128M GDDR SDRAM
K4D261638F
- 1 - Rev. 1.2 (Jan. 2004)
128Mbit GDDR SDRAM
Revision 1.2
January 2004
2M x 16Bit x 4 Banks
Graphic Double Data Rate
Samsung Electronics reserves the right to change products or specification without notice.
Synchronous DRAM
128M GDDR SDRAM
K4D261638F
- 2 - Rev. 1.2 (Jan. 2004)
Revision History
Revision 1.2 (January 30, 2004)
• Changed tWR & tWR_A of K4D261638F-TC25/2A/33/36 from 3tCK to 4tCK
• Changed tRC of K4D261638F-TC25 from 17tCK to 18tCK
• Changed tRC of K4D261638F-TC2A/33/36 from 15tCK to 16tCK
• Changed tRAS of K4D261638F-TC25 from 12tCK to 13tCK.
• Changed tRAS of K4D261638F-TC2A/33/36 from 10tCK to 11tCK.
• Changed tDAL of K4D261638F-TC25/2A/33/36 from 8tCK to 9tCK
Revision 1.1 (January 7, 2004)
• Added K4D261638F-TC25 in the spec.
Revision 1.0 (December 5, 2003)
Revision 0.9 (October 14, 2003) - Preliminary Spec
• Defined DC spec
Revision 0.1 (October 2, 2003) - Target Spec
• Added Lead free package part number in the datasheet
Revision 0.0 (August 6, 2003) - Target Spec
• Defined Target Specification
128M GDDR SDRAM
K4D261638F
- 3 - Rev. 1.2 (Jan. 2004)
The K4D261638F is 134,217,72 8 bit s of hype r synchro nous da t a rate Dyn amic RAM organize d as 4 x 2,097,15 2 word s by
16 bits, fabricated with SAMSUNGs high performance CMOS technology. Synchronous features with Data Strobe allow
extremely high performance up to 1.6GB/s/chip. I/O transactions are possible on both edges of the clock cycle. Range of
operating frequencies, programmable burst length and programmable latencies allow the device to be useful for a variety
of high performance memory system applications.
• 2.5V + 5% power supply for device operatio n
• 2.5V + 5% power supply for I/O interface
• SSTL_2 compatible inputs/outputs
• 4 banks operation
• MRS cycle with address key programs
-. Read latency 3, 4 and 5(clock)
-. Burst length (2, 4 and 8)
-. Burst type (sequential & interleave)
• All inputs except data & DM are sampled at the positive
going edge of the system clock
• Differential clock input
• No Wrtie-Interrupted by Read Function
GENERAL DESCRIPTION
FEATURES
• 2 DQS’s ( 1DQS / Byte )
• Data I/O transacti ons on both edges of Data strobe
• DLL aligns DQ and DQS transitions with Clock transition
• Edge aligned data & data strobe output
• Center aligned data & data strobe input
• DM for write masking only
• Auto & Self refresh
• 32ms refresh period (4K cycle)
• 66pin TSOP-II
• Maximum clock frequency up to 400MHz
• Maximum data rate up to 800Mbps/pin
FOR 2M x 16Bit x 4 Bank DDR SDRAM
2M x 16Bit x 4 Banks Graphic Double Data Rate Synchronous DRAM
with Bi-directional Data Strobe and DLL
ORDERING INFORMATION
K4D261638F-LC is the Lead Free package part number.
