.3/COMP3
P2.2/EPA1/PROG#
NC
NC
P2.1/SCLK0#/BCLK0/PALE#
P2.0/EPA0/PVER
NC
P0.0/ACH0
P0.1/ACH1
P0.2/ACH2
P0.3/ACH3
P0.4/ACH4/PMODE.0
P0.5/ACH5/PMODE.1
VREF
ANGND
P0.6/ACH6/T1CLK/PMODE.2
P4.7/AD15/PBUS.15
P4.6/AD14/PBUS.14
VCC
P4.5/AD13/PBUS.13
NC
P4.4/AD12/PBUS.12
P4.3/AD11/PBUS.11
P4.2/AD10/PBUS.10
P4.1/AD9/PBUS.9
P4.0/AD8/PBUS.8
NC
NC
P3.7/AD7/PBUS.7
P3.6/AD6/PBUS.6
P3.5.AD5/PBUS.5
P3.4/AD4/PBUS.4
P3.3/AD3/PBUS.3
P3.2/AD2/PBUS.2
P3.1/AD1/PBUS.1
P3.0/AD0/PBUS.0
NC
P5.7/BUSWIDTH
P5.2/WR#/WRL#
NC
P5.5/BHE#/WRH#
P5.3/RD#
VPP
P5.0/ALE/ADV#
VSS
P5.1/INST
P5.6/READY
P5.4/ONCE#
EXTINT
VSS
XTAL1
XTAL2
NC
NC
NC
P6.6/PWM0
P6.7/PWM1
P2.6/COMP2/CPVER
RESET#
NMI
NC
EA#
VSS
NC
VCC
P6.5/WG3
P6.4/WG3#
P6.3/WG2
VSS
P6.2/WG2#
P6.1/WG1
P6.0/WG1#
P1.3/RXD1
P1.2/TXD1
NC
NC
P1.1/RXD0
P1.0/TXD0
P0.7/ACH7/T1DIR/PMODE.3
xx8XC196MH
TOP VIEW
(Looking down
on component side of
PC board)
A2573-02
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
9
Table 5. 84-lead PL C C Pin Assig nme nt
Pin Name Pin Name Pin Name Pin Name
1 P5.4/ONCE# 22NC 43V
SS 64 P2.0/EPA0/PVER
2 P5.6/READY 23 NC 44 P6.2/WG2# 65 P2.1/SCLK0#
/BCLK0/PALE#
3 P5.1/INST 24 P3.7/AD7
/PBUS.7 45 P6.1/WG1 66 NC
4V
SS 25 P3.6/AD6
/PBUS.6 46 P6.0/WG1# 67 NC
5 P5.0/ALE/ADV# 26 P3.5/AD5
/PBUS.5 47 P1.3/RXD1 68 P2.2/EPA1
/PROG#
6V
PP 27 P3.4/AD4
/PBUS.4 48 P1.2/TXD1 69 P2.3/COMP3
7 P5.3/RD# 28 P3.3/AD3
/PBUS.3 49 NC 70 P2.7/SCLK1#
/BCLK1
8 P5.5/BHE#/WRH# 29 P3.2/AD2
/PBUS.2 50 NC 71 NC
9 NC 30 P3.1/AD1
/PBUS.1 51 P1.1/RXD0 72 NC
10 P5.2/WR#/WRL# 31 P3.0/AD0
/PBUS.0 52 P1.0/TXD0 73 P2.4/COMP0
/AINC#
11 P5.7/BUSWIDTH 32 NC 53 P0.7/ACH7
/T1DIR/PMODE.3 74 P2.5/COMP1
/PACT#
12 P4.7/AD15
/PBUS.15 33 RESET# 54 P0.6/ACH6
/T1CLK/PMODE.2 75 P2.6/COMP2
/CPVER
13 P4.6/AD14
/PBUS.14 34 NMI 55 ANGND 76 P6.7/PWM1
14 VCC 35 NC 56 VREF 77 P6.6/PWM0
15 P4.5/AD13
/PBUS.13 36 EA# 57 P0.5/ACH5
/PMODE.1 78 NC
16 NC 37 VSS 58 P0.4/ACH4
/PMODE.0 79 NC
17 P4.4/AD12
/PBUS.12 38 NC 59 P0.3/ACH3 80 NC
18 P4.3/AD11
/PBUS.11 39 VCC 60 P0.2/ACH2 81 XTAL2
19 P4.2/AD10
/PBUS.10 40 P6.5/WG3 61 P0.1/ACH1 82 XTAL1
20 P4.1/AD9/PBUS.9 41 P6.4/WG3# 62 P0.0/ACH0 83 VSS
21 P4.0/AD8/PBUS.8 42 P6.3/WG2 63 NC 84 EXTINT
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
10
Figure 5. 8XC196MH 80-lead Sh rin k EIAJ/Q F P Packag e
1
2
3
4
5
6
7
8
9
10
12
17
13
14
16
18
19
11
15
20
21
24 25 26 28 2927
23
22
3938
37343230 31 33 35 36 40
42
41
43
44
45
46
47
48
49
52
53
50
51
55
54
56
57
59
58
60
61
62
63
64
65
6667
68
6973747679 77 75 72 71 70
80 78
P6.7/PWM1
P2.6/COMP2/CPVER
P2.5/COMP1/PACT#
P2.4/COMP0/AINC#
NC
NC
P2.7/SCLK1#/BCLK1
P2.3/COMP3
P2.2/EPA1/PROG#
P2.0/EPA0/PVER
NC
NC
P0.6/ACH6/T1CLK/PMODE.2
NC
P2.1/SCLK0#/BCLK0/PALE#
ANGND
P0.0/ACH0
P0.1/ACH1
P0.2/ACH2
P0.3/ACH3
P0.4/ACH4/PMODE.0
VREF
P0.5/ACH5/PMODE.1
P0.7/ACH7/T1DIR/PMODE.3
P4.7/AD15/PBUS.15
P5.2/WR#/WRL#
P5.7/BUSWIDTH
P4.6/AD14/PBUS.14
VCC
P4.5/AD13/PBUS.13
NC
P4.3/AD11/PBUS.11
P4.4/AD12/PBUS.12
P4.2/AD10/PBUS.10
P3.7/AD7/PBUS.7
P4.1/AD9/PBUS.9
P4.0/AD8/PBUS.8
P3.6/AD6/PBUS.6
P3.4/AD4/PBUS.4
P3.3/AD3/PBUS.3
P3.1/AD1/PBUS.1
P3.0/AD0/PBUS.0
NMI
NC
EA#
RESET#
P3.5/AD5/PBUS.5
P3.2/AD2/PBUS.2
VSS
NC
P6.4/WG3#
P6.1/WG1
VCC
P6.5/WG3
P6.3/WG2
VSS
P6.2/WG2#
P1.3/RXD1
P6.0/WG1#
P1.2/TXD1
NC
NC
P1.1/RXD0
P1.0/TXD0
VPP
P5.3/RD#
P5.1/INST
P5.0/ALE/ADV#
P5.4/ONCE#
P5.6/READY
VSS
XTAL1
EXTINT
XTAL2
NC
NC
P6.6/PWM0
NC
P5.5/BHE#/WRH#
VSS
xx8XC196MH
TOP VIEW
(Looking down
on component side of
PC board)
A2574-01
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
11
Table 6. 80-lead Shrink EIAJ/QFP Pin Assignment
Pin Name Pin Name Pin Name Pin Name
1 P5.2/WR#/WRL# 21 NC 41 P0.7/ACH7/T1DIR
/PMODE.3 61 P2.4/COMP0
/AINC#
2 P5.7/BUSWIDTH 22 RESET# 42 P0.6/ACH6
/T1CLK/PMODE.2 62 P2.5/COMP1
/PACT#
3 P4.7/AD15
/PBUS.15 23 NMI 43 ANGND 63 P2.6/COMP2
/CPVER
4 P4.6/AD14
/PBUS.14 24 EA# 44 VREF 64 P6.7/PWM1
5V
CC 25 VSS 45 P0.5/ACH5
/PMODE.1 65 P6.6/PWM0
6 P4.5/AD13
/PBUS.13 26 NC 46 P0.4/ACH4
/PMODE.0 66 NC
7NC 27V
CC 47 P0.3/ACH3 67 NC
8 P4.4/AD12
/PBUS.12 28 P6.5/WG3 48 P0.2/ACH2 68 NC
9 P4.3/AD11
/PBUS.11 29 P6.4/WG3# 49 P0.1/ACH1 69 XTAL2
10 P4.2/AD10
/PBUS.10 30 P6.3/WG2 50 P0.0/ACH0 70 XTAL1
11 P4.1/AD9/PBUS.9 31 VSS 51 NC 71 VSS
12 P4.0/AD8/PBUS.8 32 P6.2/WG2# 52 P2.0/EPA0/PVER 72 EXTINT
13 P3.7/AD7/PBUS.7 33 P6.1/WG1 53 P2.1/SCLK0#
/BCLK0/PALE# 73 P5.4/ONCE#
14 P3.6/AD6/PBUS.6 34 P6.0/WG1# 54 NC 74 P5.6/READY
15 P3.5/AD5/PBUS.5 35 P1.3/RXD1 55 NC 75 P5.1/INST
16 P3.4/AD4/PBUS.4 36 P1.2/TXD1 56 P2.2/EPA1
/PROG# 76 VSS
17 P3.3/AD3/PBUS.3 37 NC 57 P2.3/COMP3 77 P5.0/ALE/ADV#
18 P3.2/AD2/PBUS.2 38 NC 58 P2.7/SCLK1#
/BCLK1 78 VPP
19 P3.1/AD1/PBUS.1 39 P1.1/RXD0 59 NC 79 P5.3/RD#
20 P3.0/AD0/PBUS.0 40 P1.0/TXD0 60 NC 80 P5.5/BHE#/WRH#
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
12
PIN DESCRIPTIONS
Table 7. Signal Descrip tions
