PRODUCTS AND SPECIFICATIONS DISC USSED HEREIN ARE FOR EVAL UATION AND REFERENCE PURPOSES ONLY AND ARE SU BJECT TO CHANGE BY
MICRON WITHOUT NOTICE. PRODUC TS ARE ONLY WARRANTED BY MICR ON TO MEET MIC RON’S PRODUC TION DATA SHEET S PE CIFICATIONS.
09005aef80b88542
512MbDDR2_1.fm - Rev. A 11/03 EN 1©2003 Micron Technolog y, Inc. All rights reserv ed.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
DDR2 SDRAM MT47H128M4 – 32 MEG X 4 X 4 BANKS
MT47H64M8 – 16 MEG X 8 X 4 BANKS
MT47H32M16 – 8 MEG X 16 X 4 BANKS
For the latest data sheet, please refer to the Micron Web
site: http://www.micron.com/datasheets
Features
•VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V
JEDEC standard 1.8V I/O (SSTL_18-compatible)
Differential data strobe (DQS, DQS#) option
Four-bit prefetch arc h it ec ture
Du pl i ca te outp ut strobe (RDQS) option for x8
configuration
DLL to align DQ and DQS transitions with CK
Four internal banks for concurrent operation
Programmable CAS Late ncy (CL): 3 and 4
Posted CAS additive latency (AL): 0, 1, 2, 3, an d 4
WRITE latency = READ latency - 1 tCK
Programmable burst lengths: 4 or 8
Supports REA D burst interrupt by another READ
Supports W RIT E burst interrupt by anothe r WRITE
Ad ju st able data-output drive strength
64ms, 8,192-cycle refresh
On-die term ination (ODT)
Supports the JEDEC DDR2 functionality
requirements
Options Designation
Configuration
128 Meg x 4 (32 Meg x 4 x 4 banks) 128M4
64 Meg x 8 (16 Meg x 8 x 4 banks) 64M8
32 Meg x 16 (8 Meg x 16 x 4 banks) 32M16
•FBGA Package
92-ball (11mm x 19mm) FBGA FT
Timing – Cycle Time
5.0ns @ CL = 4 (DDR2-400) -5
5.0ns @ CL = 3 (DDR2-400) -5E
3.75ns @ CL = 4 (DDR2-533) -37E
Table 1: Key Timing Parameters
SPEED
GRADE
DATA RATE
(MHz) tRCD
(ns) tRP
(ns) tRC
(ns)CL = 3 CL = 4
-5 400 20 20 65
-5E 400 400 15 15 60
-37E 400 533 15 15 60
ARCHITECTURE 128 MEG X 4 64 MEG X 8 32 MEG X 16
Configuration
32 Meg x 4 x 4
banks 16 Meg x 8 x 4
banks 8 Meg x 16 x 4
banks
Refresh Count
8K 8K 8K
Row Addressing
16K (A0-A13) 16K (A0-A13) 8K (A0-A12)
Bank
Addressing
4 (BA0, BA1) 4 (BA0, BA1) 4 (BA0, BA1)
Column
Addressing
2K (A0-A9, A11) 1K (A0-A9 ) 1K (A0-A9)
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2TOC.fm - Rev. A 11/03 EN 2©2003 Micron Technolog y, Inc. All rights reserv ed.
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
FBGA Part Marking Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Mode Register (MR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
DLL Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Write Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
CAS Latency (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Extended Mode Reg ist er (EMR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
DLL Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Output Drive Streng th . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
DQS# Enable/Disab le. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
RDQS Enable/Dis able . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Output Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
On Die Termination (ODT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Off-Chip Driver (OCD) Imp edance Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Posted CAS Additive Latency (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Extended Mode Reg ist er 2 (EMR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Extended Mode Reg ist er 3 (EMR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Command Truth Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
DESELECT, NOP, and LOAD MODE Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
DESELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
NO OPERATION (NOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
LOAD MODE (LM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Bank/Row Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
ACTIVE Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
ACTIVE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
READs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
READ Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
WRITEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
WRITE Operatio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
PRECHARGE Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
PRECHARGE Operat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Self Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
SELF REFRESH Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
REFRESH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
REFRESH Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Power-Down Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Precharge Power-Down Clock Frequ e ncy Cha nge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
RESET Func tion (CKE LOW Anytime) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
ODT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Absolute Maxi mum Rati ngs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2TOC.fm - Rev. A 11/03 EN 3©2003 Micron Technolog y, Inc. All rights reserv ed.
AC and DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Input Electr ical Characteristics and Operat ing Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Power and Ground Clamp Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
AC Overshoot/Undershoot Sp ec ifi ca tio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Output El ec trical Characteristics and Operating Conditio ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Full Strength Pull-Down Driver Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Full Strength Pull- Up Driver Cha ra ct e ristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
FBGA Package Capacitan ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
IDD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
IDD7 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Data Sheet Designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2LOF.fm - Rev. A 11/03 EN 4©2003 Micron Technolog y, Inc. All rights reserv ed.
List of Figures
Figure 1: 512Mb DDR2 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 2: 92-ball FBGA Pin Assignmen t (x16), 11mm x 19mm (T op View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 3: 92-Ball FBGA Pin Assignmen t (x 4, x 8), 11mm x 19mm (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 4: Functiona l Block Diagr am (32 Meg x 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 5: Functiona l Block Diagr am (64 Meg x 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 6: Functiona l Block Diagram (128 M e g x 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 7: DDR2 Power-Up and Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 8: Mode Register (MR) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 9: CAS Latency (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 10: Extend ed M ode R eg ister Definit ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 11: READ Latenc y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 12: Write Laten cy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 13: Extend ed M ode R eg ister 2 (EMR2) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 14: Extend ed M ode R eg ister 3 (EMR3) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 15: ACTIVE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 16: Example: Meeting tRRD (MIN) and tRCD (MIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 17: READ Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Figure 18: READ Latenc y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Figure 19: Consecut ive READ Burst s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 20: Nonconsecutive READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Figure 21: READ Interru pted by READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 22: READ to PRECHARGE BL = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Figure 23: READ to PRECHARGE BL = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Figure 24: READ to WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Figure 25: Bank Read – Wi thout Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Figure 26: Bank Read – Wi th Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Figure 27: x4, x8 Data Out pu t Timing – tDQSQ, tQH, and Data Valid Window . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Figure 2 8 : x16 Data Output Timi ngtDQSQ, tQH, and Data Valid Win d ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Figure 29: Data Output Timing – tAC and tDQSCK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Figure 30: WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Figure 31: WRITE Burst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Figure 32: Consecut ive WRITE to WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Figure 33: Nonconsecutive WRITE to WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Figure 34: Random WRITE Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 35: WRITE Interrupted by WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 36: WRITE to READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 37: WRITE to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 38: Bank Writ e–Without Auto Prechar ge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Figure 39: Bank Writ e–wit h Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Figure 40: WRITE–DM Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Figure 41: Data Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Figure 42: PRECHARGE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Figure 43: Self Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 44: Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 45: Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 46: READ to Power-Down Ent ry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 47: READ with Auto Precharge to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 48: WRITE to Power-Down Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Figure 49: WRITE wit h Auto Precharge to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Figure 50: REFRESH command to Power-Down Ent ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Figure 51: ACTIVE Command to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Figure 52: PRECHARGE Command to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Figure 53: LOAD MODE Command to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 54: Inpu t Clock Fr eq uency Change During PRECHARGE Power Down Mode . . . . . . . . . . . . . . . . . . . . . .63
Figure 55: RESET Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Figure 56: ODT Timing for Active an d “Fast- Exit” Po w er-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2LOF.fm - Rev. A 11/03 EN 5©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 57: ODT timing for “Slow- Exit” and Precharge Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Figure 58: ODT “Turn Of f” Timin gs wh en Entering Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Figure 59: ODT “Turn- On ” Timi ng wh en Entering Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Figure 60: ODT “Turn- Of f” Timin g when Exiting Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Figure 61: ODT “Turn On” Timing when Exiting Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Figure 62: Temperature Tes t Point Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Figure 63: Single-En ded Input Signal Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Figure 64: Differential In pu t Sig nal Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Figure 65: AC Input Test Sign al Waveform Command/Addr e ss p ins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Figure 66: AC Input Test Signal Waveform for Data with DQS,DQS# (differential) . . . . . . . . . . . . . . . . . . . . . . . .77
Figure 67: AC Input Test Signal Waveform for Data with DQS (single-ended) . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Figure 68: AC Input Test Signal Wave form (differential). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Figure 69: Inpu t Clam p Cha ra ct e ristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Figure 70: Overshoot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Figure 71: Undershoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Figure 72: Differential Output Signal Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Figure 73: AC Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Figure 74: Output Slew Rat e Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Figure 75: Full Stre ngth Pull-Down Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Figure 76: Full Stre ngth Pull-up Chara ct e ristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 77: Package Drawing (x4,x8,x16 Configurations) 11mm x 19mm “FT” FBGA . . . . . . . . . . . . . . . . . . . . . . . 94
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2LOT.fm - R ev . A 11/03 EN 6©2003 Micron Technology, Inc. All rights reserved.
List of Tabl es
Table 1: Key Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 1: FBGA Ball Descriptions 128 Meg x 4, 64 Meg x 8, 32 Meg x 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 2: Burst Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 3: Truth Table – DDR2 Command s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 4: Truth Table – Current State Bank n - Command to Bank n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 5: Truth Table – Current State Bank n - Command to Bank m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 6: Concurrent Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 7: READ Using Concurrent Auto Precha rge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 8: WRITE Using Concurrent Auto Prech ar ge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 9: CKE Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 10: ODT Timing for Active an d “Fast-Exit” Power-Do wn Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Table 11: ODT timing for “Slow-Exit” and Precharge Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Table 12: ODT “Turn Off” Timings when En ter ing Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Table 13: ODT “Turn-On” Timing wh en Entering Power-Down Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 14: ODT “Turn-Of” Timing wh en Exiting Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Table 15: ODT “Turn On” Timing when Exiting Power-Down Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Table 16: Absolute Maximum DC Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 17: Recommended DC Operating Condi tions (SST L_ 18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 18: ODT DC Electrical Ch aracterist ics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 19: Input DC Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Table 20: Input AC Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Table 21: Differential Input Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Table 22: AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Table 23: Input Clamp Charact e ristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Table 24: Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Table 25: Clock, Data, Strobe, and Ma sk Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Table 26: Differential AC Output Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Table 27: AC Output Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Table 28: Output DC Current Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Table 29: Output Charact e ristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Table 30: Pulldown Current (mA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Table 31: Pull-Up Current (mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Table 32: Input Capacit an ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Table 33: DDR2 IDD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Table 34: General IDD Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Table 35: IDD7 Timing Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Table 36: AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 7©2003 Micron Technolog y, Inc. All rights reserv ed.
Part Numbers
Figure 1: 512Mb DDR2 Part Numbers
NOTE: Not all speeds and all configurations are
availab l e in all packages.
FBGA Part Marking Decoder
Due to space limitations, FBGA-packaged compo-
nents have an abbreviated part marking that is differ-
ent from the part number. Micron's new FBGA Part
Marking Decoder makes it easier to understand that
part marking. Visit the web site at www.micron.com/
decoder.
General D e scrip tion
The 512Mb DDR2 SDRAM is a high-speed, CMOS
dynamic random-access memory containing
536,870,912 bits. It is internally configured as a quad-
bank DRAM. Figures 5, 6, and 7 show the functional
block diagrams of the 32 Meg x 16, 64 Meg x 8, and 128
Meg x 4 devices, respectively. Ball assignments for the
128 Meg x 4 are shown in Figure 2 and signal descrip-
tions are shown in Table1. Ball assignments for the 64
Meg x 8 an d 128 Meg x 4 are shown in Figure3 and sig-
nal descriptions are shown in Table1.
The 512Mb DDR2 SDRAM uses a double data rate
architecture to achieve high-speed operation. The
double data rate architecture is essentially a 4n-
prefetch architecture with an interface designed to
transfer two data words per clock cycle at the I/O pins.
A single read or write access for the 512Mb DDR2
SDRAM effectively consists of a single 4n-bit-wide,
one-clock-cycle data transfer at the internal DRAM
core and four corresponding n-bit-wide, one-half-
clock-cycle data transfers at the I/O pin s.
A bidir ectional data st r obe (DQS, DQ S#) is transmit-
ted externally, along with data, for use in data capture
at the receiver. DQS is a strobe transmitted by the
DDR2 SDRAM during READs and by the memory con-
troller during WRITEs. DQS is edge-aligned with data
for READs and center-aligned with data for WRITEs.
The x16 offering has two data strobes, one for the lower
byte (LDQS, LDQS#) and one for the upper byte
(UDQS, UDQS#).
The 512Mb DDR2 SDRAM operates from a differen-
tial clock (CK and CK#); the crossing of CK going HIGH
and CK# going LOW will be referred to as the positive
edge of CK. Commands (address and control signals)
are registered at every positive edge of CK. Input data
is registered on both edges of DQS, and output data is
referenced to both edges of DQS, as well as to both
edges of CK.
Read and write accesses to the DDR2 SDRAM are
burst-oriented; accesses start at a selected location
and continue for a programmed number of locations
in a programmed sequence. Accesses begin with the
registra tion of an ACTIVE co mmand, wh ich is th en fol -
lowed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the bank and row to be accessed.
The address bits registered coincident with the READ
or WRITE command are used to select the bank and
the starting column location for the burst access.
The DDR2 SDRAM provides for programmable read
or write burst lengths of four or eight locations. DDR2
SDRAM supports interrupting a burst read of eight
with another read, or a burst write of eight with
another write. An auto precharge function may be
enabled to provide a self-timed row precharge that is
initiated at the end of the burst access.
As with standard DDR SDRAMs, the pipelined,
multibank architecture of DDR2 SDRAMs allows for
concurrent operation, thereby providing high, effec-
tive ban dwi dth by hiding row prechar g e and act i va ti on
time.
A self refresh m ode is provided, along with a power-
saving power-down mode.
All inputs are compatible with the JEDEC standard
for SSTL_18. All full drive-strength outputs are
SSTL_18-compatible.
NOTE: 1. The functionality and the timing specifications
discussed in this data sheet are for the DLL-
enabled mode of operati on.
2. Throughout the data sheet, the various figures
and text refer to DQs as “DQ.” The DQ term is to
be interpreted as any and all DQ collectively,
-
ConfigurationMT47H Package Speed
Configuration
128 Meg x 4
64 Meg x 8
32 Meg x 16
128M4
64M8
32M16
Package
92-Ball 11 x 19 FBGA
FT
Speed Grade
tCK = 5ns, CL = 4
tCK = 5ns, CL = 3
tCK = 3.75ns, CL = 4
-5
-5E
-37E
Example Part Number: MT47H64M8FT-37E
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 8©2003 Micron Technolog y, Inc. All rights reserv ed.
unless specifically stated ot her w ise. Additionally,
the x16 is divided into two bytes, the lower byte
and upper byte. For the lower byte (DQ0 through
DQ7) DM refers to LDM and DQS refers to LDQS.
For the upper byte (DQ8 through DQ15) DM
refers to UDM and DQS refers to UDQS.
3. Complete functionality is described throughout
the document and any page or diagram may
have been simplified to convey a topic and may
not be inclusive of all requirements.
4. Any specific requirement takes precedence over
a general statement.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 9©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 2: 92-b a ll F BGA Pi n Assignment
(x16), 11mm x 19mm (Top View) Figure 3: 92-Ball FBGA Pi n Assignment
(x 4, x 8), 11mm x 19mm (Top V iew)
1234 67895
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
NC
VDD
DQ14
VDDQ
DQ12
VDD
DQ6
VDDQ
DQ4
VDDL
RFU(BA2)
VSS
VDD
NC
NC
NC
VSSQ
DQ9
VSSQ
NC
VSSQ
DQ1
VSSQ
VREF
CKE
BA0
A10
A3
A7
A12
NC
VSS
UDM
VDDQ
DQ11
VSS
LDM
VDDQ
DQ3
VSS
WE#
BA1
A1
A5
A9
RFU (A14)
VSSQ
UDQS
VDDQ
DQ10
VSSQ
LDQS
VDDQ
DQ2
VSSDL
RAS#
CAS#
A2
A6
A11
RFU (A15)
NC
VDDQ
DQ15
VDDQ
DQ13
VDDQ
DQ7
VDDQ
DQ5
VDD
ODT
VDD
VSS
NC
NC
UDQS#/NU
VSSQ
DQ8
VSSQ
LDQS#/NU
VSSQ
DQ0
VSSQ
CK
CK#
CS#
A0
A4
A8
NC (A13)
NC
1234 67895
VDD
NC
NC
NC
VDD
NF,DQ6
VDDQ
NF,DQ4
VDDL
RFU (BA2)
VSS
VDD
NC
NC
NC
NC
NC
NC
NC,RDQS#/NU
VSSQ
DQ1
VSSQ
VREF
CKE
BA0
A10
A3
A7
A12
NC
VSS
NC
NC
NC
VSS
DM,DM/RDQS
VDDQ
DQ3
VSS
WE#
BA1
A1
A5
A9
RFU (A14)
VSSQ
NC
NC
NC
VSSQ
DQS
VDDQ
DQ2
VSSDL
RAS#
CAS#
A2
A6
A11
RFU (A15)
NC
VDDQ
NC
NC
NC
VDDQ
NF,DQ7
VDDQ
NF,DQ5
VDD
ODT
VDD
VSS
NC
NC
NC
NC
NC
NC
DQS#/NU
VSSQ
DQ0
VSSQ
CK
CK#
CS#
A0
A4
A8
A13
NC
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
NC
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 10 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Table 1: FBGA Ball Descriptions 128 Meg x 4 , 64 Meg x 8, 32 Meg x 16
x16 FBGA
BALL
ASSIGNMENT
x4, x8 FBGA
BALL
ASSIGNMENT SYMBOL TYPE DESCRIPTION
N9 N9 ODT Input On-Die Termination: ODT (registered HIGH) enables termination
resis tanc e in ter nal to the D DR2 SDRAM. When enabled, ODT is only
applied to each of the following pins: DQ0–DQ15, LDM, UDM,
LDQS, LDQS#, UDQS, and UDQS# for the x16; DQ0-DQ7, DQS, DQS#,
RDQS, RDQS#, and DM for the x8; DQ0-DQ3, DQS, DQS#, and DM
for the x4. The ODT input will be ignored if disabled via the LOAD
MOD E com m and.
M8, N8 M8, N8 CK, CK# Input Clock: CK and CK# are differential clock inputs. All address and
control input signals are sampled on the crossing of the positive
edge of CK and negative edge of CK#. Output data (DQs and DQS/
DQS#) is referenced to the crossings of CK and CK#.
N2 N2 CKE Input Clock Enable: CKE (registered HIGH) activates and CKE (registered
LOW) deactivates clocking circuitry on the DDR2 SDRAM. The
specific circuitry that is enabled/disabled is dependent on the DDR2
SDRAM configuration and operating mode. CKE LOW provides
PRECHAR GE POWER-DOWN and SELF REFRESH operatio ns (all banks
idle), or ACTIVE POWER-DOWN (row ACTIVE in any bank). CKE is
synchronous for POWER-DOWN entry, POWER-DOWN exit, output
disable, and for SELF REFRESH entry. CKE is asynchronous for SELF
REFRESH exit. Input buffers (excluding CK, CK#, CKE, and ODT) are
disabled during POWER-DOWN. Input buffers (excluding CKE) are
disabled during SELF REFRESH. CKE is an SSTL_18 input but will
detect a LVCMOS LOW level once Vdd is applied during first power-
up. After Vref has become stable during the power on and
initialization sequence, it must be maintained for proper operation
of the CKE receiver. For proper self-refresh operation Vref must be
maintained to this input.
P8 P8 CS# Input Chip Select: CS# enables (registered LOW) and disables (registered
HIGH) the command decoder. All commands are masked when CS#
is registered HIGH. CS# provides for exter nal bank selection on
systems with multiple ranks. CS# is considered part of the command
code.
N7, P7, N3 N7, P7, N3 RAS#,
CAS#,
WE#
Input Comm and Inputs: RAS #, CAS#, and WE # (along w ith CS#) defi ne the
command being entered.
J3, E3 J3, E3 LDM,
UDM Input Input Data Mask: DM is an input mask signal for write data. Input
data is masked when DM is sampled HIGH along with that input
data during a WRITE access. DM is sampled on both edges of DQS.
Although DM pins are input-only, the DM loading is designed to
match that of DQ and DQS pins. LDM is DM f or lower byte DQ0–
DQ7 and UDM is DM for upper byte DQ8–DQ15.
P2, P3 P2, P3 BA0, BA1 Input Bank Address Inputs: BA0 and B A1 define to whi ch bank an ACTIVE ,
READ, WRITE, or PRECHARGE command is being applied. BA0 and
BA1 define which mode register including MR, EMR, EMR(2), and
EMR(3) is loaded during the LOAD MODE command.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 11 ©2003 Micron Technolog y, Inc. All rights reserv ed.