For the K4D261638F-TC25/2A, VDD & VDDQ = 2.8V+0.1V
Part NO. Max Freq. Max Data Rate Interface Package
K4D261638F-TC25 400MHz 800Mbps/pin
SSTL_2 66pin TSOP-II
K4D261638F-TC2A 350MHz 700Mbps/pin
K4D261638F-TC33 300MHz 600Mbps/pin
K4D261638F-TC36 275MHz 550Mbps/pin
K4D261638F-TC40 250MHz 500Mbps/pin
K4D261638F-TC50 200MHz 400Mbps/pin
128M GDDR SDRAM
K4D261638F
- 4 - Rev. 1.2 (Jan. 2004)
PIN CONFIGURATION (Top View)
PIN DESCRIPTION
CK,CK Differential Clock Input BA0, BA1 Bank Select Address
CKE Clock Enable A0 ~A11 Address Input
CS Chip Select DQ0 ~ DQ15 Data Input/Output
RAS Row Address Strobe VDD Power
CAS Column Address Strobe VSS Ground
WE Write Enable VDDQ Power for DQs
L(U)DQS Data Strobe VSSQ Ground for DQs
L(U)DM Data Mask NC No Connection
RFU Reserved for Future Use
1
66 PIN TSOP(II)
(400mil x 875mil)
2
3
4
5
6
7
8
9
10
11
12
20
19
18
17
16
15
14
13
27
26
25
24
23
22
21
54
53
52
51
50
49
48
47
46
45
44
43
35
36
37
38
39
40
41
42
55
56
57
58
59
60
34
(0.65 mm Pin Pitch)
33
32
31
30
29
28
61
62
63
64
65
66
VDD
DQ0
VDDQ
DQ1
DQ2
VSSQ
DQ3
DQ4
VDDQ
DQ5
DQ6
VSSQ
BA0
CS
RAS
CAS
WE
LDM
VDDQ
DQ7
VDD
A3
A2
A1
A0
AP/A10
BA1
NC
LDQS
NC
NC
NC
VDD
VSS
DQ15
VSSQ
DQ14
DQ13
VDDQ
DQ12
DQ11
VSSQ
DQ10
DQ9
VDDQ
A11
CKE
CK
UDM
VREF
VSSQ
DQ8
VSS
A4
A5
A6
A7
A8
A9
NC
UDQS
NC
VSS
CK
NC
NC
128M GDDR SDRAM
K4D261638F
- 5 - Rev. 1.2 (Jan. 2004)
INPUT/OUTPUT FUNCTIONAL DESCRIPTION
*1 : The timing reference point for the differential clocking is the cross point of CK and CK.
For any applications using the single ended clocking, apply VREF to CK pin.
Symbol Type Function
CK, CK*1 Input The differential system clock Input.
All of the inputs are sampled on the rising edge of the clock except
DQs and DMs that are sampled on both edges of the DQS.
CKE Input Activates the CK signal when high and deactivates the CK signal
when low. By deactivating the clock, CKE low indicates the Power
down mode or Self refresh mode.
CS Input CS enables the command decoder when low and disabled the com-
mand decoder whe n high . When the comman d deco der is disab led,
new commands are ignored but previous operations continue.
RAS Input Latches row addresses on the positive going edge of the CK with
RAS low. Enables row access & precharge.
CAS Input Latches column add resses on the positive going edge of the CK with
CAS low. Enables column access.
WE Input Enables write operation and row precharge.
Latches data in starting from CAS, WE active.
LDQS,UDQS Input/Output Data inpu t and output are synchronized with both edge of DQS.
For the x16, LDQS corresponds to the data on DQ0-DQ7 ; UDQS
corresponds to the data on DQ8-DQ15.
LDM,UDM Input Data in Mask. Data In is masked by DM Latency=0 when DM is
high in burst write. Fo r th e x1 6, LDM correspo nd s to the da ta on
DQ0-DQ7 ; UDM correspons to the data on DQ8-DQ15.
DQ0 ~ DQ15 Input/Output Data inputs/Output s are multiplexed on the same pins.
BA0, BA1Input Selects which bank is to be active.
A0 ~ A11 Input Row/Column addresses are multiplexed on the same pins.
Row addresses : RA0 ~ R A11, Column addresses : CA0 ~ CA8.
VDD/VSS Power Supply Power and ground for the input buffers and core logic.
VDDQ/VSSQ Power Supply Isolated power supply and ground for the output buffers to provide
improved noise immunity.
VREF Power Supply Reference voltage for inputs, used for SSTL interface.
NC/RFU No connection/
Reserved for future use This pin is recommended to be left "No connection" on the device
128M GDDR SDRAM
K4D261638F
- 6 - Rev. 1.2 (Jan. 2004)
BLOCK DIAGRAM (2Mbit x 16I/O x 4 Bank)
Bank Select
Timing Register
Address Register
Refresh Counter
Row Buffer
Row Decoder Col. Buffer
Data Input Register
Serial to parallel
2Mx16
2Mx16
2Mx16
2Mx16
Sense AMP
2-bit prefetch
Output BufferI/O Control
Column Decoder
Latency & Burst Length
Programming Register
Strobe
Gen.