Signal
Name Type Description Multiplexed
With
ACH7
ACH6
ACH5
ACH4
ACH3:0
IAnalog Chan nel s. These p ins are analog inputs to the A/D
converter.
These pins are multiplexed wit h the port 0 pins. While it is
possible for the pins to function simultaneously as analog and
digital inputs, this is not recommended because reading the
port while a conversion is in process can produce unreliable
conversion results.
The ANGND and VREF pins must be connected for the A/D
converter and the multiplexed port pins to function.
P0.7/T1DIR/PMODE.3
P0.6/T1CLK/PMODE.2
P0.5/PMODE.1
P0.4/PMODE.0
P0.3:0
AD15:8
AD7:0 I/O Address/Data Line s. The se pins provide a multiplexed
address and data bus. During the address phase of the bus
cycle, address bits 0–15 are presented on the bus and can
be latched using ALE or ADV#. During the data phase, 8- or
16-bit data is transferred.
P4.7:0/PBUS.15:8
P3.7:0/PBUS.7:0
ADV# O Address Valid. This active-low output signal is asserted only
during external memory accesses.
ADV# indicates that valid address information is available on
the system address/data bus. The signal remains low while a
valid bus cycle is in progress and is returned high as soon as
the bus cycle completes.
An external latch can use the ADV# signal to demultiplex the
address from the address/data bus. Used with a decoder,
ADV# can generate chip-selects for external mem ory.
P5.0/ALE
AINC# I Auto I ncrement. In slave programming mode, this active-low
input signal enables the autoincrement mode. Auto increment
allows reading from or writing to sequential OTPROM
locations without requiring address transact ions acros s the
programming bus for each read or write.
P2.4/COMP0
ALE O Address Latch En ab le. This act ive-high output signa l is
asserted only during external mem ory cycle s.
ALE signals the start of an external bus cycle and indicates
that valid address information is available on the system
address/data bus. ALE differs from AD V# in that it is not
returned high until a new bus cycle is to begin.
An external latch can use ALE to demulti plex the address
from the address/data bus.
P5.0/ADV#
ANGND GND Anal og G rou nd. Refer ence ground for the A/D convert er
and the logic used to read port 0. ANGND must be held at
nominally the same potential as VSS.
BCLK1
BCLK0 ISerial Communications Baud Clock 0 and 1. BCLK0 and 1
are alternate clock sources for the serial ports. The maximum
input frequency is FOSC/4.
P2.7/SCLK1#
P2.1/SCLK0#/PALE#
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
13
BHE# O Byte High Enab le . During 16-bit bus cycles, this active-low
output signal is asserted for word reads and writes and for
high-byte read s and writes to external m emory. BHE #
indicates that valid data is being transferred over the upper
half of the system address/ data bus.
BHE#, in conjunction with A0, selects the memory byt e to be
accessed:
BHE# A0 Byte(s) Accessed
0 0 both bytes
0 1 high byte only
1 0 low byte only
P5.5/WRH#
BUSWIDTH I Bus Wid th. When enabled in the chip configuration register,
this active-high input signal dynamically selects the bus width
of the bus cycle in progress. When BUSWI DT H is high, a 16-
bit bus cycle occurs; when BUSWIDT H is low, an 8-bit bus
cycle occurs. BUSW I DTH is active during a CCR fetch.
P5.7
COMP3
COMP2
COMP1
COMP0
OEvent Processo r Array (EPA) Com pare Pins. Thes e
signals are the output of the EPA compare modules. These
pins are multiplexed with other signals and may be
configured as standard I/O.
P2.3
P2.6/CPVER
P2.5/PACT#
P2.4/AINC#
CPVER O Cumulati ve Program Verification. This active-high output
signal indicates whether any verify errors have occurred
since the device entered programming mode. CPVER
remains high until a verify error occurs, at which time it is
driven low. Once an error occurs, CPVE R remains low until
the device exits programming mode. When high, CPVER
indicates that all locations have programmed correc tly since
the device entered programming mode.
P2.6/COMP2
EA# I External Access. This active-low input signal direct s
memory accesses t o on-chip or off-chip mem ory. If EA# is
low, the memory acc ess is off- chip. If EA# is high and the
memory address is within 2000H–2FFFH, the access is to
on-chip ROM or OTPROM . Otherw ise, an access with EA#
high is to off-chip mem ory.
EA# is sampled only on the rising edge of RESET#.
If EA# = VEA on the rising edge of RESET#, the device enters
the programming mode selected by PMO DE .3: 0.
For devices without ROM , EA# must be tied low.
EPA1
EPA0 I/O Event Processor Array (EPA) In put/O ut put pins. These
are the high-speed input/output pins for the EPA
capture/compare modules. These p ins are multiplexed with
other signals and may be configured as standard I/O.