R8,R3,R7,T2,
T8,T3,T7,U2,
U8,U3,R2,U7,
V2
A0–A12 Input Address Inputs: Provide the row address for ACTIVE commands, and
the column address and auto precharge bit (A10) for Read/Write
commands, to select one location out of the memory array in the
respective bank. A10 sampled during a PRECHARGE command
determines whether the PRECHARGE applies to one bank (A10
LOW, bank selected by BA0, BA1) or all banks (A10 HIGH). The
address inputs also provide the op-code during a LOAD MODE
command.
R8,R3,R7,T2,
T8,T3,T7,U2,
U8,U3,R2,U7,
V2,V8
A0–A13 Input Ad dress Inputs: Provide the row address for ACTIVE commands, and
the column address and auto precharge bit (A10) for Read/Write
commands, to select one location out of the memory array in the
respective bank. A10 sampled during a PRECHARGE command
determines whether the PRECHARGE applies to one bank (A10
LOW, bank selected by BA0, BA1) or all banks (A10 HIGH). The
address inputs also provide the op-code during a LOAD MODE
command.
K8,K2,L7,L3,
L1,L9,J1,J9,
F8,F2,G7,G3,
G1,G9,E1,E9
–DQ0
DQ15 I/O Data Input/Output: Bidirectional data bus for 128 Meg x 4.
K8,K2,L7,L3,
L1,L9,J1,J9 DQ0–DQ7 I/O Data Input/Output: Bidirectional data bus for 64 Meg x 8.
K8,K2,L7,L3 DQ0–DQ3 I/O Data Input/Output: Bidirectional data bus for 32 Meg x 16.
E7,D8 UDQS,
UDQS# I/O Data Strobe for Upper Byte: Output with read data, input with
write data for source synchronous operation. Edge-aligned with
read data , center -aligne d with write d ata. UDQS# is o nly use d when
differential data strobe mode is enabled via the LOAD MODE
command.
J7,H8 LDQS,
LDQS# I/O Data Strobe for Lower Byte: Output with read data, input with
write data for source synchronous operation. Edge-aligned with
read data, cen ter-aligned w ith write data . LDQS# is onl y use d when
differential data strobe mode is enabled via the LOAD MODE
command.
J7,H8 DQS,
DQS# I/O Data Strobe: Output with read data, input with write data for
source syn chronous opera tion. Edge-aligne d with re ad data, ce nter
aligned with write data. DQS# is only used when differential data
strobe mode is enabled via the LOAD MODE command.
–J3,H2RDQS,
RDQS# Output Redundant Data Strobe for 64 Meg x 8 only. RDQS is enabled/
disabled via the LOAD MODE command to the Extended Mode
Register (EMR). When RDQS is enabled, RDQS is output with read
data only and is ig nored during w rite data. When RDQ S is disab led,
pin B3 becomes Data Mask (see DM pin). RDQS# is only used when
RDQS is enabled AND differential data strobe mode is enabled.
D1,H1,M9,R9,
V1 D1,H1,M9,R9,
V1 VDD Supply Power Supply: 1.8V ±0.1V
M1 M1 VDDL Supply DLL Pow er Suppl y: 1.8V ±0.1 V
D9,F1,F3,F7,
F9,H9,K1,K3,
K7,K9
D9,H9,K1,
K3,K7,K9 VDDQ Supply DQ Power Supply: 1.8V ±0.1V. Isolated on the device for improved
noise immunity.
M2 M2 VREF Supply SSTL_18 reference voltage.
Table 1: FBGA Ball Descriptions 128 Meg x 4 , 64 Meg x 8, 32 Meg x 16
x16 FBGA
BALL
ASSIGNMENT
x4, x8 FBGA
BALL
ASSIGNMENT SYMBOL TYPE DESCRIPTION
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 12 ©2003 Micron Technolog y, Inc. All rights reserv ed.
D3,H3,M3,T1,
U9 D3,H3,M3,T1,
U9 VSS Supply Ground.
M7 M7 VSSDL Supply DLL Ground. Isolated on the device from VSS and VSSQ.
D7,E2,E8,G2,
G8,H7,J2,J8,
L2,L8,
D7,H7,J2,
J8,L2,L8 VSSQ Supply DQ Ground. Isolated on the device for improved noise immunity.
A1,A2,A8,A9
D2,H2,V8,
AA1,AA2,AA8,
AA9
A1,A2,A8,A9,
D2,D8,E1-E3,
E7-E9,F1-F3,
F7-F9, G1-G3,
G7-G9,H2,J1,
J9,L1,L9,AA1,
AA2,AA8,AA9
NC No Connect: These pins should be left unconnected.
D1, D9, B1, B9 NF No Function: These pins are used as DQ4-DQ7 on the 64 Meg x 8,
but are NF (No Function) on the 128 Meg x 4 configuration.
D8,H8 H2,H8 NU Not Used: If EMR[E10] = 0, D8 and H8 are UDQS# and LDQS#.
If EMR[E10] = 1, then D8 and H8 are Not Used.
P1, V3, V7 P1, V3, V7 RFU Reserved for Future Use; 8 Bank address bit BA2(P1) for 1Gb, 2Gb,
4Gb densities. Row address bits A14(V3) and A15(V7) are reserved
for higher densities.
Table 1: FBGA Ball Descriptions 128 Meg x 4 , 64 Meg x 8, 32 Meg x 16
x16 FBGA
BALL
ASSIGNMENT
x4, x8 FBGA
BALL
ASSIGNMENT SYMBOL TYPE DESCRIPTION
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 13 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Functio n a l D e scrip tion
The 512Mb DDR2 SDRAM is a high-speed, CMOS
dynamic random-access memory containing
536,870,912 bits. The 512Mb DDR2 SDRAM is inter-
nally configured as a fo ur-bank DRAM.
The 512Mb DDR2 SDRAM uses a double data rate
architecture to achieve high-speed operation. The
DDR2 architecture is essentially a 4n-prefetch archi-
tec ture, with an i n ter face designed to transfer two data
words per clock cycle at the I/O pins. A single read or
write access for t he 512Mb DDR2 SDR AM c onsist s of a
single 4n-bit-w ide, one-clock -cycle da ta transfer at the
internal DRAM core and four corresponding n-bit-
wide, one-half-clock-cycle data transfers at the I/O
pins.
Prior to normal operation, the DDR2 SDRAM must
be initialized. The following sections provide detailed
information cov ering device initialization, register def-
inition, c o mmand descriptions, and device operation.
Figure 4: Functional Block Diag ram (32 Meg x 16)
13 ROW-
ADDRESS
MUX
CONTROL
LOGIC
COLUMN-
ADDRESS
COUNTER/
LATCH
MODE REGISTERS
10
A0-A12,
BA0, BA1
13
ADDRESS
REGISTER
15
256
(x64)
16,384
I/O GATING
DM MASK LOGIC
COLUMN
DECODER
BANK0
MEMORY
ARRAY
(8,192 x 256 x 64)
BANK0
ROW-
ADDRESS
LATCH
&
DECODER
8,192
SENSE AMPLIFIERS
BANK
CONTROL
LOGIC
15
BANK1
BANK2
BANK3
13
8
2
2
REFRESH
COUNTER
16
16 16
4
RCVRS
64
64
64
CK OUT
DATA
UDQS, UDQS#
LDQS, LDQS#
CK,CK#
CK,CK#
COL0,COL1
COL0,COL1
CK IN
DRVRS
DLL
MUX
DQS
GENERATOR
16
16
16
16
16
UDQS, UDQS#
LDQS, LDQS#
4
READ
LATCH
WRITE
FIFO
&
DRIVERS
DATA
16
16
16
16
64
2
2
2
2
MASK
2
2
2
22
8
16
16
2
BANK1
BANK2
BANK3
INPUT
REGISTERS
UDM, LDM
DQ0 - DQ15
VDDQ
R1
R1
R2
R2
sw1 sw2
VssQ
R1
R1
R2
R2
sw1 sw2
R1
R1
R2
R2
sw1 sw2
sw1 sw2
ODT CONTROL
RAS#
CAS#
CK
CS#
WE#
CK#
COMMAND
DECODE
CKE
ODT
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 14 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 5: Functional Block Diagram (64 Meg x 8)
Figure 6: Functional Block Diag ram (128 Meg x 4)
14 ROW-
ADDRESS
MUX
CONTROL
LOGIC
COLUMN-
ADDRESS
COUNTER/
LATCH
MODE REGISTERS
10
COMMAND
DECODE
A0-A13,
BA0, BA1
14
ADDRESS
REGISTER
16
256
(x32)
8,192
I/O GATING
DM MASK LOGIC
COLUMN
DECODER
BANK0
MEMORY
ARRAY
(16,384 x 256 x 32)
BANK0
ROW-
ADDRESS
LATCH
&
DECODER
16,384
SENSE AMPLIFIERS
BANK
CONTROL
LOGIC
16
BANK1
BANK2
BANK3
14
8
2
2
REFRESH
COUNTER
8
88
2
RCVRS
32
32
32
CK OUT
DATA
DQS, DQS#
Internal
CK,CK#
CK,CK#
COL0,COL1
COL0,COL1
CK IN
DRVRS
DLL
MUX
DQS
GENERATOR
8
8
8
8
8
DQ0 - DQ7
DQS, DQS#
2
READ
LATCH
WRITE
FIFO
&
DRIVERS
DATA
8
8
8
8
32
1
1
1
1
MASK
1
1
1
11
4
8
8
2
BANK1
BANK2
BANK3
INPUT
REGISTERS
DM
RDQS#
VDDQ
R1
R1
R2
R2
sw1 sw2
VssQ
R1
R1
R2
R2
sw1 sw2
R1
R1
R2
R2
sw1 sw2
sw1 sw2
ODT CONTROL
RAS#
CAS#
CK
CS#
WE#
CK#
CKE
RDQS
ODT
14
RAS#
CAS#
ROW-
ADDRESS
MUX
CK
CS#
WE#
CK#
CONTROL
LOGIC
COLUMN-
ADDRESS
COUNTER/
LATCH
MODE REGISTERS
11
COMMAND
DECODE
A0-A13,
BA0, BA1
CKE
14
ADDRESS
REGISTER
16
512
(x16)
8,192
I/O GATING
DM MASK LOGIC
COLUMN
DECODER
BANK0
MEMORY
ARRAY
(16,384 x 512 x 16)
BANK0
ROW-
ADDRESS
LATCH
&
DECODER
16,384
SENSE AMPLIFIERS
BANK
CONTROL
LOGIC
16
BANK1
BANK2
BANK3
14
9
2
2
REFRESH
COUNTER
4
44
2
RCVRS
16
16
16
CK OUT
DATA
DQS, DQS#
Internal
CK, CK#
CK, CK#
COL0,COL1
COL0,COL1
CK IN
DRVRS
DLL
MUX
DQS
GENERATOR
4
4
4
4
4
DQ0 - DQ3
DQS, DQS
#
2
READ
LATCH
WRITE
FIFO
&
DRIVERS
DATA
4
4
4
4
16
1
1
1
1
MASK
1
1
1
11
4
4
4
2
BANK1
BANK2
BANK3
INPUT
REGISTERS
DM
VDDQ
R1
R1
R2
R2
sw1 sw2
VssQ
R1
R1
R2
R2
sw1 sw2
R1
R1
R2
R2
sw1 sw2
ODT
sw1 sw2
ODT CONTROL
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 15 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Initialization
The following sequence is required for power-up
and initia lization and is shown in Figure7.
1. Apply power; if CKE is maintained below 0.2*
VDDQ, outputs remain disabled. To guarantee Rtt
(ODT Resistance) is off, VREF must be valid and a
low lev el must be applied to the ODT pin (all other
inputs may be undefined). At least one of the fol-
lowing two sets of conditions (A or B) must be
met:
A.CONDITION SET A
•V
DD, VDDL and VDDQ are driven from a single
power co nverter output
•V
TT is limited to 0.95V MAX
•V
REF tra c ks VDDQ/2.
B.CONDITION SET B
•Apply V
DD before or at the same time as VDDL.
•Apply V
DDL before or at the same time as VDDQ.
•Apply V
DDQ before or at the same time as VTT
and VREF.
2. For a minimum of 200µs after stable power and
clock (CK, CK#), apply NOP or DESELECT com-
mands and take CKE HIGH.
3. Wait a minimum of 400ns, then issue a PRE-
CHARGE ALL command.
4. Issue an LOAD MODE command to the EMR(2)
register. (To issue an EMR(2) command, provide
LOW to BA0, and HIGH to BA1.)
5. Issue a LOAD MODE command to the EMR(3)
register. (To issue an EMR(3) command, provide
HIGH to BA0 and BA1.)
6. Issue an LOAD MODE command to the EMR reg-
ister to en able DLL. To issue a DLL ENAB LE com-
mand, provide LOW to BA1, A0 and provide HIGH
to BA0. Bits E7, E8, and E9 must all be set to 0.
7. Issue a LOAD MODE command for DLL Reset.
200 cycles of clock input is required to lock the
DLL. (To issue a DLL Reset, provide HIGH to A8
and provide LOW to BA1 and BA0.)
8. Issue PRECHARGE ALL command.
9. Issue two or more REFRESH commands.
10. Issue a L OAD MODE c omman d with LO W to A8 to
initialize device operation (i.e., to program oper-
ating parameters without resetting the DLL).
11. The DDR2 SDRAM is now intialized and ready for
normal operation 200 clocks after DLL Reset in
step 7.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 16 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 7: DDR2 Power-Up and Init ialization
NOTE:
1. VTT is not applied directly to the dev ic e; howev er, tVTD should be grea ter than or e qua l to zero to avoid devi ce la tch-u p.
One of the following two conditions (a or b) MUST be met:
a)VDD, VDDL, and VDDQ are driven from a single power converter output.
VTT may be 0.95V maximum during power up.
VREF tracks VDDQ/2.
b)Apply VDD before or at the same time as VDDL.
Apply VDDL before or at the same time as VDDQ.
Apply VDDQ before or at the same time as VTT and V REF.
2. Either a NOP or DESELECT command may be applied.
3. 200 cycles of clock (CK, CK#) are required before a READ command can be issued.
4. Two or more REFRESH commands are required.
5. Bits E7, E8, and E9 must all be set to 0.
6. PRE = PRECHARGE command, LM = LOAD MODE command, REF = REFRESH command, ACT = ACTIVE command, RA =
Row Address, BA = Bank Address.
7. DM represents DM for x4, x8 configuration and UDM, LDM for x16 configuration.
DQS represents DQS, DQS#, UDQS, UDQS#, LDQS, LDQS#, RDQS, RDQS# for the appropriate configuration (x4,
x8, x16). DQ represents DQ0–DQ3 for x4, DQ0–DQ 7 for x8, and DQ0–DQ15 for x16.
8. CKE pin uses LVCMOS input levels prior to state T0. After state T0, CKE pin uses SSTL_18 input levels.
9. The LM command for EMR(2) and EMR(3) may be before or after LM command for MR (Tf0) and EMR (Te0).
10. ADDRESS represents A13-A0 for x4, x8, and A12-A0 for x16, BA0, and BA1. A10 should b e HIGH at states Tb0 and Tg0 to
ensure a PRECHARGE (all banks) command is issued.
t
VTD
1
CKE
Rtt
Power-up:
VDD and stable
clock (CK, CK#)
T = 200µs (min)
High-Z
DM
7
DQS
7
High-Z
ADDRESS10
CK
CK#
t
CL
V
TT
1
V
REF
V
DDL
V
DD
Q
COMMAND
6NOP
2
PRE
T0 Ta0
DON’T CARE
t
CL
t
CK
V
DD
ODT
DQ
7
High-Z
T = 400ns (min)
Tb0
200 cycles of CK
3
EMR with
DLL Enable
5
MR with
DLL Reset
tMRD tMRD tRP tRFC tRFC
CODE9
LM PRELM
5
REF
4
REF
4
LM5
CODE10 CODE10
Tg0 Th0 Ti0 Tj0
MR w/o
DLL Reset
tMRD
Tk0
Te0 Tf0
VALID
3
VALID
NORMAL
OPERATION
EMR(2)
9
EMR(3)
9
tMRD tMRD
LM
9
LM
9
CODE10 CODE10
tRP
Tc0 Td0
LVCMOS
LOW LEVEL
8
SSTL_18
LOW LEVEL
8
Indicates a break in
time scale
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 17 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Mode Register (MR)
The mode register is used to define the specific
mode of operation of the DDR2 SDRAM. This defini-
tion includes the selection of a burst length, burst type,
CAS latency, operating mode, DLL reset, write recov-
ery, and power-down mode as shown in Figure 8. Con-
tents of the mode register can be altered by re-
executing the LOAD MODE (LM) command. If the
user chooses to modify only a subset of the MR vari-
ables, all variables (M0–M14) must be programmed
when the LOAD MODE command is issued.
The mode register is programmed via the LM com-
mand (bits BA1, BA0 = 0, 0) and other bits (M13 - M0
for x4 and x8, M12 - M0 for x16) will retain the stored
information until it is programmed again or the device
loses power (except for bit M8, which is self-clearing).
Reprogramming the mode register will not alter the
contents of the memory array, pr ovided it is perf ormed
correctly.
The LOAD MODE command can only be issued (or
reissued) when all banks are in the precharged state.
The controller must wait the specified time tMRD
before initiating any subsequen t op era tions such as an
ACTIVE command. Violating either of these require-
ments will resul t in unspec ified operation.
Bur s t Le ng th
Burst length is defined by bits M0M3 as shown in
Figure 8. Read and writ e ac cesse s to th e DD R2 SDRA M
are burst-oriented, with the burst length being pro-
grammable to either four or eight. The burst length
determines the maximum number of column loca-
tions that can be accessed for a given READ or WRITE
command.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached. The block is uniquely
selected by A2–Ai when the burst length is set to four
and by A3–Ai when the burst length is set to eight
(where Ai is the most significant column address bit for
a given configuration). The remaining (least signifi-
cant) address bit(s) is (are) used to select the starting
location within the block. The programmed burst
length applies to both READ and WRITE bursts.
Figure 8: Mode Register (MR)
Definition
Burst Type
Accesses within a given burst may be programmed
to be either sequential or interleaved. The burst type is
selected via bit M3 as shown in Figu re 8. The order ing
of accesses within a burst is determined by the burst
length, the burst ty pe, and the starting column address
as shown in Table 2. DDR2 SDRAM supports 4-bit
burst a nd 8-bit burs t modes only. F or 8-bit bu rst mode ,
full interleave addres s ordering is supported; however,
sequential address ordering is nibble-based.
Burst LengthCAS# Latency BT
PD
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Mode Register (Mx
)
Address Bus
9765438210
A10A12 A11BA0BA1
10111213
0*
14
*M13 (A13) is reserved for future use and must be programmed to '0.'
A13 is not used in x16 configuration.
Burst Length
Reserved
Reserved
4
8
Reserved
Reserved
Reserved
Reserved
M0
0
1
0
1
0
1
0
1
M1
0
0
1
1
0
0
1
1
M2
0
0
0
0
1
1
1
1
0
1
Burst Type
Sequential
Interleaved
M3
CAS Latency
Reserved
Reserved
Reserved
3
4
Reserved
Reserved
Reserved
M4
0
1
0
1
0
1
0
1
M5
0
0
1
1
0
0
1
1
M6
0
0
0
0
1
1
1
1
0
1
Mode
Normal
Test
M7
15 DLL TM
0
1
DLL Reset
No
Yes
M8
WRITE RECOVERY
Reserved
2
3
4
5
6
Reserved
Reserved
M9
0
1
0
1
0
1
0
1
M10
0
0
1
1
0
0
1
1
M11
0
0
0
0
1
1
1
1
WR
A13
MR
0
1
0
1
Mode Register Definition
Mode Register (MR)
Extended Mode Register (EMR)
Extended Mode Register (EMR2)
Extended Mode Register (EMR3)
M15
0
0
1
1
0
1
PD mode
Fast Exit
(Normal)
Slow Exit
(Low Power)
M12
M14
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 18 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Operati ng Mo de
The n ormal op erating mode is selec ted by issuing a
LOAD MODE command with bit M7 set to zero, and all
other bits set to the desired values as shown in
Figure8. When bit M7 is1, no other bits of the mode
register are programmed. Programming bit M7 to ‘1’
places the DDR2 SDRAM into a test mode that is only
used by the Manufacturer and should NOT be used. No
operation or functionality is guarante ed if M7 bit is ‘1.’
DLL Reset
DLL rese t is de fined by bi t M8 as shown in Figu re 8.
Programming bit M8 to ‘1’ will activate the DLL RESET
function. Bit M8 is self-clearing, meaning it returns
back to a value of ‘0’ after the DLL RESET function has
been issued .