CK,CK
ADDR
LCKE
CK,CK CKE CS RAS CAS WE LDM
LDMi
CK,CK
LCAS
LRAS LCBR LWE LWCBR
LRAS
LCBR
CK, CK
32 16
16
LWE
LDMi
x16
DQi
Data Strobe
Intput Buffer
DLL
UDM
128M GDDR SDRAM
K4D261638F
- 7 - Rev. 1.2 (Jan. 2004)
Power-Up Sequence
DDR SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.
1. Apply power and keep CKE at low sta te (All other inputs may be undefined)
- Apply VDD before VDDQ .
- Apply VDDQ before VREF & VTT
2. Start clock and maintain stable condition for minimum 200us.
3. The minimum of 200us after stable power and clock(CK,CK ), apply NOP and take CKE to be high .
4. Issue precharge command for all banks of the device.
5. Issue a EMRS command to enable DLL
*1 6. Issue a MRS command to reset DLL. The additional 200 clock cycles are required to lock the DLL.
*1,2 7. Issue precharge command for all banks of the device.
8. Issue at least 2 or more auto-refresh commands.
9. Issue a mode register set command with A8 to low to initialize the mode register.
*1 The additional 200cycles of clock input is required to lock the DLL after enabling DLL.
*2 Sequence of 6&7 is regardless of the order.
FUNCTIONAL DESCRIPTION
Power up & Initialization Sequence
Command
01 2 3 4 5 6 7 8 9 10111213141516171819
tRP 2 Clock min.
precharge
ALL Banks 2nd Auto
Refresh Mode
Register Set Any
Command
tRFC
1st Auto
Refresh
tRFC
EMRS MRS
2 Clock min.
DLL Reset
~
~~
~~
~
~
~~
~~
~
precharge
ALL Banks
tRP
Inputs must be
stable for 200us
~
~
200 Clock min.
~
~
2 Clock min.
CK,CK
* When the operating frequency is changed, DLL reset should be required ag ain.
After DLL reset again, the minimum 200 cycles of clock input is needed to lock the DLL.
128M GDDR SDRAM
K4D261638F
- 8 - Rev. 1.2 (Jan. 2004)
The mode register stores the data for controlling the various operating modes of DDR SDRAM. It programs CAS latency,
addressing mode, burst length, test mode, DLL reset and various vendor specific options to make DDR SDRAM useful for
variety of different applications. The default value of the mode register is not defined, therefore the mode register must be
written after EMRS setting for proper operation. The mode register is written by asserting low on CS, RAS, CAS and
WE(The DDR SDRAM should be in active mode with CKE already high prio r to writing into the mode regi ster). The st ate of
address pins A0 ~ A11 and BA0, BA1 in the same cycle as CS, RAS, CAS and WE going low is written in the mode register .
Minimum two clock cycles are requested to complete the write operation in the mode register. The mode register contents
can be changed using the same command and clock cycle requirements during operation as long as all banks are in the
idle state. The mode register is divided into various fields depending on functionality. The burst length uses A0 ~ A2,
addressing mode uses A3, CAS latency(read latency from column address) uses A4 ~ A6. A7 is used for test mode. A8 is
used for DLL reset. A7,A8, BA0 and BA1 must be set to low for normal MRS operation. Refer to the table for specific codes
for various burst length, addressing modes and CAS latencies.
MODE REGISTER SET(MRS)
Address Bus
Mode Register
CAS Latency
A6A5A4Latency
0 0 0 Reserved
0 0 1 Reserved
0 1 0 Reserved
011 3
100 4
101 5
1 1 0 Reserved
1 1 1 Reserved
Burst Length
A2A1A0Burst Type
Sequential Interleave
0 0 0 Reserve Reserve
001 2 2
010 4 4
011 8 8
1 0 0 Reserve Reserve
1 0 1 Reserve Reserve
1 1 0 Reserve Reserve
1 1 1 Reserve Reserve
Burst Type
A3Type
0 Sequential
1 Interleave
* RFU(Reserved for future use)
should stay "0" during MRS
cycle.
MRS Cycle
Command
*1 : MRS can be issued only at all banks precharge state.
*2 : Minimum tRP is required to issue MRS command.