P2.2/PROG#
P2.0/PVER
Table 7. Signal Descriptions (Continu ed)
Signal
Name Type Description Multiplexed
With
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
14
EXTINT I External Interrupt. This programmable interrupt is controlled
by the WG_PRO T ECT reg ister. This regist er cont rols
whether the interrupt is edge triggered or sampled and
whether a rising edge/high level or falling edge/low level
activates the interrupt. This interrupt vectors through memory
location 203CH. If the chip is in idle mode and if EXTINT is
enabled, a valid EXTINT interrupt brings the chip back to
normal operation, where the first action is to execut e the
EXTINT service routine. After complet ion of the service
routine, execution resumes at the instruction following the
one that put the chip into idle mode.
In powerdown mode, a valid EXTINT interrupt
causes the
chip to return to normal operating mode. If EXTINT is
enabled, the EXTINT service routine is executed. Otherwise,
execution continues at the instruction following t he IDLPD
instruction that put the chip into powerdown mode.
INST O Instruction Fetch. This active-high output signal is valid only
during external memory bus cy cles. When high, INS T
indicates that an instruction is being fetched from exter nal
memory. The signal remains high during the entire bus cycle
of an external instruct ion fetch. INS T is low for data
accesses, including interrupt vect or fet ches and chip configu-
ration byte reads. INST is low during internal memory
fetches.
P5.1
NMI I Nonmaskable Interrupt. In normal operating mode, a rising
edge on NMI causes a vector through the NMI interrupt at
location 203EH. NMI must be asserted for greater than one
state time to guarantee that it is recognized.
In idle mode, a rising edge on NMI brings the chip back to
normal operation, where the first action is to execute the NMI
service routine. After completion of th e service routine,
execution resumes at the instruc tion following the one that
put the chip into idle mode.
In powerdown mode, NMI causes a return to normal
operating mode only if it is tied to EXTINT.
ONCE# I On-circu it Em ulati on. Holding this pin low while the
RESET# signa l transitions from a low to a high places the
device into on-circuit emulation (ONCE) mode. ONCE mod e
isolates the device from other componen ts in the system to
allow the use of a clip-on emulator for system debugging.
This mode puts all pins except XTAL1 and XTAL2 into a high-
impedance state. To exit O NCE mode, reset the device by
pulling the RESET# signal low.
P5.4
Table 7. Signal Descriptions (Continu ed)
Signal
Name Type Description Multiplexed
With
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
15
P0.7
P0.6
P0.5
P0.4
P0.3:0
IPort 0. This is a high-impedance, input-only port. Port 0 pins
should not be left floating.
These pins may individually be used as analog inputs
(ACH
x
) or digital inputs (P0.
x
). While it is possible for the pins
to function simultaneously as analog and digital inputs, this is
not recommended because reading port 0 while a conversion
is in process can produce unreliable conversion results.
ANGND and VREF must be connected f or port 0 and the A/D
converter to function.
ACH7/T1DIR/PMODE.3
ACH6/T1CLK/PMODE.2
ACH5/PMODE.1
ACH4/PMODE.0
ACH3:0
P1.3
P1.2
P1.1
P1.0
IPort 1. This is a 4-bit, bidirectional, standard I/O port that is
multiplexed with individually selectable special-function
signals. (Used as PBUS.15: 12 in Auto-programm ing Mode.)
RXD1
TXD1
RXD0
TXD0
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0
I/O Port 2. This is an 8-bit, bidirectional, standard I/O port that is
multiplexed with individually selectable special-function
signals. P2.6 is multiplexed with a special test mode function.
To prevent accidental entry into test modes, always configure
P2.6 as an output.
SCLK1#/BCLK1
COMP2/CPVER
COMP1/PACT#
COMP0/AINC#
COMP3
EPA1/PROG#
SCLK0#/BCLK0/PALE#
EPA0/PVER
P3.7:0 I/O Port 3. This is an 8-bit, bidirectional, memory-mapped I/O
port with open-drain outputs . The pins are shared with the
multiplexed address/ data bus, whic h has complement ary
drivers.
In programming modes, port 3 serves as the low byte of the
programming bus (PBUS).
AD7:0/PBUS.7:0
P4.7:0 I/O Port 4. This is an 8-bit, bidirectional, memory-mapped I/O
port with open-drain outputs . The pins are shared with the
multiplexed address/ data bus, whic h has complement ary
drivers.
In programming modes, port 4 serves as the high byte of the
programming bus (PBUS).
AD15:8/PBUS.15:8
P5.7
P5.6
P5.5
P5.4
P5.3
P5.2
P5.1
P5.0
I/O Port 5. This is an 8-bit, bidirectional, standard I/O port that is
multiplexed with individually selectable control signals.
Because P5.4 is multiplexed with the ONCE # funct ion,
always config ure it as an output to prevent accidental entr y
into ONCE mode.
BUSWIDTH
READY
BHE#/WRH#
ONCE#
RD#
WR#/WRL#
INST
ALE/ADV#
Table 7. Signal Descriptions (Continu ed)
Signal
Name Type Description Multiplexed
With
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
16
P6.7
P6.6
P6.5
P6.4
P6.3
P6.2
P6.1
P6.0
OPort 6. This is an 8-bit output port that is multiplexed with the
special functions of the waveform generator and PW M
peripherals. The WG_OUT register configures the pins,
establishes the output polarity, and controls whether changes
to the outputs are synchronized with an event or tak e effec t
immediately.
PWM1
PWM0
WG3
WG3#
WG2
WG2#
WG1
WG1#
PACT# O Programming Active. In auto-programming mode, PACT#
low indicates that programming activity is occurring. P2.5/COMP1
PALE# I Programming ALE. In slave programming mode, this active-
low input indicates that ports 3 and 4 conta in a
command/address . When PALE # is asserted, data and
commands on ports 3 and 4 are read into the device.
P2.1/SCLK0#/BCLK0
PBUS.15:8
PBUS.7:0 I/O Programming Bus. In programming modes, used as a
bidirectional port with open-drain outputs to pass commands,
addresses, and data to or from the device. Used as a regular
system bus to access external memory during auto-
programming mode. When using slave programming mode,
the PBUS is used in open-drain I/O port mode (not as a
system bus). In slave progra mming mod e, you must add
external pull-up resistors to read data from the device during
the dump word routine.
P4.7:0/AD15:8
P3.7:0/AD7:0
PMODE.3
PMODE.2
PMODE.1
PMODE.0
IProgramming Mode Select. Determines the OTPROM
programming algorithm that is to be performed. PM O DE is
sampled after a device reset when EA# = VEA and must be
stable while the device is operating.
P0.7/ACH7/T1DIR
P0.6/ACH6/T1CLK
P0.5/ACH5
P0.4/ACH4
PROG# I Programming Start. This active-low input is valid only in
slave programming mode. The rising edge of PROG# latches
data on the PBUS and begins programming. The falling edge
of PROG# ends programming.
P2.2/EPA1
PVER OProgram Verification. In programming modes, this active-
high output signal is asserted to indicate that t he word has
programmed correctly . (PVER low after the rising edge of
PROG# indicates an error.)
P2.0/EPA0
PWM1:0 O Pulse Wid th Mo dul ato r Ou tpu ts. These are PWM output
pins with high-current drive capability. The duty cycle and
frequency-pulse-widths are programmable.