Anytime the DLL RESET function is used, 200 clock
cycles must occur before a READ command can be
issued to allow time for the internal clock to be syn-
chronized with the external clock. Failing to wait for
synchronization to occur may result in a violation of
the tAC or tDQSC K paramet e rs.
Write Recovery
Wr i te recovery (WR) time is defined by bits M9–M11
as shown in Figure8. The WR Register is used by the
DDR2 SDRAM during WRITE /w AUTO PRECHARGE
operation. During WRITE /w AUTO PRECHARGE
opera ti on, th e DDR2 SDRAM delays the in terna l AUTO
PRECHARGE operat ion by WR clocks (programmed in
bits M9-M11) from the last data burst. An example of
Write /w AUTO PRECHARGE is shown in Figure39 on
page 50.
Write Recovery ( WR) values of 2, 3, 4, 5, or 6 clocks
may be used for programming bits M9–M11. The user
is required to program the value of write recovery,
which is calculated by dividing tWR (in ns) by tCK (in
ns) and rounding up a noninteger value to the next
integer; WR [cycles] = tWR [ns] / tCK [ns]. Reserved
states should not be used as unknown operation or
incompatibility with f ut ure versions may result.
Power-Down Mode
Active power-down (PD) mode is defined by bit M12
as shown in Figure8. PD mode allows the user to
determine the active power-down mode, which deter-
mines performance vs. power savings. PD mode bit
M12 does not apply to precharge power-down mode.
When bit M12 = 0, standard Active Power-down
mode or ‘fast-exit’ active power-down mode is
enabled. The tXARD parameter is used for ‘fast-exit’
active power-down exit timing. The DLL is expected to
be enabled and running during this mode.
When bit M12 = 1, a lower power active power-down
mode or ‘slow-exit’ active power-down mode is
enabled. The tXARDS parameter is used for ‘slow-exit
active power-down exit timing. The DLL can be
enabled, but ‘frozen’ during active power-down mode
since the exit-to-READ command timing is relaxed.
The power difference expected between PD ‘normal’
and PD ‘low-power’ mode is defined in the IDD table.
CAS Latency (CL)
The CAS Latency (CL) is defined by bits M4–M6 as
shown in Figure8. CAS Latency is the delay, in clock
cycles, between the registration of a READ command
and the availability of the first bit of output data. The
CAS Latency can be set to 3 or 4 clocks. CAS Latency of
2 or 5 clocks are JEDEC optional features and may be
enabled in future speed grades. DDR2 SDRAM does
not support any half clock latencies. Reserved states
should not be used as unknown operation or incom-
patibility with future versions may result.
DDR2 SDRAM also supports a feature called Posted
CAS additive latency (AL). This feature allows the
READ command to be issued prior to tRCD(MIN) by
delaying the internal command to the DDR2 SDRAM
by AL clocks . The AL featur e is described in mor e detail
in the Extended Mode Register (EMR) and Operational
sections.
Table 2: Burst Definition
BURST
LENGTH
STARTING
COLUMN
ADDRESS
(A2, A1,
A0)
ORDER OF ACCESSES WITHIN
A BURST
BURST TYPE =
SEQUENTIAL BURST TYPE =
INTERLEAVED
4 0 0 0 0,1,2,3 0,1,2,3
0 0 1 1,2,3,0 1,0,3,2
0 1 0 2,3,0,1 2,3,0,1
0 1 1 3,0,1,2 3,2,1,0
8 0 0 0 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7
0 0 1 1,2,3,0,5,6,7,4 1,0,3,2,5,4,7,6
0 1 0 2,3,0,1,6,7,4,5 2,3,0,1,6,7,4,5
0 1 1 3,0,1,2,7,4,5,6 3,2,1,0,7,6,5,4
1 0 0 4,5,6,7,0,1,2,3 4,5,6,7,0,1,2,3
1 0 1 5,6,7,4,1,2,3,0 5,4,7,6,1,0,3,2
1 1 0 6,7,4,5,2,3,0,1 6,7,4,5,2,3,0,1
1 1 1 7,4,5,6,3,0,1,2 7,6,5,4,3,2,1,0
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 19 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Examples of CL = 3 and CL = 4 are shown in Figure 9;
both assume AL = 0. If a READ command is registered
at clock edge n, and the CAS Latency is m clocks, the
data will be available nominally coincident with clock
edge n + m (this assumes AL = 0). Figure 9: CAS Latency (CL)
D
OUT
n + 3
D
OUT
n + 2
D
OUT
n + 1
CK
CK#
COMMAND
DQ
DQS, DQS#
CL = 3 (AL = 0)
READ
Burst length = 4
Posted CAS# additive latency (AL) = 0
Shown with nominal tAC, tDQSCK, and tDQSQ
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP NOP NOP
D
OUT
n
T3 T4 T5
NOP NOP
T6
NOP
D
OUT
n + 3
D
OUT
n + 2
D
OUT
n + 1
CK
CK#
COMMAND
DQ
DQS, DQS#
CL = 4 (AL = 0)
READ
T0 T1 T2
NOP NOP NOP
D
OUT
n
T3 T4 T5
NOP NOP
T6
NOP
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 20 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Extended Mode Register (EMR)
The extended mode register controls functions
beyond those controlled by the mode register; these
additional functions are DLL enable/disable, output
drive strength, ODT (RTT), Posted CAS additive latency
(AL), off-chip driver impedance calibration (OCD),
DQS# enable/disable, RDQS/RDQS# enable/disable,
and OUTPUT disable/enable. These functions are
controlled via the bits shown in Figure 10. The
extended mode register is programmed via the LOAD
MODE (LM) command and will retain the stored infor-
mation until it is programmed again or the device
loses power. Reprogramming the extended mode reg-
ister will not alter the contents of the memory array,
provided it is perfor med correctly.
The extended mode register must be loaded when
all banks are idle and no bursts are in progress, and the
controller must wait the specified time tMRD before
init iati ng an y su bseq uent o per atio n. Violat in g eit her o f
these requirements could result in unspecified opera-
tion.
Figure 10: Extended Mode Register
Definition
DLL Enable/Di sabl e
The DLL may be enabled or disabled by program-
ming bit E0 during the LOAD MODE command as
shown in Figure 1 0. The DLL must be ena bled for nor-
mal operation. DLL enable is required during power-
up initialization and upon returning to normal opera-
tion after having disabled the DLL for the purpose of
debugging or evaluation. Enabling the DLL should
always be f ollowed by resetting the D LL using a LOAD
MODE command.
The DLL is automatically disabled when entering
self refresh operation and is automatically re-enabled
and reset upo n e xit of self refresh operatio n.
Any time the DLL is enabled (and subsequently
reset), 200 clock cycles must occur before a READ
command can be issued to allow time for the internal
clock to be synchronized with the external clock. Fail-
ing to wait for synchronization to occur may result in a
violation of the tAC or tDQSCK parameters.
Output Drive Strength
The output drive strength is defined by bit E1 as
shown in Figure 10. The normal drive strength for all
outputs are specified to be SSTL_18. Programming bit
E1 = 0 selects normal (100 percent) drive strength for
all outputs. Selecting a reduced drive strength option
(bit E1 = 1) will redu ce all outputs to approximately 60
percent of the SSTL_18 drive strength. This option is
intended for the support of the lighter load and/or
point-to-point environments.
DQS# Enable/Disable
The DQS# enable function is defined by bit E10.
When enabled (bit E10 = 0), DQS# is the complement
of the differential data strobe pair DQS/DQS#. When
disabled (bit E10 = 1), DQS is used in a single-ended
mode and the DQS# pin is disabled. This function is
also used to enable/disable RDQS#. If RDQS is enabled
(E11 = 1) and DQS# is enabled (E10 = 0), then both
DQS# and RDQS# will be enabled.
RDQS Enable/Disable
The RDQS enable function is defined by bit E11 as
shown in Figure 10. This feature is only applicable to
the 32 Meg x 8 con figuration. When enabled (E11 = 1),
RDQS is identical i n fu nc ti on and timing to da ta strobe
DQS during a READ. During a WRITE operation, RDQS
is ignored by the DDR2 SDRAM.
DLLPosted CAS# Rttout
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
9765438210
A10A12 A11BA0BA1
10111213
0*
14
0
1
Output Drive Strength
100%
60%
E1
Posted CAS# Additive Latency (AL)
0
1
2
3
4
Reserved
Reserved
Reserved
E3
0
1
0
1
0
1
0
1
E4
0
0
1
1
0
0
1
1
E5
0
0
0
0
1
1
1
1
0
1
DLL Enable
Enable (Normal)
Disable (Test/Debug)
E0
15
0
1
RDQS Enable
No
Yes
E11
OCD Program
A13
ODS
Rtt
DQS#
0
1
DQS# Enable
Enable
Disable
E10
RDQS
Rtt (nominal)
Rtt Disabled
75 ohm
150 ohm
Reserved
E2
0
1
0
1
E6
0
0
1
1
OCD Operation
OCD Not Supported
Reserved
Reserved
Reserved
Reserved
E7
0
1
0
0
1
E8
0
0
1
0
1
E9
0
0
0
1
1
0
1
Outputs
Enabled
Disabled
E12
0
1
0
1
Mode Register Definition
Mode Register (MR)
Extended Mode Register (EMR)
Extended Mode Register (EMR2)
Extended Mode Register (EMR3)
E15
0
0
1
1
E14
EMR
*M13 (A13) is reserved for future use and must be programmed to '0.'
M13 is not used in x16 configuration.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 21 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Output Enable/Disable
The OUTPUT enable function is defined by bit E12
as shown in Figure 10. When enabled (E12 = 0 ) , all out-
puts (DQs, DQS, DQS#, RDQS, RDQS#) function nor-
mally. When disabled (E12 = 1), all DDR2 SDRAM
outputs (DQs, DQS, DQS#, RDQS, RDQS#) are disabled
removing output buffer current. The OUTPUT disable
featu re is intended t o be used during IDD characteriza-
tion of read current.
On Die Termination (ODT)
ODT effe c tive resist ance RTT (EFF) is defined by bits
E2 and E6 of the EMR as shown in Figure 10. T he ODT
feature is designed to improve signal integrity of the
memory channel by allowing the DDR2 SDRAM con-
troller to independently turn on/off ODT for any or all
devices. RTT effective resistance values of 75W and
150W are selectable and apply to each DQ, DQS/DQS#,
RDQS/RDQS#, UDQS/UDQS#, LDQS/LDQS#, DM,
and UDM/LDM signals. A functional representation of
ODT is shown in block diagrams Figure 4 on page 13,
Figure5 on p age 14, and Figure 6 on page 14 for the x4,
x8, and x16 configurations, respectively. Bits (E6, E2)
determine what ODT resistance is enabled by turning
on/off ‘sw1’ or ‘sw2’. The ODT effective resistance
value is selected by enabling switchsw1,’ which
enable s all ‘R1’ values th at are 150W each, enabling an
effective resistance of 75W (RTT (EFF1) = ‘R1’ / 2). Sim-
ilarly, if ‘sw2’ is enabled, all ‘R2’ values that are 300W
each, enable an effective ODT resistance of 150W (RTT
(EFF2) = ‘R2’/2). Reserved states should not be used, as
unknown operatio n or incompatibility with future ver-
sions may result.
The ODT control pin is used to determine when
RTT(EFF) is turned on and off, assuming ODT has been
enabled via bits E2 and E6 of the EMR. The ODT fea-
ture and ODT input pin are only used during active,
active power-down (both fast-exit and slow-exit
modes), and precharge power-down modes of opera-
tion. If SELF REFRESH operation is used, RTT (EFF)
should always be disabled and the ODT input pin is
disabled by the DDR2 SDRAM. During power-up and
initial izat ion of the DDR2 SDRA M, ODT should be d is-
abled until the EMR command is issued to enable the
ODT feature, at which point the ODT pin will deter-
mine the RTT (EFF) value. See “ODT Timing” on
page 65 f or ODT timing diagrams.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 22 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Off-Chip Driver (OCD) Impedan c e Calibratio n
The OCD function is no longer supported and must
be set to the de fault state. E7, E8, and E9 must be set t o
0.
Posted CAS Additive Laten cy (AL)
Posted CAS additive latency (AL) is supported to
make the command and data bus efficient for sustain-
able bandwidths in DDR2 SDRAM. Bits E3–E5 define
the value of AL as shown in Figure 10. Bits E3–E5 allow
the user to program the DDR2 SDRAM with a CAS#
Additive latency of 0, 1, 2, 3, or 4 clocks. Reserved states
should not be used as unknown operation or incom-
patibility with future versions may result.
In this operation, th e DDR2 SDRAM allows a READ
or WRITE command to be issued prior to tRCD (M IN )
with the requirement that AL £ tRCD(MIN). A typical
application using this feature would set AL = tRCD
(MIN) - 1 x tCK. The READ or WRITE command is held
for the time of the additive latency (AL) before it is
issued internally to the DDR2 SDRAM device. READ
Latency (RL) is controlled by the sum of the Posted
CAS additive latency (AL) and CAS Latency (CL); RL =
AL + CL. Write latency (WL) is equal to READ latency
minus one clock; WL = AL + CL - 1 x tCK. An example
of a READ latency is shown in Figure 11. An example of
a WRITE la t en cy is shown in Figure12.
Figure 11: READ Laten c y
Figure 12: Write Latency
D
OUT
n + 3
D
OUT
n + 2
D
OUT
n + 1
CK
CK#
COMMAND
DQ
DQS, DQS#
AL = 2
ACTIVE n
Burst length = 4
Shown with nominal tAC, tDQSCK, and tDQSQ
T0 T1 T2
DON’T CARETRANSITIONING DATA
READ nNOP NOP
D
OUT
n
T3 T4 T5
NOP
T6
NOP
T7 T8
NOP NOP
CL = 3
RL = 5
CAS# latency (CL) = 3
Additive latency (AL) = 2
READ latency (RL) = AL + CL = 5
tRCD (MIN)
NOP
CK
CK#
COMMAND
DQ
DQS, DQS#
ACTIVE n
Burst length = 4
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP NOP
T3 T4 T5
NOPWRITE n
T6
NOP
D
in
n + 3
D
in
n + 2
D
in
n + 1
WL = AL + CL - 1 = 4
T7
NOP
D
in
n
CAS# latency (CL) = 3
Additive latency (AL) = 2
WRITE latency = AL + CL -1 = 4
t
RCD (MIN)
NOP
AL = 2 CL - 1 = 2
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 23 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Extended Mode Register 2 (EMR2)
The Extended Mode Register 2 (EMR2) controls
functions beyond those controlled by the mode regis-
ter. Currently all bits in EMR2 are reserved as shown in
Figure 13. The EMR2 is programmed via the LOAD
MODE command and will retain the stored informa-
tion until it is programmed again or the device loses
power. Reprogramming the extended mode register
will not alter the contents of the memory array, pro-
vided it is performed correctly.
The extended mode register must be loaded when
all banks are idle and no bursts are in progress, and the
controller must wait the specified time tMRD before
initiating any subsequent operation. Violating either
of these r equir em ents coul d r es ult in uns pecif ied oper -
ation.
Figure 13: Extended Mode Register 2
(EMR2) Definition
Extended Mode Register 3 (EMR3)
The Extended Mode Register 3 (EMR3) controls
functions beyond those controlled by the mode regis-
ter. Currently all bits in EMR3 are reserved as shown in
Figure 14. The EMR3 is programmed via the LOAD
MODE command and will retain the stored informa-
tion until it is programmed again or the device loses
power. Reprogramming the extended mode register
will not alter the contents of the memory array, pro-
vided it is performed correctly.
The extended mode register must be loaded when
all banks are idle and no bursts are in progr ess, and the
controller must wait the specified time tMRD before
initiating any subsequent operation. Violating either of
these requirements could result in unspecified opera-
tion.
Figure 14: Extended Mode Register 3
(EMR3) Definition
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
9765438210
A10A12 A11BA0BA1
10111213
0*
14
* E13 (A13) - E0 (A0) are reserved for future
use and must all be programmed to '0'.
A13 is not used in x16 configuration.
15
A13
0
1
0
1
Mode Register Definition
Mode Register (MR)
Extended Mode Register (EMR)
Extended Mode Register (EMR2)
Extended Mode Register (EMR3)
M15
0
0
1
1
M14
EMR2 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
9765438210
A10A12 A11BA0BA1
10111213
0*
1415
A13
0
1
0
1
Mode Register Definition
Mode Register (MR)
Extended Mode Register (EMR)
Extended Mode Register (EMR2)
Extended Mode Register (EMR3)
M15
0
0
1
1
M14
EMR3 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*
* E13 (A13) - E0 (A0) are reserved for future
use and must all be programmed to '0'.
A13 is not used in x16 configuration.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 24 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Command Truth Tables
The following tables provide a quick reference of
DDR2 SDRAM available commands, including CKE
power-down modes, and bank-to-bank commands.
NOTE:
1. All DDR2 SDRAM commands are defined by states of CS#, RAS#, CAS#, WE#, and CKE at the rising edge of the clock.
2. Bank addresses (BA) BA0, BA1 determine which bank is to be operated upon. BA during a Load Mode command selects
which mode register is programmed.
3. Burst reads or writes at BL = 4 cannot be terminated or interrupted. See sections “Read Interrupted by a Read” and
“Write Interrupted by a Write” for other restrictions and details.
4. The Power Down Mode does not perform any refresh operations. The duration of power-down is therefore limited by
the refresh requirements outlined in the AC parametric section.
5. The state of ODT does not affect the states described in this table. The ODT function is not available during self refresh.
See the ODT section for details.
6. “X” means “H or L” (but a defined logic level).
7. Self refresh exit is asynchronous.
Table 3: Truth Table – DDR2 Commands
Notes: 1, 5, and 6 apply to the entire Table.
FUNCTION CKE CS# RAS# CAS# WE# BA1,
BA0 A13–
A11 A10 A9–A0 NOTES
PREVIOUS
CYCLE CURRENT
CYCLE
Load Mode H H L L L L BA OP Code 2
Refresh HHLLLHXXXX
Self Refresh Entry HLLLLHXXXX
Self Refresh Exit LH
HXXX XXXX 7
LHHH
Single Bank
Precharge HHLLHLBAXLX2
ALL Banks Prechar ge HHLLHLXXHX
Bank Activate H H L L H H BA Row Address
Write HHLHLLBA
Column
Address LColumn
Address 2, 3
Write with Auto
Precharge HHLHLLBA
Column
Address HColumn
Address 2, 3
Read HHLHLHBA
Column
Address LColumn
Address 2, 3
Read with Auto
Precharge HHLHLHBA
Column
Address HColumn
Address 2, 3
No Operation HXLHHHXXXX
Device Deselect HXHXXXXXXX
Power -Down Entry HL
HXXX XXXX 4
LHHH
Power -D o wn Exi t LH
HXXX XXXX 4
LHHH
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 25 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. This table applies when CKEn - 1 was HIGH and CKEn is HIGH (see Table 4) and after tXSNR has been met (if the pr evious
state was self refresh).
2. This table is b ank-sp ecific, ex cept w here noted (i.e ., the current state is for a specific bank and the commands shown a re
those allowed to be issued to that bank when in that state). Exceptions are covered in the notes below.
3. Current state definitions:
Idle: The bank has been precha rged , and tRP has been met.
Row Active : A row in the bank has bee n ac tivated, and tRCD ha s been met. No data bursts/accesses and no reg-
ister accesses are in progress.
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated.
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated.
4. The following states must not be interrupted by a command issued to the same bank. DESELECT or NOP commands, or
allowable commands to the other bank, should be issued on any clock edge occurring during these states. Allowable
commands to the other bank are determined by its current state and Ta ble 4, and according to Table 5.
Precharging: Starts with registration of a PRECHARGE command and ends when tRP is met. Once tRP is met, the
bank will be in the idle state.
Row Activating: Starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is met,
the bank will be in the “row active” state.
Read with Auto Precharge Enabled: Starts with registration of a READ command with auto precharge enabled
and ends when tRP has been met. Once tRP is met, the bank will be in the idle state.
Write with Auto Precharge Enabled: Starts with registration of a WRI TE command with au to precharge enabled
and ends when tRP has been met. Once tRP is met, the bank will be in the idle state.
5. The following states must not be interrupted by any executable command; DESELECT or NOP commands must be
applied on each positive clock edge during these states.
Refreshing: Starts with registration of an REFRESH command and ends when tRFC is met. Once tRFC is met, the
DDR2 SDRAM will be in the all banks idle state.
Accessing Mode Register: Starts with registration of a LOAD MODE command and ends when tMRD has been
met. On ce tMRD is met, the DDR2 SDRAM will be in the all banks idle state.
Precharging All: Starts with registration of a PRECHARGE ALL command and ends when tRP is met. Once tRP is
met, all banks will be in the idle state.