CK, CK
Precharge NOP NOPMRS NOPNOP
201 534 867
Any
NOP All Banks Command
tRP tMRD=2 tCK
BA1BA0A11 A10 A9A8A7A6A5A4A3A2A1A0
RFU 0 RFU DLL TM CAS Latency BT Burst Length
BA0An ~ A0
0MRS
1EMRS
DLL
A8DLL Reset
0No
1Yes
Test Mode
A7mode
0Normal
1Test
NOP
128M GDDR SDRAM
K4D261638F
- 9 - Rev. 1.2 (Jan. 2004)
The extended mode register stores the data for enabling or disabling DLL and selecting output driver
strength. The default value of the extended mode register is not defined, therefore the extened mode register
must be written after power up for enabling or disabling DLL. The extended mode register is written by assert-
ing low on CS, RAS, CAS, WE and high on BA0(The DDR SDRAM should be in all bank precharge with CKE
already high prior to writing into the extended mod e register). The st ate of address pins A0, A2 ~ A5, A7 ~ A11
and BA1 in the same cycle as CS, RAS, CAS and WE going low a re written in the extended mode reg ister. A1
and A6 are used for setting driver strength to normal, weak or matched impedance. Two clock cycles are
required to complete the write operation in the extended mode register. The mode register contents can be
changed using the same command and clock cycle requirements during operation as long as all banks are in
the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. All the other address
pins except A0,A1,A6 and BA0 must be set to low for proper EMRS operation. Refer to the table for specific
codes.
A0DLL Enable
0 Enable
1 Disable
BA0An ~ A0
0MRS
1EMRS
EXTENDED MODE REGISTER SET(EMRS)
Address Bus
Extended
*1 : RFU(Reserved for future use) should stay "0" during EMRS cycle.
A6A1Output Driver Impedence Control
01 Weak
11 Matched
RFU 1 RFU D.I.C RFU D.I.C DLL
BA1BA0A11 A10 A9A8A7A6A5A4A3A2A1A0
Mode Register
128M GDDR SDRAM
K4D261638F
- 10 - Rev. 1.2 (Jan. 2004)
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
Functional operation should be restricted to recommende d operating condition.
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.
Note :
POWER & DC OPERATING CONDITIONS(SSTL_2 In/Out)
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 65°C)
Parameter Symbol Min Typ Max Unit Note
Device Supply voltage VDD 2.375 2.50 2.625 V 1, 7
Output Supply voltage VDDQ 2.375 2.50 2.625 V 1, 7
Reference voltage VREF 0.49*VDDQ - 0.51*VDDQ V2
Terminatio n voltage Vtt VREF-0.04 VREF VREF+0.04 V 3
Input logic high voltage VIH(DC) VREF+0.15 - VDDQ+0.30 V 4
Input logic low voltage VIL(DC) -0.30 - VREF-0.15 V 5
Output logic high voltage VOH Vtt+0.76 - - V IOH=-15.2mA
Output logic low voltage VOL - - Vtt-0.76 V IOL=+15.2mA
Input leakage current IIL -5 - 5 uA 6
Output leakage current IOL -5 - 5 uA 6
ABSOLUTE MAXIMUM RATINGS
Parameter Symbol Value Unit
Voltage on any pin relative to Vss VIN, VOUT -0.5 ~ 3.6 V
Voltage on VDD supply relative to Vss VDD -1.0 ~ 3.6 V
Voltage on VDD supply relative to Vss VDDQ -0.5 ~ 3.6 V
Storage temperature TSTG -55 ~ +150 °C
Power dissip a ti on PD2.0 W
Short circuit current IOS 50 mA
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VREF is expected to equal 0.50*VDDQ of the transmitting device and to track variat ions in the DC level of the same. Peak to
peak noise on the VREF may not exceed + 2% of the DC value. Thus, from 0.50*VDDQ, VREF is allowed + 25mV for DC error
and an additional + 25mV for AC noise.
3. Vtt of the transmitting device must track VREF of the receiving device.
4. VIH(max.)= VDDQ +1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.
5. VIL(mim.)= -1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.
6. For any pin under test input of 0V < VIN < VDD is acceptable. For all other pins that are not under test VIN=0V.
7. For the K4D261638F-TC25/2A, VDD & VDDQ = 2.8V+0.1V
Note :
128M GDDR SDRAM
K4D261638F
- 11 - Rev. 1.2 (Jan. 2004)
DC CHARACTERISTICS
Note : 1. Measured with ou tputs open.