P6.7:6
RD# O Read. Read-signal output to external memory. RD# is
asserted only during external mem ory reads. P5.3
Table 7. Signal Descriptions (Continu ed)
Signal
Name Type Description Multiplexed
With
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
17
READY I Ready Input. This active-high input signal is used to
lengthen external memory cycles for slow memory by
generating wait states.
When READY is high, CPU operation continues in a normal
manner. If READY is low, the memory controller ins ert s wait
states until the READY signal goes high or until the number
of wait states is equal to the number programmed into the
chip configuration register.
READY is ignored for all internal memory accesses.
P5.6
RESET# I/O Reset. Reset input to and open-drain output from the chip. A
falling edge on RESET# initiates the reset process . When
RESET# is first asserted, the chip turns on a pull-down
transistor connected to the RESET pin for 16 state times.
This function can also be activated by execut ion of the RST
instruction. In the powerdown and idle modes, asserting
RESET# causes th e chip to reset and return to normal
operating mode. RESET # is a level-sensitive input.
RXD1
RXD0 I/O Receive Serial Data 0 and 1. In modes 1, 2, and 3, RXD0
and 1 are used to receive serial port data. In mode 0, they
function as either inputs or open-drain outputs for dat a.
P1.3
P1.1
SCLK1#
SCLK0# I/O Synchron o us Cl ock Pi n 0 and 1. In mode 4, these are the
bidrectional, shift clock signa ls that synchronize the serial
data transfer. Data is transferred 8 bits at a time with the LSB
first. The DIR bit (SP_CO N
x
.7) controls the direction of
SCLK
x
signal.
DIR = 0 The internal shift clock is output on SCLK
x
.
DIR = 1 An external shift clock is input on SCLK
x
.
P2.7/BCLK1
P2.1/BCLK0
T1CLK I External Clock. Ext ernal clock for timer 1. Tim er 1
increments (or decrement s) on both rising and falling edges
of T1CLK. Also used in conjunction with T1DI R for
quadrature counting mode.
P0.6/ACH6/PMODE.2
T1DIR I Timer 1 External Direction. External direction (up/down) for
timer 1. Timer 1 increments when T1 DIR is high and
decrements when it is low. Also used in conjunction with
T1CLK for quadrature counting mode.
P0.7/ACH7/PMODE.3
TXD1
TXD0 OTransmit Serial Data 0 and 1. In serial I/O modes 1, 2, and
3, TXD0 and 1 are used to transmit seria l port data. In mo de
0, they are used as the serial clock output.
P1.2
P1.0
VCC PWR Dig it al Su p ply Vo ltag e. Connect each VCC pin to the digital
supply voltage.
VPP PWR Programming Voltage. Set to 12.5 V when programming the
on-chip OTPROM. Also the timing pin for the “return from
power-down” circuit.
Table 7. Signal Descriptions (Continu ed)
Signal
Name Type Description Multiplexed
With
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
18
VREF PWR Reference Voltage for the A/D Converter. VREF is also the
supply voltage to the analog portion of the A/D converter and
the logic used to read Port 0. VREF must be connected for the
A/D and port 0 to function.
VSS GND Digital Circu i t Gro und (0 volts). Connect each VSS pin to
ground.
WG3
WG2
WG1
OWaveform Generator Phase 13 Po sit ive Outp u ts.
3-phase output signals used in motion-control applications. P6.5
P6.3
P6.1
WG3#
WG2#
WG1#
OWaveform Generator Phase 13 Negative O ut puts.
Complementary 3-phase output signals used in motion-
control applicatio ns.
P6.4
P6.2
P6.0
WR# O Write. This activ e-low output indicates that an external write
is occurring. This signal is asserted only during external
memory writes.
P5.2/WRL#
WRH# O Write High. During 16-bit bus cycles , this active-low output
signal is asserted for high-byte writes and word writes to
external memory.
During 8-bit bus cycles, WRH# is asserted for all write
operations.
P5.5/BHE#
WRL# O Write Low. During 16-bit bus cycles, this active-low out put
signal is asserted for low-byte writes and word writes.
During 8-bit bus cycles, WRL# is asserted for all write
operations.
P5.2/WR#
XTAL1 I Clock/Oscillator Input. Input to the on-chip oscillator
inverter and the internal cloc k generator. Also provides the
clock input for the serial I/O baud-rate generator, timers, and
PWM unit. If an external oscillator is used, connect the
external clock input signal to XTAL1 and ensure that the
XTAL1 VIH specification is met.
XTAL2 O Oscillator Output. Output of the on-chip oscillator inverter.
When using the on-chip oscillator, connect XTAL2 to an
external crystal or resonator. When using an external clock
source, let XTAL2 float .
Table 7. Signal Descriptions (Continu ed)
Signal
Name Type Description Multiplexed
With
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
19
ELECTRICAL CHARACTERISTICS
ABSOLUT E MAXIMUM RATINGS*
Storage Temperature ................................ – 65°C to + 150°C
Ambient Temperature
under Bias.............................................. – 40°C to + 85°C
Voltage from VPP or EA# to
VSS or ANGND (Note 1) .... ..... ...... ..... .. – 0.5 V to + 13.0 V
Voltage with respect to
VSS or ANGND (Note 1) ........................ – 0.5 V to + 7.0 V
(This includes VPP on ROM and CPU devices.)
Power Dissipation.......................................................... 1.5 W
(based on package heat transfer limitations, not device
power consumption)
OPERAT ING CONDITIO NS*
TA (Ambient Temperature Under Bias) .........– 40°C to + 85°C
VCC (Digital Supply Voltage) ... ..... ...... ..... ....... 4.50 V to 5.50 V
VREF (Ana log Supply Voltage) ........... ..... ..... .. 4.50 V to 5.50 V
FOSC (Oscillator Frequency) (Note 2) ........... 8 MHz to 16 MHz
NOTES:
1. ANGND and VSS should be at nominally the same
potential.
2. Testing is performed down to 8 MHz, although
the device is static by design and will typically
operate below 1 Hz.
NOTICE: This data sheet contains preliminary i n for-
mation on new products in production. It is valid for
the devices indicated in the revision history. The
specifications are subject to change without notice.
*WARNING: Stressing the device beyond the “Absolute
Maximum Ratings” may cause permanent damage. These
are stress ratings only. Operation beyond the “Operating
Conditions” is not recommended and extended exposure
beyond the “Op erating Condition s” may affect device reli-
ability.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
20
DC CHARACTERISTICS
Table 8. DC Characteristics over Specified Operating Condit ions
Symbol Parameter Min Typ (4) Max Units Test Conditio ns
VIL Input Low Voltage
(standard inputs (1)) – 0.5 0.3 VCC V
VIL1Input Low Voltage
(RESET#, ports 3, 4, and
5)
– 0.5 0.8 V
VIH Input High Voltage
(standard inputs (1)) 0.7 VCC VCC + 0.5 V
VIH1Input High Voltage
(RESET#, ports 3, 4, and
5)
0.2 VCC + 1.0 VCC + 0.5 V
VOL Output Low Voltage
(RESET#, ports 1, 2, 5,
P6.6, P6.7, and XTAL2)
0.3
0.45
1.5
V
V
V
IOL = 200 µA
IOL = 3.2 mA
IOL = 7.0 mA
VOL1Output Low Voltage (ports
3, 4) 1.0 V IOL = 7 mA
VOL2Output Low Voltage
(P6.5:0) 0.45 V IOL = 10 mA
VOH Output High Voltage
(output pins and I/O
configured as push/pull
outputs)
VCC – 0.3
VCC – 0.7
VCC – 1.5
V
V
V
IOH = – 200 µA
IOH = – 3.2 mA
IOH = – 7.0 mA
VTH+ – VTH Hysteresis voltage width
on RESET # pin 0.2 V
ILI Input Leakage Current
(standard inputs (1)) ± 10 µA VSS < VIN < VCC – 0.3V
ILI1Input Leakage Current
(port 0 – A/D inputs) ± AV
SS < VIN < VREF
IIH Input High Current (NMI) 300 µA VIN = 0.7 VCC
IIL Input Low Current (port 2,
except P2.6) 70 µA VIN = 0.3 VCC
NOTES:
1. Standard input pins include XTAL1, EA#, and Ports 1 and 2 when configured as inputs.
2. Maximum current that an extern al device must sink to ensure test mode entry.
3. Violating these specifications during reset may cause the device to enter test modes.
4. Typical values are based on a limited nu mber of samples an d are not guaranteed. Operat ing conditions
for typical values are room temperat ure and V REF = VCC = 5.5 V.
5. Testing is performed down to 8 MHz, although the device is static by design and will typically operate
below 1 Hz.
6. All voltages are referenced relative to VSS. When used, VSS refers to the device pin.
7. Table 9 lists the total curren t limits during normal (non-tr ansient conditions) . The total current listed is the
sum of the pins listed for each specification value.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
21
IIL1Input Low Current (P5.4
and P2.6 during reset) (2) – 10 mA VIN = 0.8 V
IIL2Input Low Current (ports 3,
4, and 5, except P5.4) – 300 µA VIN = 0.8 V
IIL3Input Low Current (port 1) – 300 µA VIN = 0.3 VCC
IOH Output High Current (P5.4
and P2.6 during reset) (3) – 0.2 mA 0.7 VCC
IOH1Output High Current
(P6.5:0 during reset) – 6 – 40 µA 0.7 VCC
ICC VCC Supply Current 50 70 mA XTAL1 = 16 MHz
VCC = 5.5 V
VPP = 5.5 V
VREF = 5.5 V
IREF A/D Reference Supply
Current 25mA
I
IDLE Idle Mode Current 15 30 mA
IPD Powerdown Mode Current
(4) 550µA
R
RST Reset Pull-up Resistor 6 65 k
CSPin Capacitance (any pin
to VSS)10 pF FTEST = 1.0 MHz
Table 8. DC Characteri sti cs over Sp ecifi ed Operati ng Cond itio ns (Co ntin ued )
Symbol Parameter Min Typ (4) Max Units Test Conditio ns
NOTES:
1. Standard input pins include XTAL1, EA#, and Ports 1 and 2 when configured as inputs.
2. Maximum current that an extern al device must sink to ensure test mode entry.
3. Violating these specifications during reset may cause the device to enter test modes.
4. Typical values are based on a limited nu mber of samples an d are not guaranteed. Operat ing conditions
for typical values are room temperat ure and V REF = VCC = 5.5 V.
5. Testing is performed down to 8 MHz, although the device is static by design and will typically operate
below 1 Hz.
6. All voltages are referenced relative to VSS. When used, VSS refers to the device pin.
7. Table 9 lists the total curren t limits during normal (non-tr ansient conditions) . The total current listed is the
sum of the pins listed for each specification value.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
22
Figure 6. ICC, IIDLE versu s Freq uency
Table 9. Total Cu r rent L imi ts Du ring No rmal (No n -tran sien t) Co ndi tio ns
Signal Names Maximum IOL Limits Maximum IOH Li m its
Port 1 25 mA – 25 mA
Port 2, P6.6, P6.7 40 mA – 40 mA
Port 3 40 mA – 30 mA
Port 4 40 mA – 30 mA
Port 5 40 mA – 30 mA
P6.5:0 40 mA – 30 mA
A2711-01
Frequency (MHz)
I
CC
(mA)
0410
16
0
10
20
30
40
50
60
70
I
IDLE
Max
I
CC
Max
I
CC
Typ
I
IDLE
Typ
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
23
EXPLANATION OF AC SYMBOLS
Each symbol consist s of two pairs of letters prefixed by “T” (for t ime). The characters in a pair indicate a signal
and its condition, respectively. Symbols represent the time between the two signal/condition points. For example,
TRHDZ is the time between signal R (RD#) condition H (high) and signal D (Input Data) condition Z (floating). Table
10 defines the signal and condition codes.
AC CHARACTERISTICS (OV ER SPECIFIE D OPERA TI ON CONDITIONS)
Table 11 defines the AC timing specifications that the external memory system must meet and those that the
8XC196MH will provide.
Table 10. AC Timing Symbol Defin itio n s
Signals Conditions
A Address P PROG# H High
B BH E# Q Data Out L Low
D Data In R RD# V Valid
G BUSWIDTH V PVER X No Longer V alid
I T1DIR/AINC# W WR#/WRH#/WRL# Z Floating
K T1CLK X XTAL1
L ALE/ADV#/PALE# Y READY
Table 11. AC Timi ng Defi niti on s (1)
Symbol Parameter Min Max Units Notes
FOSC Frequency on XTAL1 8 16 MHz 4
TOSC 1/FOSC 62.5 125 ns
The External Mem ory Syste m Mu st Meet These Sp ecif icatio ns
TAVYV Address Valid to REA DY Set u p 2T OSC – 75 ns
TLLYV ALE/A DV# Low to READY Set up TOSC70 ns
TYLYH Non READY Tim e No Upper Limit ns
TLLYX READY Hold after ALE/ADV# Low TOSC – 15 2TOSC – 40 ns 2
TAVGV Add ress Valid to BUS WIDT H Set u p 2TOSC – 75 ns
TLLGV ALE /ADV# Low to BUSW IDT H Set up TOSC – 60 ns
NOTES:
1. Test Conditions: Capacitive load on all pins = 100 pF, rise and fall times = 10 ns, FOSC = 16 MHz.
2. Exceeding the maximum spec ificat ion causes additional wa it states.
3. If wait states are used, add 2TOSC ×
n
, where
n
= number of wait states.
4. Testing is performed down to 8 MHz, although the device is static by design and will typically operate
below 1 Hz.