6. All states and sequences not shown are illegal or reserved.
Table 4: Truth Table – Current State Bank n - Command to Bank n
Notes: 1–6; notes appear below and on next page
CURRENT
STATE CS# RAS# CAS# WE# COMMAND/ACTION NOTES
Any HXXX
DESELECT (NOP/continue previous operation)
LHHH
NO OPERATION (NOP/continue previous
operation)
Idle L L H H ACTIVE (select and activate row)
LLLH
REFRESH 7
LLLL
LOAD MODE 7
Row ActiveLHLH
READ (select column and start READ burst) 9
LHLL
WRITE (select column and start WRITE burst) 9
LLHL
PRECHARGE (deactivate row in bank or banks) 8
Read (Auto-
Precharge
Disabled
LHLH
READ (select column and start new READ burst) 9
LHLL
WRITE (select column and start WRITE burst) 9, 11
LLHL
PRECHARGE ( start precharge) 8
Write (Auto-
Precharge
Disabled)
LHLH
READ (select column and start READ burst) 9, 10
LHLL
WRITE (select column and start ne w WRITE burst) 9
LLHL
PRECHARGE (start precharge) 8, 10
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 26 ©2003 Micron Technolog y, Inc. All rights reserv ed.
7. Not bank-specific; requires that all banks are idle, and bursts are not in progress.
8. May or may not be bank-specific; if multiple banks are to be precharged, each must be in a valid state for precharging.
9. READs or WRITEs listed in the Command/Action column include READs or WRITEs with auto precharge enabled and
READs or WRITEs with auto precharge disabled.
10. Requires appropriate DM masking.
11. AWRITE command may be applied after the completion of the READ burst.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 27 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. This table applies when CKEn - 1 was HIGH and CKEn is HIGH (see Tr uth Table 2) and after tXSNR has been met (if the
previous state was self refresh).
2. This table describes alternate bank operation, except where noted (i.e., the current state is for bank n and the com-
mands shown are those allowed to be issued to bank m, assuming that bank m is in such a state that the given com-
mand is allowable). Exceptions are covered in the notes below.
3. Current state definitions:
Idle: The bank has been precharged, and tRP has been met.
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no reg-
ister accesses are in progress.
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated.
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated.
Read with Aut o Prech arg e Ena bled : See following text – 3a
Write with Auto Precharge Enabled: See following text – 3a
3a.The read with auto precharge enabled or write with auto precharge enabled states can each be broken into
two parts: the access period and the precharge period. For read with auto precharge, the precharge period is
defined as if the same burst was executed with auto precharge disabl ed and then fo llowed with the earlie st pos-
sible PRECHARGE command that still accesses all of the data in the burst. For write with auto precha rge, the pre-
charge period begins when tWR ends, with tWR measured as if auto precharge was disabled. The access period
starts with registration of the command and ends where the precharge period (or tRP) begins.
This device suppo rts concurrent auto precharge such that wh en a read with auto prec harge is enabled or a write
with auto precharge is enabled any command to other banks is allowed, as long as that command does not
interrupt the read or write data transfer already in process. In either case, all other related limitations apply
(e.g., contention between read data and write data must be avoided).
Table 5: Truth Table – Current State Bank n - Command to Bank m
Notes: 1–6; notes appear below
CURRENT STATE CS# RAS# CAS# WE# COMMAND/ACTION NOTES
Any HXXX
DESELECT (NOP/continue previous operation)
LHHH
NO OPERATION (NOP/continue previous operation)
Idle XXXX
Any Command Otherwise Allowed to Bank m
Row Activating,
Act ive, or
Precharging
LLHH
ACT IVE (s elect and activate row)
LHLH
READ (select column and start READ burst) 7
LHLL
WRITE (select column and start WRITE burst) 7
LLHL
PRECHARGE
Read (Auto
Precharge
Disabled
LLHH
ACT IVE (s elect and activate row)
LHLH
READ (select column and start new READ burst) 7
LHLL
WRITE (select column and start WRITE burst) 7, 9
LLHL
PRECHARGE
Write (Auto
Precharge
Disabled.)
LLHH
ACT IVE (s elect and activate row)
LHLH
READ (select column and start READ burst) 7, 8
LHLL
WRITE (select column and start new WRITE burst) 7
LLHL
PRECHARGE
Read (with Auto-
Precharge)
LLHH
ACT IVE (s elect and activate row)
LHLH
READ (select column and start new READ burst) 7, 3a
LHLL
WRITE (select column and start WRITE burst) 7, 9, 3a
LLHL
PRECHARGE
Write (w ith Auto-
Precharge)
LLHH
ACT IVE (s elect and activate row)
LHLH
READ (select column and start READ burst) 7, 3a
LHLL
WRITE (select column and start new WRITE burst) 7, 3a
LLHL
PRECHARGE
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 28 ©2003 Micron Technolog y, Inc. All rights reserv ed.
3b.The minimum delay from a read or write command with auto precharge enabled, to a command to a differ-
ent bank is summarized below.
4. REFRESH and LOAD MODE commands may only be issued when all banks are idle.
5. Not used.
6. All states and sequences not shown are illegal or reserved.
7. READs or WRITEs listed in the Command/Action column include READs or WRITEs with auto precharge enabled and
READs or WRITEs with auto precharge disabled.
8. Requires appropriate DM masking.
9. A WRITE command may be applied after the completion of the READ burst.
Table 6: Concurrent Auto Precharge
CL = CAS Latency; BL = bust length; WL = WRITE latency
FROM
COMMAND
(BANK n)TO COMMAND (BANK m)MINIMUM DELAY (WITH CONCURRENT
AUTO PRECHARGE) UNITS
WRITE with
Auto
Precharge
READ or READ w/AP (CL - 1) + (BL / 2) + tWTR tCK
WRITE or WRITE w/AP (BL / 2) tCK
PRECHARGE or ACTIVE 1 tCK
READ with
Auto
Precharge
READ or READ w/AP (BL / 2) tCK
WRITE or WRITE w/AP (BL / 2) + 2 tCK
PRECHARGE or ACTIVE 1 tCK
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 29 ©2003 Micron Technolog y, Inc. All rights reserv ed.
DESELECT, NOP, and LOAD MODE Commands
DESELECT
The DESELECT function (CS# HIGH) prevents new
commands from being executed by the DDR2 SDRAM.
The DDR2 SDRAM is effectively deselected. Opera-
tion s al ready in pr og ress are not affec ted.
NO OPERATION (NOP)
The NO OPERATION (NOP) command is used to
instruct the selected DDR2 SDRAM to perform a NOP
(CS# is LOW; RAS#, CAS#, and WE are HIGH). This pre-
vent s unwanted commands fr om bei n g registered dur-
ing idle or wait states. Operations already in progress
are not af fecte d.
LOAD MODE (LM)
The mode registers are loaded via inputs BA1, BA0
and A13 – A0 for x4 and x8, and A12 - A0 for x16 config-
urations. BA1 and BA0 determine whic h mode reg ister
will be programmed. See “Mode Register (MR)” on
page 17. The LOAD MODE command can only be
issued when all banks are idle, and a subsequent exe-
cutable command cannot be issued until tMRD is met.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 30 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Bank/Row Activation
ACTIVE Command
The ACTIVE command is used to open (or activate)
a row in a part icular b ank for a sub sequent acce ss. The
value on the BA0, BA1 inputs selects the bank , and the
address provided on inputs A0–A12 selects the row.
This row remains active (or open) for accesses until a
PRECHARGE command is issued to that bank. A PRE-
CHARGE command must be issued before opening a
different row in the same bank.
ACTIVE Operation
Before any READ or WRITE commands can be
issued to a bank within the DDR2 SDRAM, a row in
that bank must be “opened” (activated). This is accom-
plished via the ACTIVE command, which selects both
the bank and the row to be activated, as shown in
Figure 15.
After a row is opened with an ACTIVE command, a
READ or WRITE command may be issued to that row,
subject to the tRCD specification. tRCD (MIN) s hould
be divided by the clock period and rounded up to the
next whole number to determine the earliest clock
edge after the ACTIVE command on which a READ or
WRITE comman d c an be entered. Th e s ame pr oc edu re
is used to convert other specification limits from time
units to cloc k cycles. For example, a tRC D(M IN ) s pe ci-
fication of 20ns with a 266 MHz clock (tCK = 3.75ns)
results in 5.3 clocks rounded up to 6. This is reflected
in Figure 16, which covers any case where 5 < tRCD
(MIN) / tCK £ 6. Figure 16 also shows the case for tRRD
wher e 2 < tRRD (MIN) / tCK £ 3.
A subsequent ACTIVE command to a different row
in the same bank can only be issued after the previous
active row has been “closed” (precharged). The mini-
mum time interval between successive ACTIVE com-
mands to the sam e bank is def ined by tRC.
A subsequent ACTIVE command to another bank
can be issued while the first bank is being accessed,
which results in a reduction of total row-access over-
head. The minimum time inter val between successive
ACTIVE commands to different banks is defined by
tRRD.
DDR2 SDRAM also supports the Posted CAS addi-
tive latency (AL) feature, which allows a READ or
WRITE command to be issued prior to tRCD (MIN) by
delaying the actual registration of the READ/WRITE
command to the internal device by AL clock cycles.
Examples of additive latency are shown in the READ
Command operation section.
Figure 15: ACTIVE Command
Figure 16: Example: Meeting tRRD (MIN) and tRCD (MIN)
DON’T CARE
CK
CK#
CS#
RAS#
CAS#
WE#
CKE
Row
Bank
ADDRESS
BA0, BA1
COMMAND
DON’T CARE
T1T0 T2 T3 T4 T5 T6 T7
t
RRD
Row Row Col
Bank xBank yBank y
NOPACT NOP NOPACT NOP NOP RD/WR
t
RCD
BA0, BA1
CK#
ADDRESS
CK
T8 T9
NOP NOP
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 31 ©2003 Micron Technolog y, Inc. All rights reserv ed.
READs
READ Comma nd
The R EAD com mand is used t o initiate a burs t read
access to an active row. The value on the BA0, BA1
inputs selects the bank, and the address provided on
inputs A0– i (where i = A9 for x16, A9 for x8, or A9, A11
for x4) selects the starting column location. The value
on input A10 determines whether or not auto pre-
charge is used. If auto precharge is selected, the row
being accessed will be precharged at the end of the
READ burst; if auto precharge is not selected, the row
will remain open for subsequent accesses.
READ Operation
READ bursts are initiated with a READ command, as
shown in Figure 17. The starting column and bank
addresses are provided with the READ command and
auto precharge is either enabled or disabled for that
burst access. If auto precharge is enabled, the row
being accessed is automatically precharged at the
completion of the burst. If auto precharge is disabled,
the row will be left open after the completion of the
burst.
Figure 17: READ Command
During READ bursts, the valid data-out element
from the starting column address will be available
READ latency (RL) clocks later. READ latency (RL) is
defined as th e sum of Posted CAS additive latenc y (AL)
and CAS Latency (CL); RL = AL + CL. The value for AL
and CL are programmable via the MR and EMR com-
mands, respectively. Each subsequent data-out ele-
ment will be valid nominally at the next positive or
negative clock edge (i.e., at the next crossing of CK and
CK#). Figure18 shows examples of READ latency
based on different AL and CL settings.
DON’T CARE
CK
CK#
CS#
RAS#
CAS#
WE#
CKE
Col
Bank
ADDRESS
BA0, BA1
AUTO PRECHARGE
ENABLE
DISABLE
A10
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 32 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 18: READ Latency
NOTE:
1. DO n = data-out from column n.
2. Burst length = 4.
3. Three subsequent elements of data-out appear in the programmed order following DO n.
4. Shown with nominal tAC, tDQSCK, and tDQSQ.
READ NOP NOP NOP NOP NOP
Bank a,
Col n
CK
CK#
COMMAND
ADDRESS
DQ
DQS,DQS#
DO
n
DO
n
T0 T1 T2 T3 T4n T5nT4 T5
CK
CK#
COMMAND
READ NOP NOP NOP NOP NOP
ADDRESS
Bank a,
Col n
RL = 3 (AL = 0, CL = 3)
DQ
DQS, DQS#
DO
n
T0 T1 T2 T3 T3n T4nT4 T5
CK
CK#
COMMAND
READ NOP NOP NOP NOP NOP
ADDRESS
Bank a,
Col n
RL = 4 (AL = 0, CL = 4)
DQ
DQS, DQS#
T0 T1 T2 T3 T3n T4nT4 T5
AL = 1 CL = 3
RL = 4 (AL + CL)
DON’T CARE TRANSITIONING DATA
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 33 ©2003 Micron Technolog y, Inc. All rights reserv ed.
DQS/DQS# is driven by the DDR2 SDRAM along
with output data. The initial LOW state on DQS and
HIGH state on DQS# is known as the READ preamble
(tRPRE). The LOW state on DQS and HIGH state on
DQS# coincident with the last data-out element is
known as the read postamble (tRPST).
Upon completion of a burst, assuming no other
commands have been initiated, the DQs will go High-
Z. A detailed explanation of tDQSQ (valid data-out
skew), tQH (data-out window hold), the valid data win-
dow are depicted in Figur e 27 on page 40 and Figure 28
on page 41. A detailed explanation of tDQSCK (DQS
transition skew to CK) and tAC (data-out transition
skew to CK) is shown in Figure 29 on page42.
Data from any READ burst may be concatenated
with data from a subsequent READ command to pro-
vide a continuous flow of data. The first data element
from the new burst follows the last element of a com-
pleted burst. The new READ command should be
issued x cycl es af ter the first REA D comman d, where x
equals BL / 2 cycles. This is shown in Figure 19.
Figure 19: Consecutive READ Bursts
NOTE:
1. 1. DO n (or b) = data-out from col umn n (or column b).
2. Burst length = 4.
3. Three subsequent elements of data-out appear in the programmed order following DO n.
4. Three subsequent elements of data-out appear in the programmed order following DO b.
5. Shown with nominal tAC, tDQSCK, and tDQSQ.
6. Example applies only when READ commands are issued to same device.
CK
CK#
COMMAND
READ NOP READ NOP NOP NOP NOP
ADDRESS
Bank,
Col nBank,
Col b
COMMAND
READ NOP READ NOP NOP NOP
ADDRESS
Bank,
Col nBank,
Col b
RL = 3
CK
CK#
COMMAND
ADDRESS
DQ
DQS, DQS#
RL = 4
DQ
DQS, DQS#
DO
nDO
b
DO
nDO
b
T0 T1 T2 T3 T3n T4nT4 T5 T6
T5n T6n
T0 T1 T2 T3T2n
NOP
T3n T4nT4 T5 T6
T5n T6n
DON’T CARE TRANSITIONING DATA
tCCD
tCCD
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 34 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 20: Nonconsecutive READ Bursts
NOTE:
1. DO n (or b) = data-out from column n (or column b).
2. Burst length = 4.
3. Three subsequent elements of data-out appear in the programmed order following DO n.
4. Three subsequent elements of data-out appear in the programmed order following DO b.
5. Shown with nominal tAC, tDQSCK, and tDQSQ.
6. Example applies when READ commands are issued to different devices or nonconsecutive READs.
Non consecuti ve read data is i llustrated in Fig ure 20
on page 34. Full-speed random read accesses within a
page (or pages) ca n be pe rf orme d. DDR 2 SDRA M sup-
ports the use of concurrent auto precharge timing,
which is shown in Tabl e 7 on page 35.
DDR2 SDRAM does not allow interrupting or trun-
cating of any READ burst using BL = 4 operations.
Once the BL = 4 READ command is registered, it must
be allowed to complete the entire READ burst. How-
ever, a READ (with AUTO PRECHARGE disabled) using
BL = 8 operation may be interrupted and truncated
ONLY by another READ burst as long as the interrup-
tion occurs on a four-bit boundary due to the 4n
prefetch architecture of DDR2 SDRAM. READ burst BL
= 8 operations may not be interrupted or truncated
with an y c ommand exc ept another READ co mmand as
shown in Figure21 on page 36 .
CK
CK#
COMMAND READ NOP NOP NOP NOP NOP NOP NOP
ADDRESS Bank,
Col n
READ
Bank,
Col b
COMMAND
ADDRESS
CL = 3
CK
CK#
COMMAND
ADDRESS
DQ
DQS, DQS#
CL = 4
DQ
DQS, DQS#
DO
n
T0 T1 T2 T3 T3n T4 T5 T7 T8T6T4n T6n T7n
NOP NOP NOP NOP
T5 T7 T8T5n T6T4n T7n
READ NOP NOP NOP
Bank,
Col n
READ
Bank,
Col b
T0 T1 T2 T3 T4
DO
b
DO
nDO
b
DON’T CARE TRANSITIONING DATA
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 35 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Data from any READ burst must be completed
before a subsequent WRITE burst is allowed. An exam-
ple of a READ burst followed by a WRITE burst is
shown in Figure 24. The tDQSS (MIN) case is shown;
the tDQSS (MAX) case has a longer bus idle time.
(tDQSS [MIN] and tDQSS [MAX] are defined in the sec-
tion on WRITEs.)
A READ burst may be followed by a PRECHARGE
command to the same bank provided that AUTO PRE-
CHARGE is not activated. Examples of READ to PRE-
CHARGE are shown in Figure 22 for BL=4 and
Figure 23 for BL=8. The delay from READ command to
PRECHARGE command to the same bank is AL + BL/2
+ tRTP - 2 clocks.
If A10 is HIGH when a READ command is issued,
the READ with AUTO PRECHARGE function is
engaged. The DDR2 SDRAM starts an AUTO PRE-
CHARGE operation on the rising edge which is (AL +
BL/2) cycles later than the READ with AP command if
tRAS (MI N) and tRTP are satisfied. If tRAS (MIN) is not
satisfied at the edge, the start point of AUTO PRE-
CHARGE operation will be delayed until tRAS (MIN) is
satisf ied. If tRTP ( MIN) is not sa tisfie d at the ed ge, t he
start point of the AUTO PRECHARGE operation will be
delayed until tRTP (MIN) is satisfied. In case the inter-
nal precharge is pushed out by tRTP, tRP starts at the
point where th e internal p recharg e h ap pen s (not at the
next ri sing clock edg e a fter this event). S o f or BL = 4 the
minimum ti me fr om READ with AP to the next acti va te
command becomes AL + (tRTP + tRP)* (see Figure 22
on page37); for BL = 8 the time from READ with AP to
the next activate is AL + 2 clocks + (tRTP + tRP)* (see
Figure 23 on page 37), where * means each parameter
term is divi ded b y tCK and r ound ed up to th e next i nte-
ger. I n an y ev ent , inte rna l precharge does not s tart ear-
lier than two cl ocks aft er the last four-bit prefetch .
Table 7: READ Using Concurrent Auto Precharge
BL = burst length.
FROM
COMMAND
(BANK n)TO COMMAND
(BANK m)MINIMUM DELAY (WITH CONCURRENT
AUTO PRECHARGE) UNITS
READ with
Auto
Precharge
READ or READ w/AP (BL/2) tCK
WRITE or WRITE w/AP (BL/2) + 2 tCK
PRECHARGE or ACTIVE 1 tCK
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 36 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 21: READ Interrupted by READ
NOTE:
1. Burst length = 8 required, AUTO PRECHARGE must be disabled (A10 = LOW).
2. READ command can be issued to an y valid bank a nd row ad dress (READ co mmand a t T0 and T2 can be eithe r same ban k
or differe nt bank).
3. Interupting READ command must be issued exactly 2 x tCK from previous READ.
4. AUTO PRECHARGE can be either enabled (A10 = HIGH) or disabled (A10 = LOW) by the interupting REA D command.
5. NOP or COMMAND INHIBIT comma nds a re vali d. PRECHARGE command cannot be issued to bank s used for READs at T0
and T2.
6. Earliest READ-to-PRECHARGE (tRTP) timing for READ at T0; tRTP = AL + BL/2 where BL = 8 from the mode register, not
the BL of the truncated burst.