2. Refresh period is 32ms.
Parameter Symbol Test Condition Version Unit Note
-25 -2A -33 -36 -40 -50
Operating Current
(One Bank Active) ICC1 Burst Lenth=2 tRC tRC(min)
IOL=0mA, tCC= tCC(min) TBD 210 190 180 170 150 mA 1
Precharge S tandby Current
in Power-down mode ICC2PCKE VIL(max), tCC= tCC(min) TBD 60 45 mA
Precharge S tandby Current
in Non Power-d o w n mo de ICC2NCKE VIH(min), CS VIH(min),
tCC= tCC(min) TBD9075706560mA
Active Standby Current
power-down mode ICC3PCKE VIL(max), tCC= tCC(min) TBD7565605550mA
Active Standby Current in
in Non Power-d o w n mo de ICC3NCKE VIH(min), CS VIH(min),
tCC= tCC(min) TBD 135 100 100 95 90 mA
Operating Current
( Burst Mode) ICC4 tRC tRFC(min)tRC tRFC(min)
Page Burst, All Banks activated. TBD 400 290 275 260 245 mA
Refresh Current ICC5 tRC tRFC(min) TBD 245 210 200 195 190 mA 2
Self Refresh Current ICC6 CKE 0.2V 4 mA
Recommended operating conditions Unless Otherwise Noted, TA=0 to 65°C)
1. VID is the magnitude of the difference between the input level on CK and the input level on CK
2. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same
3. For the K4D261638F-TC25/2A, VDD & VDDQ = 2.8V+0.1V.
Note :
AC INPUT OPERATING CONDITIONS
Recommended operating conditions(Voltage referenced to VSS=0V, VDD=2.5V+ 5%, VDDQ=2.5V+ 5%,TA=0 to 65°C)
Parameter Symbol Min Typ Max Unit Note
Input High (Logic 1) Voltage; DQ VIH VREF+0.35 - - V
Input Low (Logic 0) Voltage; DQ VIL --VREF-0.35 V
Clock Input Differential Voltage; CK and CK VID 0.7 - VDDQ+0.6 V 1
Clock Input Crossing Point Voltage; CK and CK VIX 0.5*VDDQ-0.2 - 0.5*VDDQ+0.2 V 2
128M GDDR SDRAM
K4D261638F
- 12 - Rev. 1.2 (Jan. 2004)
RT=50
Output
CLOAD=30pF
(Fig. 1) Output Load Circuit
Z0=50VREF
=0.5*VDDQ
Vtt=0.5*VDDQ
DECOUPLING CAPACITANCE GUIDE LINE
Recommended decoupling capacitance added to power line at board.
Parameter Symbol Value Unit
Decoupling Capacitance between VDD and VSS CDC1 0.1 + 0.01 uF
Decoupling Capacitance between VDDQ and VSSQ CDC2 0.1 + 0.01 uF
1. VDD and VDDQ pins are separated each other.
All VDD pins are connected in chip. All VDDQ pins are connected in chip.
2. VSS and VSSQ pins are separated each other
All VSS pins are connected in chip. All VSSQ pins are conne cted in chip.
Note :
AC OPERATING TEST CONDITIONS (VDD=2.5V±5%, TA= 0 to 65°C)
1.For the K4D261638F-TC25/2A, VDD & VDDQ = 2.8V+0.1V.