5. Assuming back -to-back bus cyc les.
6. 8-bit bus only.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
24
The External Memo ry System Must Meet Th ese Specifi cati o ns (Co ntin ued)
TLLGX BU SWID TH Hold afte r ALE/ ADV # Low T OSC ns
TLHDV ALE/ADV# High to Input Data Valid 3TOSC – 55 ns
TAVDV Address Valid to Input Data Valid 3TOSC – 55 ns 3
TRLDV RD# Ac tive to Inpu t Data Valid TOSC – 30 ns 3
TRHDZ End of RD# to Input Data Float TOSC ns
TRXDX Data Hold after RD# Inactive 0 ns
The 8XC196MH will Meet These Specifications
TXHLH XTA L1 Rising Edge to ALE Rising 20 110 ns
TXHLL XTA L1 Rising Edge to ALE Falling 20 110 ns
TLHLH ALE/ADV# Cycle Time 4TOSC ns 3
TLHLL ALE/ADV# High Period TOSC – 10 TOSC + 10 ns
TAVLH Address Valid to ALE/ADV# High TOSC – 17 ns
TAVLL Address Valid to ALE /ADV# L ow TOSC – 17 ns
TLLAX Address Hold a fter ALE/ADV # Low TOSC – 40 ns
TLLRL ALE /ADV# Low to RD# Low TOSC – 30 ns
TRLRH RD# Low Period TOSC – 5 TOSC + 25 ns 3
TRHLH RD# High to ALE/ADV# High TOSC TOSC + 25 ns 5
TRLAZ RD# Low to Address Float 5 ns
TLLWL ALE /ADV# Low to WR# Low TOSC – 10 ns
TQVWH Data Valid before WR# High TOSC – 23 ns
TWLWH WR# Low Period TOSC – 30 ns 3
TWHQX Data Hold after WR# High TOSC – 25 ns
TWHLH WR# High to ALE/ADV# High TOSC – 10 TOSC + 15 ns 5
TWHBX BHE#, INST Hold after WR# High TOSC – 10 ns
TWHAX A15:8 Hold after WR# H igh TOSC – 30 ns 6
TRHBX BHE#, INST Hold after RD# High TOSC – 10 ns
TRHAX A15:8 Hold after RD# High TOSC – 30 ns 6
Table 11. AC Timi ng Defi niti on s (1) (Continued)
Symbol Parameter Min Max Units Notes
NOTES:
1. Test Conditions: Capacitive load on all pins = 100 pF, rise and fall times = 10 ns, FOSC = 16 MHz.
2. Exceeding the maximum spec ificat ion causes additional wa it states.
3. If wait states are used, add 2TOSC ×
n
, where
n
= number of wait states.
4. Testing is performed down to 8 MHz, although the device is static by design and will typically operate
below 1 Hz.
5. Assuming back -to-back bus cyc les.
6. 8-bit bus only.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
25
SYSTEM BUS TIMINGS
Figure 7. System Bus Timing Diag ram
XTAL1
ALE
RD#
BUS
WR#
BUS
INST
A15:8
(8-bit Bus)
Address Out Data
Data OutAddress Out
Address Out
T
LHLL
T
OSC
Valid
A2543-01
T
XHLH
T
LHLH
T
LLRL
T
RLRH
T
RHLH
T
AVLL
T
LLAX
T
RLDV
T
RHDZ
T
RLAZ
Address Out
T
AVDV
T
LLWL
T
WLWH
T
WHLH
T
QVWH
T
WHQX
T
RHBX
T
WHBX
T
RHAX
T
WHAX
T
XHLL
T
LHDV
T
RXDX
T
AVLH
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
26
READY TIMING (ONE WAIT STATE)
Figure 8. READY Timi n g Diagram (One Wai t State)
A2544-01
T
AVYV
T
LLYX(Max)
Address Out Data Out
Address Out Data In
Address
Bus
WR#
Bus
RD#
READY
ALE
XTAL1
T
OSC
T
LHLH +
2T
OSC
T
CLYX(Min)
T
LLYV
T
LLYX(Min)
T
CLYX(Max)
T
RLRH
+
2T
OSC
T
RLDV
+
2T
OSC
T
AVDV
+ 2T
OSC
T
WLWH
+ 2T
OSC
T
QVWH
+ 2T
OSC
T
RLDV
+ 2T
OSC
16 MHz 8 MHz
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
27
BUSWIDTH TIMING
Figure 9. BUSWIDTH Timing Diagram
EXTERNAL CLOCK DRIVE
Table 12. External Cloc k Drive Tim in g
Symbol Parameter Min Max Units
1/TXLXL Oscillator Frequency 8 16 MHz
TXLXL Oscillator Period (TOSC) 62.5 125 ns
TXHXX High Time 22 ns
TXLXX Low Time 22 ns
TXLXH Rise Time 10 ns
TXHXL Fall Time 10 ns
A2545-01
Data In
BUSWIDTH
Bus
ALE
XTAL1
T
OSC
T
AVGV
T
LLGV
T
LLGX
Address Out
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
28
Figure 10. External Clock Drive W avefo rm s
Figure 11. External Cl ock Co nn ecti ons
T
XHXX
T
XLXX
T
XHXL
T
XLXL
0.7 V
CC
0.8 V 0.8 V
0.7 V
CC
0.7 V
CC
T
XLXH
A2578-01
XTAL1
4.7k
*
8XC196 Device
XTAL2
XTAL1
External
Clock Input
Clock Driver
No Connect
V
CC
A0274-01
Note:
*Required if TTL driver is used. Not needed if CMOS driver is used.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
29
Figure 12. External Crystal Con nect ion s
Figure 13. AC Testing Input, Output Waveforms
8XC196 Device
XTAL2
XTAL1
Quartz Crystal
C1
C2
A0273-01
V
SS
Note:
Keep oscillator components close to the chip and use
short, direct traces to XTAL1, XTAL2, and V
ss
. When
using crystals, C1=C220pF. When using ceramic
resonators, consult the manufacturer for recommended
oscillator circuitry.
Test Points
2.0 V
0.8 V
AC testing inputs are driven at 3.5 V for a logic "1" and 0.45 V for
a logic "0". Timing measurements are made at 2.0 V for a logic
"1" and 0.8 V for a logic "0".
3.5 V
0.45 V
A2120-02
2.0 V
0.8 V
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
30
Figure 14. Floa t Wavefo rm s
AC CHARACTERISTICS — SERIAL PORT, SHIFT REGISTER MODE
Table 13. Serial Port Timi n g — Shift Reg ister Mo d e (Mo de 0)
Symbol Parameter Min Max Units Notes
TXLXL Serial Port Clock Period
(Baud-rate
n
8002H)
(Baud-rate
n
= 8001H) 6TOSC
4TOSC
ns
ns 1, 2
TXLXH Serial Port Clock Low Period
(Baud-rate
n
8002H)
(Baud-rate
n
= 8001H) 4TOSC – 50
2TOSC – 50 4TOSC + 50
2TOSC + 50 ns
ns 1, 2
TQVXH Output Data Setup to Clock High 2TOSC – 50 ns
TXHQX Output Data Hold after Clock High 2TOSC – 50 ns
TXHQV Next Output Data Valid after Clock High 2TOSC + 50 ns
TDVXH Input Data Setup to Clock H igh TOSC + 50 ns
TXHDX Input Data Hold after Clock High 0 ns
TXHQZ Last Clock High to Output Float TOSC ns
NOTES:
1.
n
for Baud-rate
n
signifies Serial Port 0 or 1.
2. Maximum Serial Port Mode 0 reception is with Baud-rat e
n
8002H.
V
LOAD
+ 0.1 V
V
LOAD
– 0.1 V
Timing Reference
Points
V
LOAD
V
OH
– 0.1 V
V
OL
+ 0.1 V
For timing purposes, a port pin is no longer floating when a 
100 mV change from load voltage occurs and begins to float
when a 100 mV change from the loading V
OH
/V
OL
level occurs
with I
OL
/I
OH
15 mA.