7. Example shown uses additive latency = 0; CAS Latency = 3, BL = 8, shown with nominal tAC, tDQSCK, and tDQSQ.
D
OUT
D
OUT
D
OUT
CK
CK#
COMMAND
DQ
DQS, DQS#
CL = 3 (AL = 0)
READ
1
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP
5
NOP
5
D
OUT
T3 T4 T5
VALID
6
VALID
T6
VALIDREAD
3
D
OUT
D
OUT
D
OUT
D
OUT
D
OUT
D
OUT
D
OUT
D
OUT
VALID VALID VALID
T7 T8 T9
CL = 3 (AL = 0)
t
CCD
ADDRESS
A10
VALID
4
VALID
2
VALID
2
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 37 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 22: READ to PRECHARGE BL = 4
Figure 23: READ to PRECHARGE BL = 8
Figure 24: READ to WRITE
D
OUT
D
OUT
D
OUT
CK
CK#
COMMAND
DQ
DQS, DQS#
CL = 3
READ
Read Latency = 4 (AL = 1, CL = 3), BL = 4, tRTP 2 clocks
Shown with nominal tAC, tDQSCK, and tDQSQ
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP PRECHARGE
D
OUT
T3 T4 T5 T6
ACTIVE
T7
ADDRESS
A10
AL=1
NOP
Bank a
tRTP(MIN)
Bank a
tRAS(MIN)
Bank a
tRP(MIN)
NOP NOP
AL + BL/2 + tRTP - 2 clocks
NOP
tRC(MIN)
4-bit
prefetch
Valid Valid
D
OUT
D
OUT
D
OUT
CK
CK#
COMMAND
DQ
DQS, DQS#
CL = 3
READ
Read Latency = 4 (AL=1, CL=3), BL=8, tRTP 2 clocks
Shown with nominal tAC, tDQSCK, and tDQSQ
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP
D
OUT
T3 T4 T5 T6 T7 T8
ADDRESS
A10
AL=1
NOP
Bank a
tRC(MIN)
tRTP(MIN)
NOP
NOP
D
OUT
D
OUT
D
OUT
D
OUT
first 4-bit
prefetch second 4-bit
prefetch
tRP(MIN)
PRECHARGE
Bank a Bank a
NOP
AL + BL/2 + tRTP - 2 clocks
NOP ACTIVE
tRAS(MIN)
Valid Valid
D
OUT
n + 3
D
OUT
n + 2
D
OUT
n + 1
CK
CK#
COMMAND
DQ
DQS, DQS#
AL = 2
ACTIVE n
Burst length = 4
Shown with nominal tAC, tDQSCK, and tDQSQ
T0 T1 T2
DON’T CARETRANSITIONING DATA
READ nNOP NOP
D
OUT
n
T3 T4 T5
NOP WRITE n
T6
NOP
D
in
n + 3
D
in
n + 2
D
in
n + 1
WL = RL - 1 = 4
T7 T8
NOP NOP NOP
D
in
n
T9 T10 T11
NOP NOP
CL = 3
RL = 5
CAS# read latency (CL) = 3
Posted CAS# additive latency (AL) = 2
tRCD = 3
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 38 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 25: Bank Read – Without Auto Precharge
NOTE:
1. DO n = data-out from column n; subsequent elements are applied in the programmed order.
2. Burst length = 4 and AL = 0 in the case shown.
3. Disable auto precharge.
4. “Don’t Care” if A1 0 is HIGH at T5.
5. PRE = PRECHARGE, ACT = ACTIVE, RA = row address, BA = bank address.
6. NOP commands are shown for ease of illustration; ot her commands may be valid at these times.
7. The PRECHARGE command can only be applied at T6 if tRAS minimum is met.
8. Read to Precharge = AL +BL/2 + tRTP-2 clocks.
CK
CK#
CKE
A10
BA0, BA1
t
CK
t
CH
t
CL
RA
t
RCD
t
RAS7
t
RC
t
RP
CL = 3
DM
T0 T1 T2 T3 T4 T5 T5n T6nT6 T7 T8
DQ1
DQS, DQS#
Case 1: tAC (MIN)
and tDQSCK (MIN)
Case 2: tAC (MAX)
and tDQSCK (MAX)
DQ1
DQS, DQS#
t
RPRE
t
RPRE
t
RPST
t
RPST
t
DQSCK (MIN)
t
DQSCK (MAX)
t
LZ (MIN)
t
LZ (MAX)
t
AC (MIN)
t
LZ (MIN)
DO
n
t
HZ (MAX)
t
AC (MAX)
t
LZ (MIN)
DO
n
NOP6
NOP6
COMMAND5ACT
RA Col n
PRE
7
Bank x
RA
RA
Bank xBank x4
ACT
Bank x
NOP6NOP6NOP6NOP6
t
HZ (MIN)
ONE BANK
ALL BANKS
DON’T CARE
TRANSITIONING DATA
READ2
ADDRESS
3
tRTP
8
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 39 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 26: Bank Read – With Auto Precharge
NOTE:
1. DO n = data-out from column n; subsequent elements are applied in the programmed order.
2. Burst length = 4, RL = 4 (AL = 1, CL = 3) in the case shown.
3. Enable auto precharge.
4. ACT = ACTIVE, RA = row address, BA = bank address.
5. NOP commands are shown for ease of illustration; ot her commands may be valid at these times.
6. The DDR2 SDRAM internally delays auto precharge until both tRAS (MIN) and tRTP (MIN) have been satisfied.
CK
CK#
CKE
A10
BA0, BA1
t
CK
t
CH
t
CL
RA
t
RCD
t
RAS
t
RC
t
RP
CL = 3
DM
T0 T1 T2 T3 T4 T5 T5n T6nT6 T7 T8
DQ
1
DQS,DQS#
Case 1:
t
AC (MIN)
and
t
DQSCK (MIN)
Case 2:
t
AC (MAX)
and
t
DQSCK (MAX)
DQ
1
DQS, DQS#
t
RPRE
t
RPRE
t
RPST
t
RPST
t
DQSCK (MIN)
t
DQSCK (MAX)
t
LZ (MIN)
t
LZ (MAX)
t
AC (MIN)
t
LZ (MIN)
DO
n
t
HZ (MAX)
t
AC (MAX)
t
LZ (MAX)
DO
n
NOP5
NOP5
COMMAND
5ACT
RA Col n
Bank x
RA
RA
Bank x
ACT
Bank x
NOP5NOP5NOP5NOP5NOP5
t
HZ (MIN)
DON’T CARE
TRANSITIONING DATA
READ2,6
ADDRESS
AL=1
4-bit
prefetch
tRTP
Internal
precharge
3
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 40 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 27: x4, x8 Data Output Timing – tDQSQ, tQH, and Data Valid Window
NOTE:
1. DQs transitioning after DQS transition define tDQSQ window. DQS transitions at T2 and at T2n are “early DQS,” at T3
are “nominal DQS,” and at T3n are "late DQS."
2. For a x4, only two DQs apply.
3. tDQSQ is derived at e ach DQS clock edge and is not cum ulative over time and begins with DQS transitions and end s with
the last valid transition of DQs .
4. tQH is derived from tHP: tQH = tHP - tQHS.
5. tHP is the lesser of tCL or tCH clock transitions collectively when a bank is active.
6. The data valid window is derived for each DQS transition and is defined as tQH minus tDQSQ.
DQ (Last data valid)
DQ2
DQ2
DQ2
DQ2
DQ2
DQ2
DQS#
DQS1
DQ (Last data valid)
DQ (First data no longer valid)
DQ (First data no longer valid)
All DQs and DQS, collectively6
Earliest signal transition
Latest signal transition
T2
T2
T2
T2n
T2n
T2n
T3
T3
T3
T3n
T3n
T3n
CK
CK#
T1 T2 T3 T4T2n T3n
tQH
4
tHP
5
tHP
5
tHP
5
tQH
4
tQH
4
tHP
5
tHP
5
tHP
5
tQH
4
tDQSQ
3
tDQSQ
3
tDQSQ
3
tDQSQ
3
Data
Valid
window
Data
Valid
window
Data
Valid
window
Data
Valid
window
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 41 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 28: x16 Data Output Timing – tDQSQ, tQH, and Data Valid Window
NOTE:
1. DQs transitioning after DQS transitions define the tDQSQ window. LDQS defines the lower byte, and UDQS defines the
upper byte.
2. DQ0, DQ1, DQ2, DQ3, DQ4, DQ5, DQ6, or DQ7.
3. tDQSQ is derived at e ach DQS clock edge and is not cum ulative over time and begins with DQS transitions and end s with
the last valid transition of DQs.
4. tQH is derived from tHP: tQH = tHP - tQHS.
5. tHP is the lesser of tCL or tCH clock transitions collectively when a bank is active.
6. The data valid window is derived for each DQS transition and is tQH minus tDQSQ.
7. DQ8, DQ9, DQ10, D11, DQ12, DQ13, DQ14, or DQ15.
DQ (Last data valid)2
DQ2
DQ2
DQ2
DQ2
DQ2
DQ2
LDSQ#
LDQS1
DQ (Last data valid)2
DQ (First data no longer valid)2
DQ (First data no longer valid)2
DQ0–DQ7 and LDQS, collectively6
T2
T2
T2
T2n
T2n
T2n
T3
T3
T3
T3n
T3n
T3n
CK
CK#
T1 T2 T3 T4T2n T3n
tQH
4
tQH
4
tDQSQ
3
tDQSQ
3
tDQSQ
3
tDQSQ
3
Data Valid
window Data Valid
window
DQ (Last data valid)7
DQ7
DQ7
DQ7
DQ7
DQ7
DQ7
UDQS#
UDQS1
DQ (Last data valid)7
DQ (First data no longer valid)7
DQ (First data no longer valid)7
DQ8–DQ15 and UDQS, collectively6
T2
T2
T2
T2n
T2n
T2n
T3
T3
T3
T3n
T3n
T3n
tQH
4
tQH
4
tQH
4
tQH
4
tDQSQ
3
tDQSQ
3
tDQSQ
3
tDQSQ
3
tHP
5
tHP
5
tHP
5
tHP
5
tHP
5
tHP
5
tQH
4
tQH
4
Data Valid
window
Data Valid
window Data Valid
window Data Valid
window Data Valid
window
Upper Byte
Lower Byte
Data Valid
window
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 42 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 29: Data Output TimingtAC and tDQSCK
NOTE:
1. tDQSCK is the DQS output window relative to CK and is the“long-term” component of DQS skew.
2. DQs transitioning after DQS transitions define tDQSQ window.
3. All DQs must transition by tDQSQ after DQS transitions, regardless of tAC.
4. tAC is the DQ output window relative to CK and is the“long term” component of DQ skew.
5. tLZ (MIN) and tAC (MIN) are the first valid signal transitions.
6. tHZ (MAX) and tAC (MAX) are the latest valid signal transitions.
7. READ command with CL=3, AL=0 issued at T0.
CK
CK#
DQS#/DQS, or
LDQS#/LDQS / UDQ#/UDQS2
T07T1 T2 T3 T3n T4 T4n T5 T5n T6 T6n T7
tRPST
tLZ (MIN)
tDQSCK
1
(MAX)
tDQSCK
1
(MIN) tDQSCK
1
(MAX)
tDQSCK
1
(MIN)
tHZ (MAX)
tRPRE
DQ (Last data valid)
DQ (First data valid)
All DQs collectively3
tAC
4
(MIN) tAC
4
(MAX)
tLZ (MIN) tHZ (MAX)
T3
T3
T3n T4n T5n T6n
T3n
T3n
T4n
T4n
T5n
T5n
T6n
T6n
T4
T5
T5
T6
T6
T3 T4 T5 T6
T4
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 43 ©2003 Micron Technolog y, Inc. All rights reserv ed.
WRITEs
WRITE Command
The WRITE command is used to initiate a burst
write access to an active row. The value on the BA0,
BA1 inputs selects the bank, and the address provided
on inputs A0–i (where i = A9 for x8 and x16; or A9, A11
for x4) selects the starting column location. The value
on input A10 determines whether or not auto pre-
charge is used. If auto precharge is selected, the row
being accessed will be precharged at the end of the
write burst; if auto precharge is not selected, the row
will remain open for subsequent accesses.
Figure 30: WRITE Command
Input data appearing on the DQs is written to the
memory array subject to the DM input logic level
appear ing coincid ent with the dat a. If a given DM sig-
nal is registered LOW, the corresponding data will be
written to memory; if the DM signal is registered
HIGH, the corresponding data inputs will be ignored,
and a write will not be executed to that byte/column
location (Figure 40) .
WRITE Operation
WRITE bursts are initia ted with a WRITE command ,
as shown in Figure 30. DDR2 SDRAM uses Write
Latency (WL) equal to Read Latency minus 1 clock
cycle ( WL = RL - 1 = AL + CL - 1). The starti ng column
and bank address es are provided with the WRITE c om-
mand, and auto precharge is either enabled or dis-
abled f or that acce ss. If au to precharge is enable d, the
row being accessed is precharged at the completion of
the burst. For the generic WRITE commands used in
the following illustrations, auto precharge is disabled.
During WRITE bursts, the first valid data-in element
will be registered on the fir st ri sin g edg e of DQS f o llow-
ing the WRITE command, and subsequent data ele-
ments will be registered on successive edges of DQS.
The LOW state on DQS between the WRITE command
and the first rising edge is known as the write pream-
ble; the LOW state on DQS following the last data-in
element is known as the write postamble.
The time between the WRITE command and the
first corresponding rising edge of DQS (tDQSS) is spec-
ified with a relatively wide range (from 75 percent to
125 percent of one clock cycle). All of the WRITE dia-
grams show the nominal case, and where the two
extreme cases (i.e., tDQSS [MIN] and tDQSS [MAX])
might not be intuitive, they have also been included.
Figure 31 shows the nominal case and the extremes of
tDQSS for a burst of 4. Upon completion of a burst,
assu ming no o ther commands have been initiated, the
DQs will remain High-Z and any additional input data
will be ignored.
Data for any WRITE burst may be concatenated
with a subsequent WRITE command to provide con-
tinuo us flow of input data. T he new WRITE co mmand
can be issued on any positive edge of CK following the
previous WRITE command. The first data element
from the new burs t is app lied after t he last elem ent of a
complet ed burst. Th e new WRITE comma nd should be
issued x cycles after the first WRITE command, where
x equals BL/ 2.
Figure 32 shows concatenated bursts of 4. An exam-
ple of nonconsecutive WRITEs is shown in Figure 33.
Full-speed random write accesses within a page or
pages can be performed as shown in Figure 34. DDR2
SDRAM supports concurrent auto precharge options
shown in Table 8.
DDR2 SDRAM does not allow interrupting or trun-
cating any WRITE burst using BL = 4 operation. Once
the BL = 4 WRITE command is registered, it must be
allowed to complete the entire WRITE burst cycle.
CS#
WE#
CAS#
RAS#
CKE
CA
A10
BA0, BA1
HIGH
EN AP
DIS AP
BA
CK
CK#
CA = column address
BA = bank address
EN AP = enable auto precharge
DIS AP = disable auto precharge
DON’T CARE
ADDRESS
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 44 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Howe ver, a WR ITE ( with AUTO PRECH ARGE disabled )
using BL = 8 operations may be interr upted and trun-
cated ONLY by another WRITE burst as long as the
interr uption occurs on a four-bit boundar y due to the
4n prefetch architecture of DDR2 SDRAM. WRITE
burst BL = 8 operations may NOT be interrupted or
truncated with any command except another WRITE
command as shown in Figure35.
Data for any WRITE bu rst may be fol l owed by a sub-
sequent READ command. To follow a WRITE tWTR
should be met as shown in Figure 36. Data for any
WRITE burst may be followed by a subsequent PRE-
CHARGE command. tWR must be met as shown in
Figure 30.
Figu re 31: WRI TE Burst
NOTE:
1. DI b = data-in for column b.
2. Three subsequent elements of data-in are applied in the programmed order following DI b.
3. A burst of 4 is shown with AL = 0, CL = 3; thus, WL = 2.
4. A10 is LOW with the WRITE command (auto precharge is disabled).
Table 8: WRITE Using Concurrent Auto Precharge
CL = CAS latency, BL = burst length
FROM
COMMAND
(BANK n)TO COMMAND
(BANK m)MINIMUM DELAY (WITH CONCURRENT
AUTO PRECHARGE) UNITS
WRITE with
Auto
Precharge
READ or READ w/AP (CL-1) + (BL/2) + tWTR tCK
WRITE or WRITE w/AP (BL/2) tCK
PRECHARGE or ACTIVE 1 tCK
DQS, DQS#
tDQSS (MAX)
tDQSS (NOM)
tDQSS (MIN)
tDQSS
DM
DQ
CK
CK#
COMMAND
WRITE NOP NOP
ADDRESS
Bank a,
Col b
NOP NOP
T0 T1 T2 T3T2n T4T3n
DQS, DQS#
tDQSS
DM
DQ
DQS, DQS#
tDQSS
DM
DQ
DI
b
DI
b
DI
b
DON’T CARE TRANSITIONING DATA
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 45 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 32: Consecutive WRITE to WRITE
NOTE:
1. DI b, etc. = data-in for column b, etc.
2. Three subsequent elements of data-in are applied in the programmed order following DI b.
3. Three subsequent elements of data-in are applied in the programmed order following DI n.
4. A burst of 4 is shown with AL = 0, CL = 3; thus, WL = 2.
5. Each WRITE command may be to any bank.
Figure 33: Nonconsecutive WRITE to WRITE
NOTE:
1. DI b, etc. = data-in for column b, etc.
2. Three subsequent elements of data-in are applied in the programmed order following DI b.
3. Three subsequent elements of data-in are applied in the programmed order following DI n.
4. A burst of 4 is shown. AL = 0, CL = 3; thus, WL = 2.
5. Each WRITE command may be to any bank.
CK
CK#
COMMAND
WRITE NOP WRITE NOP NOP NOP
ADDRESS
Bank,
Col b
NOP
Bank,
Col n
T0 T1 T2 T3T2n T4 T5T4n T6T5nT3nT1n
DQ
DQS, DQS#
DM
DI
n
DI
b
DON’T CARE TRANSITIONING DATA
tDQSS
tDQSS (NOM)
WL = 2
tCCD
WL = 2
CK
CK#
COMMAND
WRITE NOP NOP NOP NOP NOP
ADDRESS
Bank,
Col b
WRITE
Bank,
Col n
T0 T1 T2 T3T2n T4 T5T4nT3n T5n T6 T6n
DQ
DQS, DQS#
DM
DI
n
DI
b
tDQSS (NOM) tDQSS
DON’T CARE TRANSITIONING DATA
WL = 2 WL = 2
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 46 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 34: Ran dom W RITE Cycles
NOTE:
1. DI b, etc. = data-in for column b, etc.
2. Three subsequent elements of data-in are applied in the programmed order following DI b.
3. Three subsequent elements of data-in are applied in the programmed order following DI n.
4. An burst of 4 is shown. AL = 0, CL = 3; thus, WL = 2.
5. Each WRITE command may be to any bank.
Figure 35: WRITE Interrupted by WRIT E
NOTE:
1. Burst length = 8 required, AUTO PRECHARGE must be disabled (A10 = LOW).
2. WRITE command can be issued to any valid bank and row address (WRITE command at T0 and T2 can be either same
bank or different bank).
3. Interupting WRITE command must be issued exactly 2 x tCK from previous WRITE.
4. AUTO PRECHARGE can be either enabled (A10 = HIGH) or disabled (A10 = LOW) by the interupting WRITE command.
5. NOP or COMMAND INHIBIT commands are valid. PRECHARGE command can not be issued to banks used for WRITEs at
T0 and T2.
6. Earliest WRITE-to-PRECHARGE timing for WRITE at T0 is WL + BL/2 + tWR where tWR starts with T7 and not T5 (since BL
= 8 from MR and not the truncated length).
7. Example shown uses Additive Latency = 0; CAS Latency = 4, BL = 8.
CK
CK#
COMMAND
WRITE NOP WRITE NOP NOP NOP
ADDRESS
Bank,
Col b
NOP
Bank,
Col n
T0 T1 T2 T3T2n T4 T5T4n T6T5nT3nT1n
DQ
DQS, DQS#
DM
DI
n
DI
b
DON’T CARE TRANSITIONING DATA
tDQSS
tDQSS (NOM)
WL = 2
tCCD
WL = 2
DIN
a + 3
DIN
a + 2
DIN
a + 1
CK
CK#
COMMAND
DQ
DQS, DQS#
WL = 3
WRITE
T0 T1 T2
DON’T CARETRANSITIONING DATA
DIN
a
T3 T4 T5 T6
WRITE
DIN
b + 3
DIN
b + 2
DIN
b + 1
DIN
bDIN
b + 7
DIN
b + 6
DIN
b + 5
DIN
b + 4
T7 T8 T9
WL = 32 clock requirement
13
ADDRESS
A10
VALID
4
VALID
2
VALID
2
VALID
6
VALID
6
VALID
6
NOP
5
NOP
5
NOP
5
NOP
5
NOP
5
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 47 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 36: WRITE to READ
NOTE:
1. DI b = data-in for column b; Dout n = data out from column n.
2. A burst of 4 is shown; AL = 0, CL = 3; thus, WL = 2.
3. One subsequent element of data-in is applied in the programmed order following DI b.
4. tWTR is referenced from the first positive CK edge after the last data-in pair.