Parameter Value Unit Note
Input reference voltage for CK(for single ended) 0.50*VDDQ V
CK and CK signal maximum peak swing 1.5 V
CK signal minimum slew rate 1.0 V/ns
Input Levels(VIH/VIL)VREF+0.35/VREF-0.35 V
Input timing measurement reference level VREF V
Output timing measurement reference level Vtt V
Output load condition See Fig.1
CAPACITANCE (VDD=2.5V, TA= 25°C, f=1MHz)
Parameter Symbol Min Max Unit
Input capacitance( CK, CK )CIN1 1.0 5.0 pF
Input capacitance(A0~A11, BA0~BA1)CIN2 1.0 4.0 pF
Input capacitance
( CKE, CS, RAS,CAS, WE ) CIN3 1.0 4.0 pF
Data & DQS input/output capacitance(DQ0~DQ15)COUT 1.0 6.5 pF
Input capacitance(DM0 ~ DM3) CIN4 1.0 6.5 pF
128M GDDR SDRAM
K4D261638F
- 13 - Rev. 1.2 (Jan. 2004)
AC CHARACTERISTICS - 1
Parameter Symbol -25 -2A -33 Unit Note
Min Max Min Max Min Max
CK cycle time CL=3 tCK -4-10 -10 ns
CL=4 - 2.86 3.3 ns
CL=5 2.5 ns
CK high level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK low level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK
DQS out access time from CK tDQSCK -0.55 0.55 -0.6 0.6 -0.6 0.6 ns
Output access time from CK tAC -0.55 0.55 -0.6 0.6 -0.6 0.6 ns
Data strobe edge to Dout edge tDQSQ - 0.35 - 0.35 - 0.35 ns 1
Read preamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK
Read postamble tRPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
CK to valid DQS-in tDQSS 0.85 1.15 0.85 1.15 0.85 1.15 tCK
DQS-In setup time tWPRES 0-0-0-ns
DQS-in hold time tWPREH 0.35 - 0.35 - 0.35 - tCK
DQS write postamble tWPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
DQS-In high level width tDQSH 0.45 0.55 0.4 0.6 0.4 0.6 tCK
DQS-In low level width tDQSL 0.45 0.55 0.4 0.6 0.4 0.6 tCK
Address and Control input setup tIS 0.8 - 0.9 - 0.9 - ns
Address and Control input hold tIH 0.8 - 0.9 - 0.9 - ns
DQ and DM setup time to DQS tDS 0.35 - 0.35 - 0.35 - ns
DQ and DM hold time to DQS tDH 0.35 - 0.35 - 0.35 - ns
Clock half period tHP tCLmin
or
tCHmin -tCLmin
or
tCHmin -tCLmin
or
tCHmin -ns1
Data output hold time from DQS tQH tHP-0.4 - tHP-0.35 - tHP-0.35 - ns 1
Note 1 :
- The JEDEC DDR specification currently defines the output data valid window(tDV) as the time period when the data
strobe and all data associated with that data strobe are coincidentally valid.
- The previously used definition of tDV(=0.35tCK) artificially penalizes system timing budgets by assuming the worst
case
output vaild window even then the clock duty cycle applied to the device is better than 45/55%
- A new AC timing term, tQH which stands for data output hold time from DQS is difined to account for clock duty cycle
variation and replaces tDV
- tQHmin = tHP-X where
. tHP=Minimum half clock period for any given cycle and is defined by clock high or clock low time(tCH,tCL)
. X=A frequency dependent timing allowance account for tDQSQmax
128M GDDR SDRAM
K4D261638F
- 14 - Rev. 1.2 (Jan. 2004)
AC CHARACTERISTICS - 2
Parameter Symbol -36 -40 -50 Unit Note
Min Max Min Max Min Max
CK cycle time CL=3 tCK -10 4.0 10 5.0 10 ns
CL=4 3.6 - - ns
CL=5 - - - ns
CK high level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK low level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK
DQS out access time from CK tDQSCK -0.6 0.6 -0.6 0.6 -0.7 0.7 ns
Output access time from CK tAC -0.6 0.6 -0.6 0.6 -0.7 0.7 ns
Data strobe edge to Dout edge tDQSQ - 0.40 - 0.4 - 0.45 ns 1
Read preamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK
Read postamble tRPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
CK to valid DQS-in tDQSS 0.85 1.15 0.85 1.15 0.8 1.2 tCK
DQS-In setup time tWPRES 0-0-0-ns
DQS-in hold time tWPREH 0.35 - 0.35 - 0.3 - tCK
DQS write postamble tWPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
DQS-In high level width tDQSH 0.4 0.6 0.4 0.6 0.4 0.6 tCK
DQS-In low level width tDQSL 0.4 0.6 0.4 0.6 0.4 0.6 tCK
Address and Control input setup tIS 0.9 - 0.9 - 1.0 - ns
Address and Control input hold tIH 0.9 - 0.9 - 1.0 - ns
DQ and DM setup time to DQS tDS 0.40 - 0.4 - 0.45 - ns
DQ and DM hold time to DQS tDH 0.40 - 0.4 - 0.45 - ns
Clock half period tHP tCLmin
or
tCHmin -tCLmin
or
tCHmin -tCLmin
or
tCHmin -ns1
Data output hold time from DQS tQH tHP-0.4 - tHP-0.4 - tHP-0.45 - ns 1
Note 1 :
- The JEDEC DDR specification currently defines the output data valid window(tDV) as the time period when the data
strobe and all data associated with that data strobe are coincidentally valid.