A2579-01
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
31
Figure 15. Serial Port Wavefo rm — Sh if t Register Mo de (M ode 0)
Table 14. Serial Port Tim ing — Mode 4
Symbol Parameter Min Max Units
TXLXL Serial Port Clock Period (DIR=0) 16TOSC 131072TOSC ns
TXLXX Serial Port Clock Low Period (DIR=0/1) (TXLXL/2) – 30 ns
TXHXX Serial Port Clock High Period (DIR=0/1) (TXLXL/2) – 30 ns
TXLXL Serial Port Clock Period (DIR=1) 16TOSC ns
TXHXL Serial Clock Falling Time (DIR=1) 0 20 ns
TXLXH Serial Clock Rising Time (DIR=1) 0 20 ns
TXLQV Clock Low to Output Data Setup 7.5TOSC50 ns
TXLQX Output Data Hold after Clock Low 0 ns
TXHQX Last Output Data Hold after Clock High (DIR=1) 13.7TOSC ns
TDVXX Input Data Setup to Clock Low Invalid 0 ns
TXHDH Input Data Hold after Clock High 6TOSC ns
(In)
A2080-01
Valid Valid Valid Valid Valid Valid Valid Valid
RXD
n
(Out)
TXD
n
01 2 34567
T
QVXH
T
XLXL
T
DVXH
T
XHQV
T
XHQZ
T
XHDX
T
XHQX
T
XLXH
RXD
n
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
32
Figure 16. Serial Port Waveform — Mo d e 4
Figure 17. Serial Port Wavef orm — Cloc k Drive (DIR = 1)
A2550-01
TXD
n
RXD
n
SCK
n
#
T
XLXL
T
DVXX
T
XHDH
T
XLXX
T
XHXX
T
XHQX
T
XLQX
T
XLQV
T
XHXX
T
XLXX
T
XHXL
T
XLXL
V
IH
V
IL
SCK
n
#
A2582-01
T
XLXH
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
33
BAUD-RATE CLOCK DRIVE TABLE
Figure 18. Baud-Rate Clock Drive W avefo rms
Table 15. Baud Rate Clock Drive
Symbol Parameter Min Max Units
TXLXL Baud Rate Clock Period 4T OSC ns
TXHXX Baud Rate Clock High Time 2TOSC – 30 ns
TXLXX Baud Rate Clock Low Time 2TOSC – 30 ns
TXLXH Baud Rate Clock Rise Time 20 ns
TXHXL Baud Rate Clock Fall Time 20 ns
A2551-01
T
XHXX
T
XLXX
T
XHXL
T
XLXL
V
IH
T
XLXH
V
IL
BCLK
n
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
34
A/D SAMPLE AND CONVERSION TIMES
Two parameters, sample time and conversion time,
control the time required for an A/D conversion. The
sample time is the length of time that the analog input
voltage is actually connected to the sam ple capacitor .
If this time is too short, the sample capacitor will not
charge completely. If the sample time is too long, t he
input voltage may change and cause conversion
errors. The conversion time is the length of time
required to convert the analog input voltage stored on
the sample capacitor to a digital value. The
conversion time must be long enough for the
comparator and circuitry to settle and resolve the
voltage. Excessively long conversion times allow the
sample capacitor to discharge, degrading accuracy.
The AD_TI ME regist er programs the A/D sam ple and
conversion times. Use the TSAM and TCONV specifica-
tions in Tables 16 and 18 to determine appropriate
values for SAM and CONV; otherwise, erroneous
conversion results may occ ur.
Use the fol lowing form ulas to determ ine the S AM and
CONV values:
where:
SAM = 1 to 7
CONV = 2 to 31
TSAM is the sample time, in µsec
(Tables 16 and 18)
TCONV is the conversion time, in µsec
(Tables 16 and 18)
FOSC is the XTAL1 frequenc y, in MHz
B is the number of bits to be converted (8 or 10)
When the SAM and CONV values are known, write
them to the AD_TIME register. Do not write to this
register wh ile a conversion is in progress; the results
are unpredictable.
SAM TSAM FOSC 2×
8
----------------------------------------=
CONV TCONV FOSC
×3
2B×
------------------------------------------- 1=
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
35
AC CHARACTERISTICS — A/D CONVERTER
Table 16. 10-bit A/D Operating Conditions (1)
Symbol Description Min Max Units Notes
TAAmbient Tempera ture – 40 + 85 °C
VCC Digital Supply Voltage 4.5 0 5. 5 0 V
VREF Analog Supply Voltage 4.50 5. 50 V 2
TSAM Sample Time 1.0 µs3
T
CONV Conversion Time 10.0 20.0 µs3
F
OSC Oscillator Frequency 8 16 MHz
NOTES:
1. ANGND and VSS should nominally be at the same potential.
2. VREF must not exceed VCC by more than + 0.5 V because VREF supplies both the res istor ladder and the
analog portion of the converter and input port pins.
3. Program the AD_TIM E regist er to meet the TSAM and TCONV specifications.
Table 17. 10-bit Mode A/D Characteristics Over Specified Operating Conditions (1)
Parameter Typical (3) Min Max Units (2) Notes
Resolution 1024
10 1024
10 Levels
Bits
Absolute Error 0 ± 3LSBs
Full-scale Error 0.25 ± 0.5 LSBs
Zero Offset Error 0.25 ± 0.5 LSBs
Nonlinearity 1.0 ± 2.0 ± 3LSBs
Differential Nonlinearity – 0.75 + 0.75 LSBs
Channel-to-channel Matching ± 0.1 0 ± 1LSBs
Repeatability ± 0.25 0 LSBs
NOTES:
1. Testing is performed with VREF = 5.12 V and FOSC = 16 MHz.
2. An
LSB
, as used here, has a value of approximately 5 mV.
3. Typical value s are based on a limited number of samples and are not guaranteed. Operating conditions
for typical values are room temperatur e and VREF = VCC = 5.5 V.
4. DC to 100 KHz.
5. Multiplexer break-before-make guaranteed.
6. Resistance from device pin, through interna l multip lexer, to sample capacito r.
7. These values may be exceeded if the pin current is lim ited to ± 2mA.
8. Applying voltage beyond these specifications will degrade the accuracy of other channels being con-
verted.
9. All conversions were performed with processor in idle mode.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
36
Temperature Coefficients:
Offset
Full-scale
Differential Nonlinearity
0.009
0.009
0.009
LSB/C
LSB/C
LSB/C
Off-isolation – 60 dB 4, 5
Feedthrough – 60 dB 4
VCC Power Supply Rejection – 60 dB 6
Input Series Resistance 750 1.2K 4
Voltage on Analog Input Pin ANGND – 0.5 VREF + 0.5 V 7, 8
Sampling Capacitor 3 pF
DC Input Leakage ± 1.0 0 ± 3 µA
Table 18. 8-bit A/D O perat in g Con diti ons (1)
Symbol Description Min Max Units Notes
TAAmbient Temperature – 40 + 85 °C
vCC Digital Supply Voltage 4.50 5.50 V
vREF Analog Supply Voltage 4.50 5.50 V 2
TSAM Sample Tim e 1.0 µs3
T
CONV Conversion Time 7.0 20.0 µs3
F
OSC Oscillator Frequency 8 16 MHz
NOTES:
1. ANGND and VSS should nominally be at the same potential.
2. VREF must not exceed VCC by more than + 0. 5 V because V REF supplies bot h the resistor ladder and the
analog portion of the converter and input port pins.
3. Program the AD_TI ME register to me et the TSAM and TCONV specifications.
Table 17. 10-bit Mode A/D Ch aracteris tics Over Speci fi ed Op eratin g Con diti ons (1) (Co ntinu ed)
Parameter Typical (3) Min Max Units (2) Notes
NOTES:
1. Testing is performed with VREF = 5.12 V and FOSC = 16 MHz.
2. An
LSB
, as used here, has a value of approximately 5 mV.