5. A10 is LOW with the WRITE command (auto precharge is disabled).
tDQSS (NOM)
CK
CK#
COMMAND
WRITE NOP NOP NOP NOP NOP NOP NOP
ADDRESS
Bank a,
Col bBank a,
Col n
READ
T0 T1 T2 T3T2n T4 T5 T9nT3n T6 T7 T8 T9
tWTR
CL = 3
CL = 3
CL = 3
DQ
DQS, DQS#
DM
DI
bDI
n
tDQSS (MIN)
DQ
DQS, DQS#
DM
DI
b
tDQSS (MAX)
DQ
DQS, DQS#
DM
DI
bDout
DI
n
DON’T CARE TRANSITIONING DATA
tDQSS
tDQSS
tDQSS
NOP
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 48 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 37: WRITE to PRECHARGE
NOTE:
1. DI b = data-in for column b.
2. Three subsequent elements of data-in are applied in the programmed order following DI b.
3. A burst of 4 is shown. CL = 3; AL = 0; thus, WL = 2.
4. tWR is referenced from the first positive CK edge after the last data-in pair.
5. The PRECHARGE and WRITE commands are to the same bank. However, the PRECHARGE and WRITE commands may be
to different banks, in which case tWR is not required and the PRECHARGE command could be applied earlier.
6. A10 is LOW with the WRITE command (auto precharge is disabled).
7. PRE = PRECHARGE command.
tDQSS (NOM)
CK
CK#
COMMAND
WRITE NOP NOP NOP NOPNOP
ADDRESS
Bank a,
Col bBank,
(a or all)
NOP
T0 T1 T2 T3T2n T4 T5T3n T6 T7
tWR tRP
DQ
DQS#
DQS
DM
DI
b
tDQSS (MIN)
DQ
DQS#
DQS
DM
DI
b
tDQSS (MAX)
DQ
DQS#
DQS
DM
DI
b
DON’T CARE TRANSITIONING DATA
tDQSS
tDQSS
tDQSS
PRE7
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 49 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 38: Bank Write–Without Auto Precharge
NOTE:
1. DI n = data-in from column n; subsequent elements are applied in the programmed order.
2. Burst length = 4, AL = 0, and WL = 2 in the case shown.
3. Disable auto precharge.
4. “Don’t Care” if A1 0 is HIGH at T8.
5. PRE = PRECHARGE, ACT = ACTIVE, RA = row address, BA = bank address.
6. NOP commands are shown for ease of illustration; ot her commands may be valid at these times.
7. tDSH is applicable during tDQSS (MIN) and is referenced from CK T5 or T6.
8. tDSS is applicable during tDQSS (MAX) and is referenced from CK T6 or T7.
CK
CK#
CKE
A10
BA0, BA1
t
CK
t
CH
t
CL
RA
t
RCD
t
RAS
t
RP
t
WR
T0 T1 T2 T3 T5 T6 T6n T7 T8 T9T5n
NOP6
NOP6
COMMAND
5
3
ACT
RA Col n
WRITE2NOP6
ONE BANK
ALL BANKS
Bank x
PRE
Bank x
NOP6NOP6NOP6
t
DQSL
t
DQSH
t
WPST
Bank x4
DQ
1
DM
DI
b
DON’T CARE
TRANSITIONING DATA
t
DQSS (NOM)
t
WPRE
t
WPRES
DQS, DQS#
ADDRESS
NOP6
WL=2
T4
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 50 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 39: Bank Write–with Auto Precharge
NOTE:
1. DI n = data-in from column n; subsequent elements are applied in the programmed order.
2. Burst length = 4, AL = 0, and WL = 2 shown.
3. Enable auto precharge.
4. ACT = ACTIVE, RA = row address, BA = bank address.
5. NOP commands are shown for ease of illustration; ot her commands may be valid at these times.
6. tDSH is applicable during tDQSS (MIN) and is referenced from CK T5 or T6.
7. tDSS is applicable during tDQSS (MAX) and is referenced from CK T6 or T7.
8. WR is programmed via MR[11,10,9] and is calculated by dividing tWR(ns) by tCK and rounding up to the next integer
value.
CK
CK#
CKE
A10
BA0, BA1
tCK tCH tCL
RA
tRCD
tRAS tRP
WR
8
T0 T1 T2 T3 T4 T5 T5n T6 T7 T8T6n
NOP5
NOP5
COMMAND
4
3
ACT
RA Col n
WRITE2NOP5
Bank x
NOP5
Bank x
NOP5NOP5NOP5
tDQSL tDQSH tWPST
DQ
1
DM
DI
b
tDQSS (NOM)
DON’T CARE
TRANSITIONING DATA
t
WPRES
t
WPRE
DQS,DQS#
ADDRESS
T9
NOP5
WL = 2
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 51 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 40: WRITE–DM Operation
NOTE:
1. DI n = data-in from column n; subsequent elements are applied in the programmed order.
2. Burst length = 4, AL = 1, and WL = 2 in the case shown.
3. Disable auto precharge.
4. “Don’t Care” if A1 0 is HIGH at T8.
5. PRE = PRECHARGE, ACT = ACTIVE, RA = row address, BA = bank address.
6. NOP commands are shown for ease of illustration; ot her commands may be valid at these times.
7. tDSH is applicable during tDQSS (MIN) and is referenced from CK T6 or T7.
8. tDSS is applicable during tDQSS (MAX) and is referenced from CK T7 or T8.
CK
CK#
CKE
A10
BA0, BA1
t
CK
t
CH
t
CL
RA
t
RCD
t
RAS tRP
tWR
T0 T1 T2 T3 T4 T5 T7nT6 T7 T8T6n
NOP6
NOP6
COMMAND5
3
ACT
RA Col n
WRITE2NOP6
ONE BANK
ALL BANKS
Bank xBank x
NOP6NOP6NOP6NOP6NOP6NOP6
t
DQSL
t
DQSH
t
WPST
Bank x4
DQ1
DM
DI
b
DON’T CARE
TRANSITIONING DATA
t
DQSS (NOM)
t
WPRES
t
WPRE
PRE
DQS, DQS#
ADDRESS
T9 T10 T11
AL=1 WL=2
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 52 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 41: Data Input Timing
NOTE:
1. tDSH (MIN) generally occurs during tDQSS (MIN).
2. tDSS (MIN) generally occurs during tDQSS (MAX).
3. WRITE command issued at T0.
4. For x16, LDQS controls the lower byte and UDQS controls the upper byte.
5. WRITE command with WL=2 (CL=3, AL=0) issued at T0.
DQS#
DQS
tDQSS(nominal)
tDQSH tWPST
tDQSL
tDSS2tDSH1
tDSH1tDSS2
DM
DQ
CK
CK# T1T0 T1n T2 T2n T3 T4T3n
DI
b
DON’T CARE
TRANSITIONING DATA
t
WPRE
t
WPRES
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 53 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Precharge
PRECHARGE Command
The PRECHARGE command, illustrated in
Figure42, is used to deactivate the open row in a par-
ticular bank or the open row in all banks. The bank(s)
will be available for a subsequent row activation a
specified time (tRP) after the precharge command is
issued, except in the case of concurrent auto pre-
charge, where a READ or WRITE command to a differ-
ent ba nk is allowed as long as it does not interru pt the
data transfer in the current bank and does not violate
any other timing parameters. Once a bank has been
precharged, it is in th e idle stat e and must be ac ti vated
prior to any READ or WRITE commands being issued
to that bank. A PRE CHARGE command will be treated
as a NOP if there is no open row in that bank (idle
state) or if the previously open row is already in the
process of precharging.
PRECHARGE Operation
Input A10 determines whether one or all banks are
to be precharged, and in the case where only one bank
is to be precharged, inputs BA0, BA1 select the bank.
Otherwise BA0, BA1 are treated as “Dont Care.
When all banks are to be precharged, inputs BA0,
BA1 are treated as “Dont Care.” Once a bank has been
precharged, it is in th e idle stat e and must be ac ti vated
prior to any READ or WRITE commands being issued
to that ba nk.
Figure 42: PRECHARGE Command
CS#
WE#
CAS#
RAS#
CKE
A10
BA0, BA1
HIGH
ALL BANKS
ONE BANK
BA
ADDRESS
CK
CK#
BA = bank address (if A10 is LOW;
otherwise “Don’t Care”)
DON’T CARE
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 54 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Self Refresh
SELF REFRESH Command
The SELF REFRESH command can be used to reta in
data in the DDR2 SDRAM, eve n if the res t of the system
is powered down. When in the self refresh mode, the
DDR2 SDRAM retains data without external clocking.
All power supply inputs (including VREF) must be
maintain ed at valid levels upon e ntry/ exit AND dur in g
self refr es h operation.
The SELF REFRESH command is initiated like a
REFRESH command except CKE i s (LOW). T he DLL is
automatically disabled upon entering self refresh and
is automatical ly enabled upon ex iting self refresh (200
clock cycles must then occur before a READ command
can be issu ed). Clock should remain stable and meet-
ing tCKE specifications at least 1 x tCK after entering
self refresh mode. All command and address input sig-
nals except CKE are “Dont Care” during self refresh.
The procedure for exiting self refresh requires a
sequence of commands. First, CK,CK# must be stable
and m eeting tCK spe cificat ions at lea st 1 x tCK prior to
CKE going back HIGH. Once CKE is HIGH, the DDR2
SDRAM must have NOP or DESELECT commands
issued for tXSNR because time is required for the com-
pletion of any internal refresh in progress. A simple
algorithm for meeting both refresh and DLL require-
ments is to apply NOP or DESELECT commands for
200 clock cycles before applying any other command.
Figure 43: Self Refresh
NOTE:
1. Clock must be stable and meeting tCK s pecifications at least 1 x tCK after entering self refresh and at least 1 x tCK prior
to exiting self refresh mode.
2. Device must be in the all banks idle state prior to entering self refresh mode.
3. tXSNR is required before any non-READ command can be applied.
4. tXSRD (200 cycles of CK) is required before a READ command can be applied at state Td0.
5. REF = REFRESH command.
6. Self Refresh exit is asynchronous, however, tXSNR and tXSRD timing starts at the first rising clock edge where CKE HIGH
satisfies tISXR.
7. NOP or DESELECT commands are required prior to exiting SELF REFRESH until state Tc0, which allows any non-READ
command.
8. ODT must be disabled and Rtt off (tAOFD and tAOFPD have been satisfied) prior to entering Self Refresh at state T1.
9. Once Self Refresh has been entered tCKE(min) must be satisfied prior to exiting self refresh.
CK
1
CK#
COMMAND
5NOP REF
ADDRESS
CKE
1
VALID
DQ
DM
DQS#,
DQS
NOP7
NOP7
tRP
2
tCH tCL tCK
1
tXSNR
3,6
tISXR
6
Enter Self Refresh
Mode (synchronous) Exit Self Refresh
Mode (asynchronous)
T0 T1 Ta2Ta1
DON’T CARE
Ta0 Tc0Tb0
tXSRD
4,6
VALID3
tCKE (MIN)
NOP7
tCKE (MIN)
9
tCK
1
T2
ODT
8
tAOFD / tAOFPD
8
8
Td0
VALID4
8
VALID3
Indicates a break in
time scale
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 55 ©2003 Micron Technolog y, Inc. All rights reserv ed.
REFRESH
REFRESH Command
REFRESH is used during normal operation of the
DDR2 SDRAM and is analogous to CAS#-BEFORE-
RAS# (CBR) refresh. This command is nonpersistent,
so it must be issued each time a refresh is required.
The addressing is generated by the internal refresh
controller. This makes the address bits a “Dont Care
during an REFRESH command. The 512Mb DDR2
SDRAM requires REFRESH cycles at an average inter-
val of 7.8125µs (maximum). To allow for improved effi-
ciency in scheduling and switching between tasks,
some flexibility in the absolute refresh interval is pro-
vided. A maximum of eight REFRESH commands can
be posted to any given DDR2 SDRAM, meaning that
the maximum absolute interval between any
REFRES H c o mman d a nd the next REF RE SH co mman d
is 9 × 7.8125µs (7 0.3µs ). This maxi mum absolut e int er-
val is to allow future support for DLL updates internal
to the DDR2 SDRAM to be restricted to REFRESH
cycles, with out allowing excess ive dr ift in tAC b e t we e n
updates. The REFRESH period begins when the
REFRESH command is registered and ends tRFC later.
Figure 44: Refresh Mode
NOTE:
1. PRE = PRECHARGE, ACT = ACTIVE, AR = REFRESH, RA = row address, BA = bank address.
2. NOP commands are shown for ease of illustration; other valid commands may be possible at these times. CKE must be
active during clock positive transitions.
3. “Don’t Care” if A10 is HIGH at this point; A10 must be HIGH if more than one bank is active (i.e., must precharge all
active banks).
4. DM, DQ, and DQS signals are all “Don’t Care”/High-Z for operations shown.
5. The second REFRESH is not required and is only shown as an example of two back-to-back REFRESH commands.
CK
CK#
COMMAND1NOP2
NOP 2NOP2
PRE
CKE
RA
ADDRESS
A101
BA0, BA11Bank(s)3BA
REF NOP2REF5NOP2ACTNOP2
ONE BANK
ALL BANKS
tCK tCH tCL
RA
DQ4
DM4
DQS, DQS#4
tRFC
5
tRP tRFC(MIN)
T0 T1 T2 T3 T4 Ta0 Tb0
Ta1 Tb1 Tb2
DON’T CARE
Indicates a break in
time scale
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 56 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Power-Down Mode
DDR2 SDRAMs support multiple power-down
modes that al low a signif icant p owe r savings over nor-
mal operating modes. The CKE input pin is used to
enter and exit different power-down modes. Power-
down entry and exit timings are shown in Figure 45.
Detailed power-down entry conditions are shown in
Figur e 46 through Figure 53. The Truth Table for CKE is
shown in Table 9 on page 58 for DDR2 SDRAM.
DDR2 SDRAMs require CKE to be active at all times
an acce ss is in prog ress: from th e iss uing of a REA D or
WRITE command until completion of the burst. Thus
a clock suspend is not supported. For READs, a burst
comp letio n is def ined when the read posta mbl e is sa t-
isfied; for WRITEs, a burst completion is defined when
the write postamble is satisfied.
Power-down in Figure 45, is entered when CKE is
registered LOW coincident with a NOP or DESELECT
command. If power-down occurs when all banks are
idle, this mode is referred to as precharge power -do wn.
If power-down occurs when there is a row active in any
bank, this mode is referred to as active power-down.
Entering power-down deactivates the input and out-
put buffers, excluding CK, CK#, ODT, and CKE. For
maximu m po w er sa ving s, t he DLL is fro z en d uring pre-
charge power-down. Exiting active power-down
requires the device to be at the same voltage and fre-
quency as when it entered power-down. Exiting pre-
charge power-down requires the device to be at the
same voltage as when it entered power-down; how-
ever, the clock frequency is allowed to change (See
"Pre cha rge Powe r-Down Clock Frequency Cha nge " on
page 63.)
The maximum duration for either active or pre-
charge power-down is limited by the refresh require-
ments of the device tRFC (MAX). The minimum
duration for power-down entry and exit is limited by
tCKE(min) parameter. While in power-down mode,
CKE LOW, a stable clock signal, and stable power sup-
ply signals must be maintained at the inputs of the
DDR2 SDRAM, while all other input signals are “Dont
Care except ODT. Detailed ODT timing diagrams for
different power-down modes are shown starting on
page 66 for Figure 56 through Figure 61.
The power-down state is synchronously exited
when CKE is registered HIGH (in conjunction with a
NOP or DESELECT command) as shown in Figure 45.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 57 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 45: Power-Down
NOTE:
1. If this command is a PRECHARGE (or if the device is already in the idle state), then the power-down mode shown is pre-
charge po wer-down. If this com ma nd is an ACTIVE (or if at le ast one row i s alrea dy a ctive), then the pow er -d ow n mod e
shown is active power-down.
2. No column accesses are allowed to be in progress at the time power-down is entered.
3. tCKE (MIN) = 3 x tCK.
4. tXP timing is used for exit precharge power-down and active power-down to any non-READ command.
5. tXPRD timing is used for exit precharge power-down to any READ command
6. tXARD timing is used for exit active power-down to READ command if 'fast exit' is selected via MR (bit 12 = 0).
7. tXARDS timing is used for exit active power-down to READ command if 'slow exit' is selected via MR (bit 12 = 1).
CK
CK#
COMMAND
VALID1NOP
ADDRESS
CKE
DQ
DM
DQS, DQS#
VALID
t
CK
t
CH
t
CL
Enter
Power-Down
Mode2
Exit
Power-Down
Mode
T0 Ta0 Ta2 Tb0 Tb1Ta1
NOP
DON’T CARE
VALIDVALID
t
CKE (MIN)
3
t
CKE (MIN)
3
Tc0 Td0
VALID
VALID
VALID
VALID
VALID1
VALID
t
CKE (MIN)
3
Td1
t
XP
4
,
t
XPRD
5
,
t
XARD
6,
t
XARDS
7
Indicates a break in
time scale
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 58 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. CKE (n) is the logic state of CKE at clock edge n; CKE (n-1) was the state of CKE at the previous clock edge.
2. Current state is the state of the DDR2 SDRAM immediately prior to clock edge n.
3. COMMAND (n) is the command registered at clock edge n, and ACTION (n) is a result of COMMAND (N).
4. All states and sequences not shown are illegal or reserved unless explicitely described elsewhere in this document.
5. On self refresh exit, DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR p eriod.
Read commands may be issued only after tXSRD (200 clocks) is satisfied.
6. Self refresh mode can only be entered from the all banks idle state.
7. Must be a legal command as defined in the Command Truth Table.
8. Valid commands for power-down entry and exit are NOP and DESELECT only.
9. Valid commands for Self Refresh Exit are NOP and DESELECT only.
10. Power -do wn and self refresh can not be entered while READ or WRITE operations, LOAD MODE operations, or PRE-
CHARGE or REFRESH operations are in progress. See Power-Down and Self Refresh sections for a list of detailed restric-
tions.
11. Minimum CKE HIGH time is tCKE = 3 x tCK. Minimum CKE low time is tCKE = 3 x tCK.
12. The state of on-die termination (ODT) does not affect the stat es described in this table. The ODT function is not avail-
able during self refresh. See ODT section for more details and specific restrictions.
13. Power-down modes do not perform any refresh operations. The duration of power-down mode is therefore limited by
the refresh requirements.
14. CKE must be maintained HIGH while the SDRAM is in off-chip driver (OCD) calibration mode, i.e., if any of the bits A7,
A8, A9 in EMR(1) are set to “1.”
15. “X” means “ Don’t Care” ( includi ng floating around V REF) in self re fresh a nd power -d own. Howev er, ODT must be driv en
HIGH or LOW in power-down if the ODT function is enabled via EMR(1).
Table 9: CKE Truth Table
Notes 1–3, 12, 14
CURRENT STATE
CKE
COMMAND (n)
CS#,RAS#,CAS#,WE# ACTION (n)NOTES
PREVIOUS
CYCLE (n-1) CURRENT
CYCLE (n)
Power Down L L X Maintain Power-Down 13, 15
L H DESELECT or NOP Power-Down Exit 4, 8
Self Refresh L L X Maintain Self Refresh 15
L H DESELE CT or NOP Self Refresh Exit 4, 5, 9
Bank(s) Active H L DESELECT or NOP Active Power-Down Entry 4, 8, 10, 11
All Banks Idle H L DESELECT or NOP Precharge Power-Down Entry 4, 8, 10
H L REFR ESH Self Refresh Entry 6, 9, 11
H H Refer to Command Truth Table on page 24 7
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 59 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 46: READ to Power-Down Entry
NOTE:
1. Power-down entry may occur after the READ burst completes.
2. In the example shown, READ burst completes at T5; earliest power-down entry is at T6.
Figure 47: READ with Auto Precharge to Power-Down Entry
NOTE:
1. Power -do wn ent ry may occ ur 1 x tCK after the internal precharge is issued and may be prior to tRP being satisfied.
2. Timing shown above assumes internal PRECHARGE was issued at T5 or earlier.
3. Refer to READ-to-PRECHARGE section for internal precharge timing details.
D
OUT
D
OUT
D
OUT
CK
CK#
COMMAND
DQ
DQS, DQS#
RL = 3
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP NOP
D
OUT
T3 T4 T5
VALID
T6 T7 T8 T9
tCKE (MIN)
ADDRESS
A10
NOP
CKE
READ
VALID
T10
Power-Down
1
Entry
NOP
D
OUT
D
OUT
D
OUT
CK
CK#
COMMAND
DQ
DQS, DQS#
RL = 3
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP NOP
D
OUT
T3 T4 T5
VALID VALID
T6 T7 T8 T9
tCKE (MIN)
ADDRESS
A10
NOP
CKE
READ
VALID
T10
Power-Down
1
Entry
NOP
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 60 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 48: WRITE to Power-Down Entry
Figure 49: WRITE with Au to Precharge to Power-Down Entry
NOTE:
1. Write Recovery (WR) is programmed through MR[9,10,11] and represents [tWR (MIN) ns / tCK] rounded up to next inte-
ger tCK.