- The previously used definition of tDV(=0.35tCK) artificially penalizes system timing budgets by assuming the worst
case
output vaild window even then the clock duty cycle applied to the device is better than 45/55%
- A new AC timing term, tQH which stands for data output hold time from DQS is difined to account for clock duty cycle
variation and replaces tDV
- tQHmin = tHP-X where
. tHP=Minimum half clock period for any given cycle and is defined by clock high or clock low time(tCH,tCL)
. X=A frequency dependent timing allowance account for tDQSQmax
128M GDDR SDRAM
K4D261638F
- 15 - Rev. 1.2 (Jan. 2004)
AC CHARACTERISTICS (II - 1)
K4D261638F-TC25
Frequency Cas La te nc y tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
400MHz (2.5ns) 5 18 19 13 6 4 5 4 9 tCK
350MHz ( 2.86ns ) 4 16 17 11 5 3 5 3 9 tCK
300MHz ( 3.3ns ) 4 16 17 11 5 3 5 3 9 tCK
275MHz ( 3.6ns ) 4 16 17 11 4 2 5 3 9 tCK
250MHz ( 4.0ns ) 3 13 15 9 4 2 4 3 7 tCK
200MHz ( 5.0ns ) 3 12 14 8 4 2 4 3 7 tCK
(Unit : Number of Clock)
AC CHARACTERISTICS (I - 1)
Note : 1. For normal write operation, even numbers of Din are to be written inside DRAM
Parameter Symbol -25 -2A -33 Unit Note
Min Max Min Max Min Max
Row cycle time tRC 18 - 16 - 16 - tCK
Refresh row cycle time tRFC 19 - 17 - 17 - tCK
Row active time tRAS 13 100K 11 100K 11 100K tCK
RAS to CAS delay for Read tRCDRD 6 - 5 - 5 - tCK
RAS to CAS delay for Write tRCDWR 4 - 3 - 3 - tCK
Row precharge time tRP 5 - 5 - 5 - tCK
Row active to Row active tRRD 4 - 3 - 3 - tCK
Last data in to Row precharge @Normal Pre-
charge tWR 4-4-4-tCK 1
Last data in to Row precharge @Auto Pre-
charge tWR_A 4-4-4-tCK 1
Last data in to Read command tCDLR 3-3-3-tCK1
Col. address to Col. address tCCD 1 - 1 - 1 - tCK
Mode register set cycle time tMRD 2 - 2 - 2 - tCK
Auto precharge write recovery + Precharge tDAL 9 - 9 - 9 - tCK
Exit self refresh to read command tXSR 200 200 - 200 - tCK
Power down exit time tPDEX 3tCK
+tIS 3tCK
+tIS -3tCK
+tIS -ns
Refresh interval time tREF 7.8 7.8 - 7.8 - us
K4D261638F-TC33
Frequency Cas Latency tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
300MHz ( 3.3ns ) 4 16 17 11 5 3 5 3 9 tCK
275MHz ( 3.6ns ) 4 16 17 11 4 2 5 3 9 tCK
250MHz ( 4.0ns ) 3 13 15 9 4 2 4 3 7 tCK
200MHz ( 5.0ns ) 3 12 14 8 4 2 4 3 7 tCK
K4D261638F-TC2A
Frequency Cas Latency tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
350MHz ( 2.86ns ) 4 16 17 11 5 3 5 3 9 tCK
300MHz ( 3.3ns ) 4 16 17 11 5 3 5 3 9 tCK
275MHz ( 3.6ns ) 4 16 17 11 4 2 5 3 9 tCK
250MHz ( 4.0ns ) 3 13 15 9 4 2 4 3 7 tCK
200MHz ( 5.0ns ) 3 12 14 8 4 2 4 3 7 tCK