3. Typical value s are based on a limited number of samples and are not guaranteed. Operating conditions
for typical values are room temperatur e and VREF = VCC = 5.5 V.
4. DC to 100 KHz.
5. Multiplexer break-before-make guaranteed.
6. Resistance from device pin, through interna l multip lexer, to sample capacito r.
7. These values may be exceeded if the pin current is lim ited to ± 2mA.
8. Applying voltage beyond these specifications will degrade the accuracy of other channels being con-
verted.
9. All conversions were performed with processor in idle mode.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
37
Table 19. 8- bit Mode A/D Characteristics Over Specified Operating Conditions (1)
Parameter Typi cal (3) Min Max Units (2) Notes
Resolution 256
8256
8Levels
Bits
Absolute Error 0 ± 1LSBs
Full-scale Error ± 0.5 LSBs
Zero Offset Error ± 0.5 LSBs
Nonlinearity 0 ± 1LSBs
Differential Nonlinearity – 0.5 + 0.5 LSBs
Channel-to-channel Matching 0 ± 1LSBs
Repeatability ± 0.25 0 LSBs
Temperature Coefficients:
Offset
Full-scale
Differential Nonlinearity
0.003
0.003
0.003
LSB/°C
LSB/°C
LSB/°C
Off Isolation – 60 dB 4, 5
Feedthrough – 60 dB 4
VCC Power Supply Rejection – 60 dB 4
Input Series Resistance 750 1.2K 6
Voltage on Analog Input Pin ANGND – 0.5 VREF + 0.5 V 7, 8
Sampling Capacitor 3 pF
DC Input Leakage ± 10± 3µA
NOTES:
1. Testing is performed with VREF = 5.12 V and FOSC = 16 MHz.
2. An
LSB
, as used here, has a value of approximately 20 mV.
3. Typical value s are based on a limited number of samples and are not guaranteed. Operating conditions
for typical values are room temperatur e and VREF = VCC = 5.5 V.
4. DC to 100 KHz.
5. Multiplexer break-before-make guaranteed.
6. Resistance from device pin, through interna l multip lexer, to sample capacito r.
7. These values may be exceeded if the pin current is lim ited to ± 2mA.
8. Applying voltage beyond these specifications will degrade the accuracy of other channels being con-
verted.
9. All conversions were performed with processor in idle mode.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
38
OTPROM SPECIFICATIONS
Table 20. Programming Operating Conditions
Symbol Description Min Max Units Notes
TAAmbient Temperat ure 20 30 °C
vCC Supply Voltage During Programming 4.50 5.50 V 3
vREF Reference Supply Voltage During
Programming 4.50 5.50 V 3
VPP Programming Voltage 12.25 12.75 V 2
VEA EA Pin Voltage 12.25 12.75 V 2
FOSC Oscillator Frequency During Auto and
Slave Mode Programming
Oscillator Frequency During Run-Time
Programming
6
6
8
12
MHz
MHz
NOTES:
1. VCC and VREF should be at nominally the same voltage during programming.
2. If VPP and VEA exceed the maximum specificat ion, the device may be damaged.
3. VSS and ANGN D should be at nominally the same potential (0 vo lts).
4. Load capacitanc e during auto and slave mode programm ing = 150 pF.
Table 21. AC OTPROM Programming Characteristics
Symbol Description Min Max Units
TAVLL Address Setup Time 0 TOSC
TLLAX Address Hold Time 100 TOSC
TDVPL Data Setup Time 0 TOSC
TPLDX Data Hold Time 400 TOSC
TLLLH PALE# Pulse Width 50 TOSC
TPLPH PROG# Pulse Width (1) 50 TOSC
TPHLL PROG# High to Next PALE# Low 220 TOSC
TPHDX Word Dump Hold T ime 50 TOSC
TPHPL PROG# High to Next PROG# Low 220 TOSC
TLHPL PALE# High to PROG# Low 220 TOSC
TPLDV PROG# Low to Word Dump Valid 50 TOSC
TSHLL RESET# High to First PALE# Low 1100 TOSC
TPHIL PROG# High to AINC# Low 0 TOSC
TILIH AINC# P ulse Width 240 TOSC
NOTE:
1. This specification is f or Word Dump M ode. For pr ogramming pulses, use t he Modified Quick P ulse Algo-
rithm explained in the User’s Manual.
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
39
OTPROM PROGRAMMING WAVEFORMS
Figure 19. Slave Programmi ng Mode Data Pro g ram Mode w ith Si ngl e Prog ram Pulse
TILVH PVER Hold after AINC# L ow 50 TOSC
TILPL AINC# Low to PROG# Low 170 T OSC
TPHVL PROG# High to PVER Valid 220 TOSC
Table 22. DC OTPROM Programming Characteristics
Symbol Parameter Min Max Units
IPP VPP Supply Current (when
programming) 100 mA
NOTE: Do not apply VPP unti l VCC is stable and within specifications and the oscillator/ clock has stabiliized.
Otherwise, the device may be damaged.
Table 21. AC OTPROM Prog ramm ing Characteri stics (Co ntinu ed )
Symbol Description Min Max Units
NOTE:
1. This specification is f or Word Dump M ode. For pr ogramming pulses, use t he Modified Quick P ulse Algo-
rithm explained in the User’s Manual.
A2549-01
Data
PROG#
PALE#
PORTS 3/4
RESET#
Address/Command
PVER
Address/Command
T
PHVL
T
SHLL
T
AVLL
T
LLAX
T
LLLH
T
LHPL
T
DVPL
T
PLDX
T
PLPH
T
PHLL
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
40
Figure 20. Slave Pro grammi ng Mode i n Word Dum p with Aut oi ncrement Timing
SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTOINCREMENT
Figure 21. Slave Programming Mode in Data Program w ith Rep eated Program Pulse an d Auto incremen t
A2546-01
Ver Bits/Word Dump
PROG#
PALE#
PORTS 3/4
RESET#
T
ILPL
Address/Command
AINC#
Ver Bits/Word Dump
T
PLDV
T
PHDX
T
PLDV
T
PHDX
Address Address + 2
T
PHPL
T
SHLL
Note: P3.0 must be low ("0")
A2547-01
Data
PROG#
PALE#
PORTS 3/4
RESET#
Address/Command
PVER
Address Address + 2
Data
Address
Data
AINC#
TILVH
TPHIL
TILIH
Valid for
PN
Valid for P1
TILPL
PN
TPHPL
P1
8XC196MH INDUST RIAL MOT OR CONT RO L CHMO S MICRO CO NTR OLLE R
®
41
8XC196MC/MD TO 8XC196MH DESIGN
CONSIDERATIONS
The 8XC196MH is not pin compatible with the
8XC196MC or the 8XC196MD. Be aware that signal
multiplexing sometimes differs between the
8XC196MH and the 8XC196MC/MD. For example,
P2.7 is multiplexed with COMP3 on the
8XC196MC/MD and with SCLK1# and BCLK1 on the
8XC196MH.
DATA SHEET REVISION HISTORY
The -003 revisions were made due to the changes
required for the lead free initiative. To address the
fact that many of the package prefix variables have
changed, all package prefix variables in this document
are now indicated with an "x".