2. Internal PRECHARGE occurs at Ta0 when WR has completed; power-down entry may occur 1 x tCK later at Ta1 prior to
tRP being satisfied. Figure 50: REFRESH command to Power-Down Entry
NOTE:
1. The earliest PRECHARGE power-down entry may occur is at T2 which is 1 x tCK after the REFRESH command. Precharge
power down entry occurs prior to tRFC (MIN) being satisfied.
D
OUT
D
OUT
D
OUT
CK
CK#
COMMAND
DQ
DQS, DQS#
WL = 3
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP NOP
D
OUT
T3 T4 T5
VALID VALID
T6
VALID
1
T7 T8 T9
tCKE (MIN)
ADDRESS
A10
NOP
CKE
WRITE
VALID
T10
Power-Down
Entry
tWTR
NOP
D
OUT
D
OUT
D
OUT
CK
CK#
COMMAND
DQ
DQS, DQS#
WL = 3
T0 T1 T2
DON’T CARETRANSITIONING DATA
NOP NOP
D
OUT
T3 T4 T5
VALID VALID
Ta0
VALID
2
NOP
Ta1 Ta2 Ta3
tCKE (MIN)
ADDRESS
A10
NOP
CKE
WRITE
VALID
Ta4
Power-Down
Entry
WR1
Indicates a break in
time scale
CK
CK#
COMMAND
DON’T CARE
T0 T1
VALID REFRESH
T2 T3 T4 T5
tCKE (MIN)
CKE
T6
Power-Down
1
Entry
1 x tCK
NOP
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 61 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 51: ACTIVE Command to Power-Down Entry
NOTE:
1. The earliest PRECHARGE power-down entry may occur is at T2, which is 1 x tCK after the ACTIVE command. Active
power-down entry occurs prior to tRCD (MIN) being satisfied.
Figure 52: PRECHARGE Command to Power-Down Entry
NOTE:
1. The earliest power-down entry may occur is at T2, which is 1 x tCK after the PRECHARGE command. Power-down entry
occurs prior to tRP (MIN) being satisfied.
CK
CK#
COMMAND
DON’T CARE
T0 T1
VALID ACTIVE
T2
NOP
T3 T4 T5
tCKE (MIN)
CKE
T6
Power-Down
1
Entry
1 tCK
ADDRESS VALID
CK
CK#
COMMAND
DON’T CARE
T0 T1
VALID
PRECHARGE
T2
NOP
T3 T4 T5
tCKE (MIN)
CKE
T6
Power-Down
1
Entry
1 x tCK
ADDRESS
A10
VALID
ALL BANKS
vs
SINGLE BANK
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 62 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 53: LO AD MODE C omm a nd to Power-Down Entry
NOTE:
1. The earliest PRECHARGE power-down entry is at T3, which is after tMRD is satisfied.
2. All banks must be in the precharged state and tRP met prior to issuing LM command.
3. Valid address for LM command includes MR, EMR, EMR(2), and EMR(3) registers.
CK
CK#
COMMAND
DON’T CARE
T0 T1
VALID LM
T2
NOP VALID
T3 T4 T5
tCKE (MIN)
CKE
T6
Power-Down
1
Entry
tMRD
ADDRESS VALID
3
tRP
2
T7
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 63 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Precharge Power-Down Clock
Frequency Change
When the DRAM is in precharged power-down
mode, on-die termination (ODT) must be turned off
and CKE must be at a logic LOW level. A minimum of
two clocks must pass after CKE goes LOW before clock
frequency may change. The DRAM input clock fre-
quency is allowed to change onl y withi n minimum a nd
maximum operating frequencies specified for the par-
ticular speed grade. During input clock frequency
change, ODT and CKE must be held at stable LOW lev-
els. Once the input clock frequency is changed, new
stable clocks must be provided to the DRAM before
precharge power-down may be exited and DLL must
be RESET via EMR after precharge power-down exit.
Depending on the new clock frequency an additional
MR command may need to be issued to appropriately
set the WR MR[11, 10, 9] register. During the DLL
relock period of 200 cycles, OD T mu st remain off. After
the DLL lock time, the DRAM is r eady to operate with a
new clock frequency.
Figure 54: Input Clock Frequency Chang e During PRECHARGE Power Down Mode
NOTE:
1. If this command is a PRECHARGE (or if the device is already in the idle state), then the power-down mode shown is pre-
charge power-down, which is required prior to the clock frequency change.
2. A minimum of 2 x tCK is required after entering PRECHARGE power-down prior to changing clock frequencies.
3. Once the new clock frequency has changed and is stable, a minimum of 1 x tCK is required prior to exiting PRECHARGE
power-down.
4. CKE minimum HIGH and LOW time; tCKE (MIN) = 3 x tCK.
CK
CK#
COMMAND
VALID1NOP
ADDR
CKE
DQ
DM
DQS, DQS#
NOP
tCK
Enter PRECHARGE
Power-Down Mode Exit PRECHARGE
Power-Down Mode
T0 T1 T3 Ta0T2
DON’T CARE
VALID
tCKE (MIN)
4
tCKE (MIN)
4
tXP
LM
DLL RESET
VALID
VALID
NOP
tCH tCL
Ta1 Ta2 Tb0Ta3
2 x tCK (MIN)
2
1 x tCK (MIN)
3
tCH tCL
tCK
ODT
200 x tCK
NOP
Ta4
PREVIOUS CLOCK FREQUENCY NEW CLOCK FREQUENCY
Frequency
Change
High-Z
High-Z
Indicates a break in
time scale
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 64 ©2003 Micron Technolog y, Inc. All rights reserv ed.
RESET Function (CKE LOW Anytime)
DDR2 SDRAM applications may go into a RESET
state at any time during normal operation. If an appli-
cation enters a reset condition, the CKE input pin is
used to ensu re the DDR2 SDRAM device resumes nor-
mal operation after reinitializing. All data will be lost
during a reset condition; however, the DDR2 SDRAM
device will continue to operate properly if the follow-
ing condi tions outl ine d in this section are satisfied .
The RESET condition defined here assumes all sup-
ply voltages (VDD, VDDQ, VDDL, and Vref) are stable
and meet all DC specifications prior to, during, and
after the RESET operation. All other input pins of the
DDR2 SDRAM device are a “dont care” during RESET
with the exception of CKE.
If CKE asynchronously drops LOW during any valid
operation (including a READ or WRITE burst), the
memory controller must satisfy the timing parameter
tDELAY before turning off the clocks . Stable clocks must
exist at the CK,CK# inputs of DRAM before CKE is
raised HIGH, at which time the normal initialization
sequence must occur (See “Initialization” on page15).
The DDR2 SDRAM is now ready for normal operation
after the initialization sequence. Figure 55 shows the
proper sequence for a RESET condition.
Figure 55: RESET Condition
CKE
Rtt
BA0, BA1
High-Z
DM
7
DQS
7
High-Z
ADDRESS
A10
CK
CK#
tCL
COMMAND6
NOP
2
PRE
ALL BANKS
Ta0
DON’T CARE TRANSITIONING DATA
tRP
tCL
tCK
ODT
DQ
7
High-Z
T = 400ns (MIN)
Tb0
READ NOP
2
T0 T1 T2
Col n
Bank a
tDELAY
DOUTDOUT
()()
()()
()()
READ NOP
2
Col n
Bank b
DOUT
High-Z
High-Z
Unknown RTT ON
System
RESET
T3 T4 T5
Start of Normal
Initialization
Sequence
NOP
2
Indicates a break in
time scale
For Initilization timing, see time sequence Ta0 in
Figure 7, DDR2 Power-Up and Initialization, on
page 16
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 65 ©2003 Micron Technolog y, Inc. All rights reserv ed.
ODT Timing
There are two timing categories for ODT, turn-on
and turn-off. During active mode (CKE HIGH) and
fast-exit” power-down mode (any row of any bank
open, CKE LOW, MR[bit1 2 = 0]), tAOND, tAON, tAOFD,
and tAOF timing parameters are applied as shown in
Figure 56 and Table 10 on page 66. During “slow-exit”
power-down mode (any row of any bank open, CKE
LOW, MR[bit12=1]) and precharge power-down mode
(all banks/rows precharged and idle, CKE LOW),
tAONPD and tAOFPD ti mi n g parameters are applied as
shown in Figure 57 an d Table 11 on page 67.
ODT turn-off timing prior to entering any power-
down mode is determined by the parameter tANPD
(MIN) shown in Figure 58. At state T2 the ODT HIGH
signal satisfies tANPD (MIN) prior to entering power-
down mode at T5. When tANPD (MIN) is satisfied
tAOFD and tAOF timing parameters apply. Figure 58
also shows the example where tANPD (MIN) is NOT
satisfied since ODT HIGH does not occur until state
T3. Whe n tANPD (MIN) is NOT satisfied, tAO F PD t im -
ing parameters apply.
ODT turn-on timing prior to entering any power-
down mode is determined by the parameter tANPD
shown in Figure 59. At state T2, the ODT HIGH signal
satisfies tANPD (MIN) prior to entering power-down
mode at T5. When tANPD (MIN) is satisfied tAOND
and tAON timing parameters apply. Figure 59 also
shows the example where tANPD (MIN) is NOT satis-
fied since ODT HIGH does not occur until state T3.
When tANPD (MIN) is NOT satisfied, tAONPD timing
parameters apply.
ODT turn-off timing after exiting any power-down
mode is determined by the parameter tAXPD (MIN)
shown in Figure 60. At state Ta1, the ODT LOW signal
satisfies tAXPD (MIN) after exiting power-down mode
at state T1. When tAXPD (MIN) is sa tisfied, tAO F D a nd
tAOF timing parameters apply. Figure60 also shows
the example where tAXPD (MIN) is NOT satis fied sin ce
ODT LOW occurs at state Ta0. When tAXPD (MIN) is
NO T satis fied, tA OF PD timi n g parameters appl y.
ODT turn-on timing after exiting any power-down
mode is determined by the parameter tAXPD (MIN)
shown in Figure 61. At state Ta1, the ODT HIG H sig nal
satisfies tAXPD (MIN) after exiting power-down mode
at state T1. When tAXPD (MIN) is satisfied, tAOND and
tAON timing parameters apply. Figure61 also shows
the example where tAXPD (MIN) is NOT sat isfied sin ce
ODT HIGH occurs at state Ta0. When tAXPD (MIN) is
NO T satis fied, tAONPD timing parameters apply.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 66 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 56: ODT Timing for Active and “Fast-Exit” Power-Down Mode
T1T0 T2 T3 T4 T5 T6
VALIDVALID VALID VALIDVALID VALID VALID
CK#
CK
CKE
tAOF (MAX)
ODT
RTT tAON (MIN)
tAON (MAX)
tAOND
ADDR
tAOFD
tAOF (MIN)
VALIDVALID VALID VALIDVALID VALID VALID
CMD
t
CH
t
CL
t
CK
DON’T CARE
R
TT
Unknown R
TT
On
Table 10: ODT Timing for Active and “Fast-Exit” Power-Down Modes
PARAMETER SYMBOL MIN MAX UNITS
ODT turn-on delay tAOND 22
tCK
ODT turn-on tAON tAC (MIN) tAC (MAX) + 1,000 ps
ODT turn-off delay tAOFD 2.5 2.5 tCK
ODT turn-off tAOF tAC (MIN) tAC (MAX) + 600 ps
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 67 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 57: ODT timing for “Slow-Exit” and Precharge Power-Down Modes
DON’T CARE
T1T0 T2 T3 T4 T5 T6
VALIDVALID VALID VALIDVALID VALID VALID
CK#
CK
CKE
ODT
RTT
ADDR
VALIDVALID VALID VALIDVALID VALID VALID
CMD
tCH tCL
tCK
tAONPD (MIN)
tAONPD (MAX)
tAOFPD (MIN) tAOFPD (MAX)
Transitioning RTT
T7
VALID
VALID
RTT Unknown RTT On
Table 11: ODT timing for “Slow-Exit” and Precharge Power-Down Modes
PARAMETER SYMBOL MIN MAX UNITS
ODT turn-on (power-down mode) tAONPD tAC (MIN) + 2,000 2 x tCK+tAC (MAX) + 1,000 ps
ODT turn-off (power-down mode) tAOFPD tAC (MIN) + 2,000 2.5 x tCK + tAC (MAX) + 1,000 ps
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 68 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 58: ODT “Turn Off” Timings when Entering Power-Down Mode
T1T0 T2 T3 T4 T5 T6
NOPNOP NOP NOPNOP NOP NOP
CK#
CK
CKE
tANPD (MIN)
ODT
RTT tAOF (MIN)
tAOF (MAX)
tAOFD
ODT
RTT tAOFPD (MIN)
tAOFPD (MAX)
DON’T CARE
Transitioning RTT RTT Unknown RTT On
Table 12: ODT “Turn Off” Ti mi ngs wh en Enterin g Power-Down Mode
PARAMETER SYMBOL MIN MAX UNITS
ODT turn-off delay tAOFD 2.5 2.5 tCK
ODT turn-off tAOF tAC (MIN) tAC (MAX) + 600 ps
ODT turn-off (power-down mode) tAOFPD tAC (MIN) + 2,000 2.5 x tCK + tAC (MAX) + 1,000 ps
ODT to power-down entry latency tANPD 3tCK
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 69 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 59: ODT “Tur n-On” Timing when Entering Power-Down Mode
T1T0 T2 T3 T4 T5 T6
NOPNOP NOP NOPNOP NOP NOP
CK#
CK
CKE
tANPD (MIN)
ODT
RTT
tAON (MIN)
tAON (MAX)
tAOND
ODT
RTT
tAONPD (MIN)
tAONPD (MAX)
DON’T CARE
Transitioning RTT RTT Unknown RTT On
Table 13: ODT “Turn-On” Timing when Entering Power-Down Mode
PARAMETER SYMBOL MIN MAX UNITS
ODT turn-on delay tAOND 22
tCK
ODT turn-on tAON tAC (MIN) tAC (MAX) + 1,000 ps
ODT turn-on (power-down mode) tAONPD tAC (MIN) + 2,000 2 x tCK + tAC (MAX) + 1,000 ps
ODT to power-down entry latency tANPD 3tCK
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 70 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 60: ODT “Turn-Off” Timing when Exiting Power-Down Mode
T1T0 T2 T3 T4 Ta0 Ta1
NOPNOP NOP NOPNOP NOP NOP
CK#
CK
CKE
tAXPD (MIN)
ODT
R
TT
tAOF (MAX)
ODT
R
TT
tAOFPD (MIN)
tAOFPD (MAX)
COMMAND
tCKE (MIN)
Ta2 Ta3 Ta4 Ta5
NOPNOP NOP NOP
DON’T CARE
Transitioning R
TT
R
TT
Unknown R
TT
On
tAOF (MIN)
tAOFD
Indicates a break in
time scale
Table 14: ODT “Turn-Of” Timing when Exiting Power-Down Mode
PARAMETER SYMBOL MIN MAX UNITS
ODT turn-off delay tAOFD 2.5 2.5 tCK
ODT turn-off tAOF tAC (MIN) tAC (MAX) + 600 ps
ODT turn-off (power-down mode) tAOFPD tAC (MIN) + 2,000 2.5 x tCK + tAC (MAX) + 1,000 ps
ODT to power-down exit latency tAXPD 8tCK
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 71 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 61: ODT “Turn On” Timing when Exiting Power-Down Mode
T1T0 T2 T3 T4 Ta0 Ta1
NOPNOP NOP NOPNOP NOP NOP
CK#
CK
CKE
tAXPD (MIN)
COMMAND
tCKE (MIN)
Ta2 Ta3 Ta4 Ta5
NOPNOP NOP NOP
ODT
RTT
tAON (MIN)
tAON (MAX)
tAOND
ODT
RTT
tAONPD (MIN)
tAONPD (MAX)
DON’T CARE
Transitioning RTT RTT Unknown RTT On Indicates a break in
time scale
Table 15: ODT “Tur n On” Timing when Exiting Power-Down Mode
PARAMETER SYMBOL MIN MAX UNITS
ODT turn-on delay tAOND 22
tCK
ODT turn-on tAON tAC (MIN) tAC (MAX) + 1,000 ps
ODT turn-on (power-down mode) tAONPD tAC (MIN) + 2,000 2 x tCK + tAC (MAX) + 1,000 ps
ODT to power-down exit latency tAXPD 8tCK
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 72 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Absolute Maximum Ratings
Stresses greater than those listed may cause perma-
nent damage to the device. This is a stress rating only,
and functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended peri ods may affec t reliabilit y.
Figure 62: Temperature Test Point Location
Table 16: Absolute Maximum DC Ratings
SYMBOL PARAMETER MIN MAX UNITS
VDD VDD Supply Voltage Relative to VSS -1.0 2.3 V
VDDQVDDQ Supply Voltage Relative to VSS -0.5 2.3 V
VDDLVDDL Supply Voltage Relative to Vss -0.5 2.3 V
VIN, VOUT Voltage on any Pin Relative to VSS -0.5 2.3 V
TSTG Storage Temperature (Tcase)1-55 100 °C
TCOperating Temperature (Tcase)1,2 085°C
IIInput Leaka ge Current
Any input 0V <= Vin <= VDD
Vref input 0V <= Vin <= 0.95V
(All other pins not under test = 0V)
-5 5 uA
IOZ Output Leakage Current
0V <= Vout <= VddQ
DQs and ODT are disabled
-5 5 uA
NOTE:
1. MAX operating case temperature; TC is measured in the center of the package illustrated in Figure 62.
2. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during operation.
8.00
4.00
12.00
6.00
Test Point
8mm x 12mm “FP FBGA
8.00
4.00
14.00
7.00
8mm x 14mm “FG” FBGA
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 73 ©2003 Micron Technolog y, Inc. All rights reserv ed.
AC and DC Operating Conditions
NOTE:
1. VDD and VDDQ must track each other. VDDQ must be less than or equal to VDD.
2. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level of the same. Peak-to-
peak noise (non-common mode) on Vref may not exceed ±1% of the DC value. Peak-to-peak AC noise on VREF may not
exceed ±2 percent of VREF (DC). This measurement is to be taken at the nearest VREF bypass capacitor.
3. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal
to Vref and must track variations in the DC level of VREF.
4. VDDQ tracks with VDD; VDDL tracks with VDD.
NOTE:
1. RTT1(EFF) and RTT2(EFF) a re determin ed by a pplying VIH(AC) and VIL(AC) to pin unde r test separately, then measure current
I(VIH(AC)) and I(VIL(AC)) respectively.
2. Measure voltage (VM) at tested pin with no load.
Table 17: Recommended DC Operating Conditions (SSTL_18)
All voltages referenced to VSS
PARAMETER SYMBOL MIN NOM MAX UNITS NOTES
Supply Voltage VDD 1.7 1.8 1.9 V 1
VDDL Supply Voltage VDDL 1.7 1.8 1.9 V 4
I/O Supply Voltage VDDQ 1.7 1.8 1.9 V 4
I/O Reference Voltage VREF 0.49 x VDDQ0.50 x VDDQ0.51 X VDDQV 2
I/O Termination Voltage (system) VTT VREF - 40 VREF VREF + 40 mV 3
Table 18: ODT DC Electrical Characteristics
All voltages referenced to VSS
PARAMETER SYMBOL MIN NOM MAX UNITS NOTES
RTT effective impedance value for 75W setting
EMR (A6, A2) = 0, 1 RTT1(EFF)60 75 90 W1
RTT effective impedance value for 150W setting
EMR (A6, A2) = 1, 0 RTT2(EFF) 120 150 180 W1
Deviation of VM with respect to VDDQ/2 DVM -3.75 +3.75 % 2
RTT EFF() VIH AC()VIL AC()
IV
IH AC()()IVIL AC()()
-------------------------------------------------------------=
DVM 2VM´
VDDQ
------------------1
èø
æö
100%´=
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 74 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Input Electrical Characteristics and Operating Conditions
Figur e 63: Single-Ended Input Signal Levels
NOTE:
Numbers in diagram reflect nomimal values.
Table 19: Input DC Logic Levels
All voltages referenced to VSS
PARAMETER SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage VIH(DC)VREF + 125 VDDQ + 300 mV
Input Low (Logic 0) Voltage VIL(DC)-300 VREF - 125 mV
Table 20: Input AC Logic Levels
All voltages referenced to VSS
PARAMETER SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage VIH(AC)VREF + 250 - mV
Input Low (Logic 0) Voltage VIL(AC)– VREF - 250 mV
650mV
775mV
864mV
882mV
900mV
918mV
936mV
1,025mV
1,150mV
VIL (AC)
VIL (DC)
VREF - AC Noise
VREF - DC Error
VREF + DC Error
VREF + AC Noise
VIH (DC)
VIH (AC)
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 75 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. VIN (DC) specifies the allowable DC execution of each input of differential pair such as CK, CK#, DQS, DQS#, LDQS,
LDQS#, UDQS, UDQS#, and RDQS, RDQS#.