128M GDDR SDRAM
K4D261638F
- 16 - Rev. 1.2 (Jan. 2004)
AC CHARACTERISTICS (II - 2)
K4D261638F-TC36
Frequency Cas La te nc y tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
275MHz ( 3.6ns ) 4 16 17 11 4 2 5 3 9 tCK
250MHz ( 4.0ns ) 3 13 15 9 4 2 4 3 7 tCK
200MHz ( 5.0ns ) 3 12 14 8 4 2 4 3 7 tCK
(Unit : Number of Clock)
AC CHARACTERISTICS (I - 2)
Note : 1. For normal write operation, even numbers of Din are to be written inside DRAM
Parameter Symbol -36 -40 -50 Unit Note
Min Max Min Max Min Max
Row cycle time tRC 16 - 13 - 12 - tCK
Refresh row cycle time tRFC 17 - 15 - 14 - tCK
Row active time tRAS 11 100K 9 100K 8 100K tCK
RAS to CAS delay for Read tRCDRD 4 - 4 - 4 - tCK
RAS to CAS delay for Write tRCDWR 2 - 2 - 2 - tCK
Row precharge time tRP 5 - 4 - 4 - tCK
Row active to Row active tRRD 3 - 3 - 3 - tCK
Last data in to Row precharge @Normal Pre-
charge tWR 4-3-3-tCK1
Last data in to Row precharge @Auto Pre-
charge tWR_A 4-3-3-tCK1
Last data in to Read command tCDLR 2 - 2 - 2 - tCK 1
Col. address to Col. address tCCD 1 - 1 - 1 - tCK
Mode register set cycle time tMRD 2 - 2 - 2 - tCK
Auto precharge write recovery + Precharge tDAL 9 - 7 - 7 - tCK
Exit self refresh to read command tXSR 200 - 200 - 200 - tCK
Power down exit time tPDEX 3tCK
+tIS -3tCK
+tIS -3tCK
+tIS -ns
Refresh interval time tREF 7.8 - 7.8 - 7.8 - us
K4D261638F-TC50
Frequency Cas Latency tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
200MHz ( 5.0ns ) 3 12 14 8 4 2 4 3 7 tCK
K4D261638F-TC40
Frequency Cas Late nc y tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
250MHz ( 4.0ns ) 3 13 15 9 4 2 4 3 7 tCK
200MHz ( 5.0ns ) 3 12 14 8 4 2 4 3 7 tCK
128M GDDR SDRAM
K4D261638F
- 17 - Rev. 1.2 (Jan. 2004)
Simplified Timing @ BL=4
Normal Write Burst
(@ BL=4) Multi Bank Interleaving Write Burst
(@ BL=4)
012345678 13 14 15 16 17 18 19 20 219101112 22
COM
DQS
DQ
WE
DM
CK, CK
A8/AP
ADDR
(A0~A7
BA[1:0]
Da0Da1Da2Da3 Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3
ACT_A WR_A PRECH ACT_A WR_A ACT_B WR_B
tRCD tRAS
tRP
tRC tRRD
BAa BAa BAa BAa BAa BAb BAb
Rb
Rb
Ca Cb
RaRa
Ra Ca Ra
,A9~A11)
128M GDDR SDRAM
K4D261638F
- 18 - Rev. 1.2 (Jan. 2004)
PACKAGE DIMENSIONS (66pin TSOP-II)
Units : Millimeters
0.30±0.08
0.65TYP(0.71)
22.22±0.10
0.125
(0.80)
10.16±0.10
0×~8×
#1 #33
#66 #34
(1.50)
(1.50)
0.65±0.08
1.00±0.10
1.20MAX
(0.50) (0.50)(10.76)
11.76±0.20
(10×)(10×)
+0.075
-0.035
(0.80)
0.10 MAX
0.075 MAX
[]
0.05 MIN
(10×)
(10×)
(R0.15)
0.210±0.05
0.665±0.05
(R0.15)
(4×)
(R0.25)
(R0.25)
0.45~0.75
0.25TYP
NOTE
1. ( ) IS REFERENCE
2. [ ] IS ASSY OUT QUALIT Y