BFP540 NPN Silicon RF Transistor * For highest gain low noise amplifier 3 at 1.8 GHz 2 4 * Outstanding Gms = 21.5 dB 1 Noise Figure F = 0.9 dB * Gold metallization for high reliability * SIEGET 45 - Line * Pb-free (RoHS compliant) package 1) * Qualified according AEC Q101 ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BFP540 Marking ATs 1=B Pin Configuration 2=E 3=C 4=E - Package - SOT343 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO Value Unit V TA > 0C 4.5 TA 0C 4 Collector-emitter voltage VCES 14 Collector-base voltage VCBO 14 Emitter-base voltage VEBO 1 Collector current IC 80 Base current IB 8 Total power dissipation2) Ptot 250 mW Junction temperature Tj 150 C Ambient temperature TA -65 ... 150 Storage temperature T stg -65 ... 150 mA TS 77C 1Pb-containing 2T package may be available upon special request is measured on the collector lead at the soldering point to the pcb S 2009-12-04 1 BFP540 Thermal Resistance Parameter Symbol Value Unit Junction - soldering point 1) RthJS 290 K/W Electrical Characteristics at TA = 25C, unless otherwise specified Symbol Values Parameter Unit min. typ. max. 4.5 5 - V ICES - - 10 A ICBO - - 100 nA IEBO - - 10 A hFE 50 110 185 - DC Characteristics Collector-emitter breakdown voltage V(BR)CEO IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 14 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 20 mA, VCE = 3.5 V, pulse measured 1For calculation of RthJA please refer to Application Note Thermal Resistance 2009-12-04 2 BFP540 Electrical Characteristics at TA = 25C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT 21 30 - Ccb - 0.14 0.24 Cce - 0.33 - Ceb - 0.65 - GHz IC = 50 mA, VCE = 4 V, f = 1 GHz Collector-base capacitance pF VCB = 2 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 2 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure dB F IC = 5 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZSopt - 0.9 1.4 IC = 5 mA, VCE = 2 V, f = 3 GHz, ZS = ZSopt - 1.3 - G ms - 21.5 - dB G ma - 16 - dB Power gain, maximum stable1) IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt, f = 3 GHz |S21e|2 Transducer gain IC = 20 mA, VCE = 2 V, ZS = ZL = 50 , f = 1.8 GHz 16 18.5 - - 14.5 - IP 3 - 24.5 - P-1dB - 11 - f = 3 GHz Third order intercept point at output2) dB dBm VCE = 2 V, I C = 20 mA, ZS =ZL=50 , f = 1.8 GHz 1dB Compression point at output IC = 20 mA, VCE = 2 V, ZS =ZL=50 , f = 1.8 GHz 1/2 ma = |S 21e / S12e | (k-(k-1) ), Gms = |S21e / S 12e| 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 from 0.1 MHz to 6 GHz 1G 2009-12-04 3 BFP540 Simulation Data For SPICE-model as well as for S-parameters including noise parameters refer to our internet website: www.infineon.com/rf.models. Please consult our website and download the latest version before actually starting your design. The simulation data have been generated and verified up to 8 GHz using typical devices. The BFP540 nonlinear SPICE-model reflects the typical DC- and RF-device performance with high accuracy. 2009-12-04 4 BFP540 Total power dissipation Ptot = (TS) Permissible Pulse Load RthJS = (t p) 10 3 300 mW RthJS Ptot K/W 200 10 2 150 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 100 50 0 0 20 40 60 80 100 120 C 10 1 -7 10 150 10 -6 10 -5 10 -4 10 -3 10 -2 TS s 10 tp Permissible Pulse Load Collector-base capacitance Ccb= (VCB) Ptotmax/P totDC = (tp) f = 1MHz 10 1 Ptotmax / PtotDC 0.2 pF Ccb D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.1 0.05 10 0 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 0 tp 0.5 1 1.5 2 2.5 3 V 4 VCB 2009-12-04 5 0 BFP540 Third order Intercept Point IP3=(IC) Transition frequency fT= (IC) (Output, ZS=ZL=50) f = 1GHz VCE = parameter, f = 1.8GHz VCE = Parameter in V 35 30 dBm GHz 4V 26 24 3V 25 2V 20 fT IP3 22 18 4 20 1.5V 3 16 15 14 12 1V 2 1.5 10 10 8 1 5 6 0.5 4 2 0 10 20 30 40 50 60 70 80 mA 0 0 100 10 20 30 40 50 60 70 mA IC 90 IC Power gain Gma, Gms = (IC) Power Gain Gma, Gms = (f), VCE = 2V |S21| = f (f) f = Parameter in GHz VCE = 2V, IC = 20mA 50 30 dB dB 1 40 35 G IC 20 2 30 3 25 Gms 15 4 10 20 5 Gma 6 15 |S21| 5 10 0 0 10 20 30 40 50 60 70 mA 5 0 90 IC 1 2 3 4 GHz 6 G 2009-12-04 6 BFP540 Power gain Gma, Gms = (VCE) Noise figure F = (I C) IC = 20mA VCE = 2V, ZS = ZSopt f = Parameter in GHz 30 4 dB dB 1 3 20 F G 2 15 2.5 2 3 10 1.5 4 f = 6GHz f = 5GHz f = 4GHz f = 3GHz f = 2.4GHz f = 1.8GHz f = 0.9GHz 5 1 6 5 0.5 0 0 0.5 1 1.5 2 2.5 3 V 0 0 4 10 20 30 40 50 60 mA VCE 80 IC Noise figure F = (IC ) VCE = 2V, f = 1.8GHz Noise figure F = (f) VCE = 2V, ZS = ZSopt 4 3 dB dB 3 F F 2 2.5 2 1.5 1.5 1 1 ZS = 50Ohm ZS = Zsopt IC = 20mA IC = 5mA 0.5 0.5 0 0 10 20 30 40 50 60 mA 0 0 80 IC 1 2 3 4 GHz 6 f 2009-12-04 7 BFP540 Source impedance for min. noise figure vs. frequency VCE = 2V, IC = 5mA / 20mA +j50 +j25 +j100 +j10 2.4GHz 1.8GHz 0.9GHz 3GHz 0 10 25 50 100 4GHz 5mA 20mA 5GHz -j10 6GHz -j25 -j100 -j50 2009-12-04 8 Package SOT343 BFP540 Package Outline 0.9 0.1 2 0.2 0.1 MAX. 1.3 0.1 A 1 2 0.1 MIN. 0.15 1.25 0.1 3 2.1 0.1 4 0.3 +0.1 -0.05 +0.1 0.15 -0.05 +0.1 0.6 -0.05 4x 0.1 0.2 M M A Foot Print 1.6 0.8 0.6 1.15 0.9 Marking Layout (Example) Manufacturer 2005, June Date code (YM) BGA420 Type code Pin 1 Standard Packing Reel o180 mm = 3.000 Pieces/Reel Reel o330 mm = 10.000 Pieces/Reel 0.2 2.3 8 4 Pin 1 2.15 1.1 2009-12-04 9 BFP540 Edition 2009-11-16 Published by Infineon Technologies AG 81726 Munich, Germany 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 2009-12-04 10