2. VID (DC) specifies the input differential voltage | VTR - VCP | required for switching, where VTR is the true input (such as
CK, DQS, LDQS, UDQS, RDQS) level and VCP is the compleme ntary input (such as CK #, DQS#, LDQS# , UDQ S#, R DQS#). The
minimum value is equal to VIH (DC) - VIL (DC). Differential input signal levels are shown in Figure 64.
3. VID (AC) specifies the input differential voltage | VTR - VCP | required for switching, where VTR is the true input (such as
CK, DQS, LDQS, UDQS, RDQS) level and VCP is the compleme ntary input (such as CK #, DQS#, LDQS# , UDQ S#, R DQS#). The
minimum value is equal to VIH (AC) - VIL (AC) from Table 20 on page 74.
4. The typical value of VIX (AC) is expected to be about 0.5 x VDDQ of the transmitting device and VIX (AC) is expected to
track variations in VDDQ. V IX (AC) indicates the voltage at which differential input signals must cross as shown in
Figure 64. Figure 64: Differential Input Signal Levels
NOTE:
1. This provides a minimum of 850mV to a maximum of 950mV and is always VDDQ/2.
2. TR and CP must cross in this region.
3. TR and CP must meet at least VID (DC) min when static and is centered around VMP (DC).
4. TR and CP must have a minimum 500mV peak-to-peak swing.
5. TR and CP may not be more positive than VDDQ + 0.3V or more negative than VSS - 0.3V.
6. For AC operation, all DC clock requirements must also be satisfied.
7. Numbers in diagram reflect nominal values.
8. TR represents the CK, DQS, RDQS, LDQS and UDQS signals; CP represents CK#, DQS#, RDQS#, LDQS# and UDQS# signals.
Table 21: Differential Input Logic Levels
All voltages referenced to VSS
PARAMETER SYMBOL MIN MAX UNITS NOTES
DC Input Signal Voltage VIN (DC) -300 VDDQ + 300 mV 2
DC Differe nt ial Inpu t Voltage VID (DC) 250 VDDQ + 600 mV 3
AC Differe nt ial Inpu t Voltage VID (AC) 500 VDDQ + 600 mV 4
AC Differential Cross-Point Voltage VIX (AC) 0.50 x VDDQ - 175 0.50 x VDDQ + 175 mV 5
CP8
TR8
2.1 V
@ V
DD
Q=1.8V
23
5
5
Maximum Clock Level
Minimum Clock Level
4
- 0.30V
0.9V
1.075 V
0.725 V V
ID
(AC)
V
ID
(DC)
X
1
V
MP
(DC) V
IX
(AC)
X
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 76 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. All voltages referenced to VSS.
2. Input waveform setup timing (tIS) is referenced from the input signal crossing at the VIH(ac) level for a rising s ignal and
VIL(DC) for a falling signal applied to the device under test as shown in Figure 65.
3. Input waveform hold (tIH) timing is referenced from the input signal crossing at the VIL(DC) level for a rising signal and
VIH(DC) for a falling signal applied to the device under test as shown in Figure 65
4. Input waveform setup timing (tDS) a nd hold timing (tDH) for single-end ed data strobe is referenced from the crossing of
DQS, UDQS, or LDQS through the VREF level applied to the device under test as shown in Figure 67.
5. Input waveform setup timing (tDS) and hold timing (tDH) when differential data strobe is enabled is referenced from
the crosspoint of DQS,DQS# or UDQS,UDQS# or LDQS,LDQS# as shown in Figure 66.
6. Input waveform timing is referenced to the crossing point level (Vix) of two input signals (Vtr and Vcp) applied to the
device under test, where Vtr is the “true” input signal and Vcp is the “complementary” input signal shown in Fig ure 68.
Figure 6 5: AC Input Test Signal Waveform Command/Address pins
Table 22: AC Input Test Conditions
PARAMETER SYMBOL MIN MAX UNITS NOTES
Input setup timing measurement reference level
BA0-BA1, A0-A13, CS #, RAS#, CAS#, WE# , ODT, DM, UDM,
LDM and CKE
Vrs See Note 2 1,2
Input hold timing measurement reference level
BA0-BA1, A0-A13, CS #, RAS#, CAS#, WE# , ODT, DM, UDM,
LDM and CKE
Vrh See Note3 1,3
Input timing m easure men t refere nc e l eve l (sin gle- ende d)
DQS for x4x8; UDQS, LDQS for x16 VREF VDDQ*0.49 VDDQ*0.51 V 1,4
Input timing measurement reference level (differential)
CK, CK# for x4,x8,x16
DQS, DQS# for x4,x8; RDQS, RDQS# for x8
UDQS, UDQS#, LDQS, LDQS# for x16
Vrd VIX(cross point) See Note 5 V 1,5
Input signal minimum slew rate (single-ended) SLEW 1.0 V/ns 1,6
Input signal minimum slew rate (differential) SLEW 2.0 V/ns 1,6
VREF
VIL(DC) MAX
VIL(AC) MAX
VSSQ
VIH(DC) MIN
VIH(AC) MIN
VDDQ
VSWING (MAX)
tIS tIH
tIS tIH
CK#
CK
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 77 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 66: AC Input Test Signal Waveform for Data with DQS,DQS# (differential)
Figure 67: AC Input Test Signal Waveform for Data with DQS (single-ended)
Figur e 68: AC Input Test Signal Waveform (dif ferential)
VREF
VIL(DC) MAX
VIL(AC) MAX
VSSQ
VIH(DC) MIN
VIH(AC) MIN
VDDQ
VSWING (MAX)
tDS tDH
DQS#
DQS
tDS tDH
VREF
VIL(DC) MAX
VIL(AC) MAX
VSSQ
VIH(DC) MIN
VIH(AC) MIN
VDDQ
VSWING (MAX)
tDS tDH
DQS
tDS tDH
VREF
VTR
VSWING
VCP
VDDQ
VSSQ
VIX
Crossing Point
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 78 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Power and Ground Clamp Characte ristics
Power and ground clamps are required on the fol-
lowing input-only pins: BA1, BA0, A13–A0 for x4 and
x8; A12-A0 for x16, CS#, RAS#, CAS#, WE#, ODT, and
CKE.
Figure 69: Input Clamp Characteristics
Table 23: Input Clamp Characteristics
VOLTAGE ACROSS CLAMP
(V) MINIMUM POWER CLAMP CURRENT
(mA) MINIMUM GROUND CLAMP
CURRENT (mA)
0.0 0.0 0.0
0.1 0.0 0.0
0.2 0.0 0.0
0.3 0.0 0.0
0.4 0.0 0.0
0.5 0.0 0.0
0.6 0.0 0.0
0.7 0.0 0.0
0.8 0.1 0.1
0.9 1.0 1.0
1.0 2.5 2.5
1.1 4.7 4.7
1.2 6.8 6.8
1.3 9.1 9.1
1.4 11.0 11.0
1.5 13.5 13.5
1.6 16.0 16.0
1.7 18.2 18.2
1.8 21.0 21.0
0.0
5.0
10.0
15.0
20.0
25.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Voltage Across Clamp (V)
Minimum Clamp Current (mA)
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 79 ©2003 Micron Technolog y, Inc. All rights reserv ed.
AC Overshoot/Undershoot Specification
Figure 70: Overshoot
Figure 71: Undershoot
Table 24: Address and Control Pins
Applies to A0–A12, BA0–BA1, CS#, RAS#, CAS#, WE#, CKE, ODT
PARAMETER
SPECIFICATION
-5, -5E -37E
Maximum peak amplitude allowed for overshoot area (See Figure 70) 0.9V 0.9V
Maximum peak amplitude allowed for undershoot area (See Figure 71) 0.9V 0.9V
Maximum overshoot area above VDD (See Figure 70) 0.75V/ns 0.56V/ns
Maximum undershoot area below VSS (See Figure 71) 0.75V/ns 0.56V/ns
Table 25: Clock, Data, Strobe, and Mask Pins
Applies to DQ0–DQ15, DQS, DQS#, RDQS, RDQS#, UDQS, UDQS#, LDQS, LDQS#, DM, UDM, LDM
PARAMETER
SPECIFICATION
-5, -5E -37E
Maximum peak amplitude allowed for overshoot area (See Figure 70) 0.9V 0.9V
Maximum peak amplitude allowed for undershoot area (See Figure 70) 0.9V 0.9V
Maximum overshoot area above VDDQ ( See Figur e 70) 0.38V/ns 0.28V/ns
Maximum undershoot area below VSSQ (See Figure 71) 0.38V/ns 0.28V/ns
Overshoot Area
Maximum Amplitude
VDD/VDDQ
VSS/VSSQ
Volts
Time (ns)
(V)
Undershoot Area
Maximum Amplitude
VSS/VSSQ
Volts
Time (ns)
(V)
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 80 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Output Electrical Characteristics and Operating Conditions
NOTE:
1. The typical value of VOX (AC) is expected to be about 0.5 x VDDQ of the transmitting device and VOX (AC) is expected to
track variations in VDDQ. V OX (AC) indicates the voltage at which differential output signals must cross.
Figure 72: Differential Output Signal Levels
NOTE:
1. All voltages referenced to VSS.
2. See AC Timing Reference Load in Figure 73.
3. The VDDQ of the device under test is referenced.
Figure 73: AC Timing Reference Load
Table 26: Differential AC Output Parameters
PARAMETER SYMBOL MIN MAX UNITS NOTES
AC Differential Cross-Point Voltage VOX (AC) 0.50 x VDDQ - 125 0.50 x VDDQ + 125 mV 1
VTR
VID
VCP
VDDQ
VSSQ
VOX
Crossing Point
Table 27: AC Output Test Conditions
PARAMETER SYMBOL VALUE UNITS NOTES
Output timing measurement reference level VOTR 0.5 x VDDQV 1, 3
Output
(VOUT)Reference
Point
25
VTT = VDDQ/2
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 81 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. For IOH (DC); VDDQ = 1.7V, VOUT = 1420mV. (VOUT - VDDQ)/IOH must be less than 21W for values of VOUT between VDDQ
and VDDQ - 280mV.
2. For IOL (DC); VDDQ = 1.7V, VOUT = 280mV. VOUT/IOL must be less than 21W for values of VOUT between 0V and 280mV.
3. The DC value of VREF applied to the receiving device is set to VTT.
4. The values of IOH (DC) and IOL (DC) are based on the conditions given in Notes 1 and 2. Th ey are used to test device drive
current capability to ensu re V IH (MIN) plus a noise margin and VIL (MAX) minus a noise margin are delivered to an
SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating point (See output IV
curves) along a 21W load line to define a convenient driver current for measurement.
NOTE:
1. Absolute specifications: 0°C £ Tcase £ +85°C; VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V.
2. Impedance measurement co ndition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT - VDDQ)/IOH must
be less than 23.4W for values of VOUT between VDDQ and VDDQ - 28 0m V. Impedance me asurem ent cond ition for o utput
sink DC current: VDDQ = 1.7V; VOUT = 280mV; VOUT/IOL must be less than 23.4W for va l u es o f VOUT between 0V and
280mV.
3. Mismatch is absolute value between pull-up and pull-down, both are measured at same temperature and voltage.
4. Output slew rate for falling and rising edges is measured between VTT - 250mV and VTT + 250mV for single ended sig-
nals. For dif ferentia l signals (e.g. DQ S - DQS) output slew rate is measu red betwee n DQS - DQS = -50 0mV and DQS - DQS
= +500mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device.
5. The absolute value of the slew rate as measured from VIL (DC)MAX to VIH (DC) MIN is equal to or greater than the slew
rate as measured from VIL (AC) MAX to VIH (AC) MIN. This is guaranteed by design and characterization.
Figure 74: Outp ut Slew Rate Load
Table 28: Output DC Current Drive
PARAMETER SYMBOL VALUE UNITS NOTES
Output Minimum Source DC Current IOH -13.4 mA 1,3,4
Output Minimum Sink DC Current IOL 13.4 mA 2,3,4
Table 29: Output Characteristics
PARAMETER SYMBOL MIN NOM MAX UNITS NOTES
Output impedance 12.6 18 23.4 Ws1,2
Pull-up and Pull-down mismatch 04
Ws1,2,3
Output slew rate 1.5 5 V/ns 1,4,5
Output
(VOUT)Reference
Point
25
VTT = VDDQ/2
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 82 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Full Strength Pull-Down Driver Characteristics
Figure 75: Ful l Strength Pull-Do wn Chara c teristics
Pull- down Charact er istics
0.00
20.00
40.00
60.00
80.00
100.00
120.00
0.0 0.5 1.0 1.5
Vout (V)
Iout (mA)
Table 30: Pull dow n Cur rent (mA)
VOLTAGE (V) MINIMUM NOMINAL MAXIMUM
0.0 0.00 0.00 0.00
0.1 4.60 5.63 7.90
0.2 9.20 11.3 15.90
0.3 12.90 16.52 23.80
0.4 17.50 22.19 31.80
0.5 21.60 27.59 39.70
0.6 25.32 32.86 47.70
0.7 28.36 37.51 55.00
0.8 30.53 41.77 62.30
0.9 32.16 45.70 69.40
1.0 33.26 48.85 75.30
1.1 33.96 51.51 80.50
1.2 34.40 53.55 84.60
1.3 34.71 55.08 87.70
1.4 34.94 56.58 90.80
1.5 35.11 57.60 92.90
1.6 35.25 58.57 94.90
1.7 35.37 59.57 97.00
1.8 35.48 60.56 99.10
1.9 35.57 61.50 101.10
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 83 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Full Strength Pull-Up D river Characteristics
Figure 76: Full Strength Pull-up Characteristics
Pull-u p Character istics
-120.0
-100.0
-80.0
-60.0
-40.0
-20.0
0.0 0.0 0.5 1.0 1.5
VDDQ - Vout (V)
Iout (mA)
Table 31: Pull-Up Curr ent (mA)
VOLTAGE (V) MINIMUM NOMINAL MAXIMUM
0.0 0.0 0.0 0.0
0.1 -4.60 -5.63 -7.9
0.2 -9.20 -11.30 -15.9
0.3 -13.80 -16.92 -23.8
0.4 -18.40 -22.59 -31.8
0.5 -21.94 -27.74 -39.7
0.6 -24.27 -32.39 -47.7
0.7 -26.01 -36.45 -55.0
0.8 -27.43 -40.38 -62.3
0.9 -28.40 -44.01 -69.4
1.0 -29.16 -47.01 -75.3
1.1 -29.79 -49.63 -80.5
1.2 -30.32 -51.71 -84.6
1.3 -30.79 -53.32 -87.7
1.4 -31.19 -54.90 -90.8
1.5 -31.60 -56.03 -92.9
1.6 -31.93 -57.07 -94.9
1.7 -32.24 -58.16 -97.0
1.8 -32.78 -59.35 -99.1
1.9 -33.02 -60.35 -101.1
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 84 ©2003 Micron Technolog y, Inc. All rights reserv ed.
FBGA Package Capacitance
NOTE:
1. This parameter is sampled. VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V, VREF = VSS, f = 100 MHz, TCASE = 25°C, VOUT (DC) =
VDDQ/2, VOUT (pea k to peak) = 0.1V. DM input is groupe d with I/O pins, reflecting the fact that they are matched in load-
ing.
2. The input capacitance per pin group will not differ by more than this maximum amount for any given device.
3. The I/O capacitance per DQS and DQ byte/group will not differ by more than this maximum amount for any given
device.
Table 32: Input Capacitance
PARAMETER SYMBOL MIN MAX UNITS NOTES
Input Capacitance: CK, CK# CCK 1.0 2.0 pF 1
Delta Input Capacitance: CK, CK# CDCK 0.25 pF 2
Input Capacitance: BA0, BA1, A0-A12, CS#, RAS#,
CAS#, WE#, CKE, ODT CI 1.0 2.0 pF 1
Delta Input Capacitance: BA0, BA1, A0-A12, CS#,
RAS#, CAS#, WE#, CKE, ODT CDI 0.25 pF 2
Input/Output Capacitance: DQs, DQS, DM, NF CIO 2.5 4.0 pF 1
Delta Input/Output Capacitance: DQs, DQS, DM, NF CDIO 0.5 pF 3
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 85 ©2003 Micron Technolog y, Inc. All rights reserv ed.
IDD Specifications an d Conditio ns
Table 33: DDR2 IDD Specificatio ns and Condit ions
Notes: 1–5; notes appear on page 86.
PARAMETER/CONDITION SYMBOL CONFIG -37E -5E -5 UNITS
Operating one bank active-precharge current;
tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS MIN (IDD); CKE is
HIGH, CS# is HIGH between valid commands; Address bus inputs
are SWITCHING; Data bus inputs are SWITCHING.
IDD0 x4, x8, x16 TBD TBD TBD mA
Operating one bank active-read-precharge current;
IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD),
tRC = tRC (IDD), tRAS = tRAS MIN (IDD), tRCD = tRCD (IDD); CKE is
HIGH, CS# is HIGH between valid commands; Address bus inputs
are SWITCHING; Data pattern is same as IDD4W.
IDD1 x4, x8, x16 TBD TBD TBD mA
Precharge power-down current;
All banks idle; tCK = tCK (IDD); CKE is LOW; Other control and
address bus inputs are STABLE; Data bus inputs are FLOATING. IDD2P x4, x8, x16 TBD TBD TBD mA
Precharge quiet standby current;
All banks idle; tCK = tCK (IDD); CKE is HIGH, CS# is HIGH; Other
control and address bus inputs are STABLE; Data bus inputs are
FLOATING.
IDD2Q x4, x8, x16 TBD TBD TBD mA
Precharge standby current;
All banks idle; tCK = tCK (IDD); CKE is HIGH, CS# is HIGH; Other
control and address bus inputs are SWITCHING; Data bus inputs
are SWITCHING.
IDD2N x4, x8, x16 TBD TBD TBD mA
Active power-down current;
All banks open; tCK = tCK (IDD); CKE is LOW; Other control and
address bus inputs are STABLE; Data bus inputs are FLOATING. IDD3P
Fast PDN Exit
MR[12] = 0 TBD TBD TBD mA
Slow PDN Exit
MR[12] = 1 TBD TBD TBD mA
Active standby current;
All banks open; tCK = tCK(IDD), tRAS = tRAS MAX (IDD), tRP =
tRP(IDD); CKE is HIGH, CS# is HIGH between valid commands;
Other control and address bus inputs are SWITCHING; Data bus
inputs are SWITCHING.
IDD3N x4, x8, x16 TBD TBD TBD mA
Operating burst write current;
All banks open, Continuous burst writes; BL = 4, CL = CL (IDD),
AL = 0; tCK = tCK (IDD), tRAS = tRAS MAX (IDD), tRP = tRP (IDD);
CKE is HIGH, CS# is HIGH between valid commands; Address bus
inputs are SWITCHING; Data bus inputs are SWITCHING.
IDD4W x4, x8 TBD TBD TBD mA
x16 TBD TBD TBD mA
Operating burst read current;
All banks open, Continuous burst reads, IOUT = 0mA; BL = 4,
CL = CL (IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS MAX (IDD),
tRP = tRP (IDD); CKE is HIGH, CS# is HIGH between valid
commands; Address bus inputs are SWITCHING; Data bus inputs
are SWITCHING.
IDD4R
x4, x8 TBD TBD TBD mA
x16 TBD TBD TBD mA
Burst refresh current;
tCK = tCK (IDD); Refresh command at every tRFC (IDD) interval;
CKE is HIGH, CS# is HIGH between valid commands; Other
control and address bus inputs are SWITCHING; Data bus inputs
are SWITCHING.
IDD5 x4, x8, x16 TBD TBD TBD mA
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 86 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. IDD specifications are tested after the device is properly initialized. 0°C £TCASE £ 85°C.
VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V, VDDL= +1.8V ±0.1V, VREF=VDDQ/2.
2. Input slew rate is specified by AC Parametric Test Conditions.
3. IDD parameters are specified with ODT disabled.
4. Data bus consists of DQ, DM, DQS, DQS#, RDQS, RDQS#, LDQS, LDQS#, UDQS, and UDQS#. IDD values must be me t with
all combinations of EMR bits 10 and 11.
5. Definit i on s for IDD Condi ti ons:
LOW is defined as VIN £ VIL (AC) (MAX).
HIGH is defined as VIN ³ VIH (AC) (MIN).
STABLE is defined as inputs stable at a HIGH or LOW level.
FLOATING is defined as inputs at VREF = VDDQ/2.
SWITCHING is defined as inputs changing between HIGH and LOW every other clock cycle (once per two clocks)
for address and control signals.
Switching is defined as inputs changing between HIGH and LOW every other data transfer (once per clock) for
DQ signals not including masks or strobes.
Self refresh current;
CK and CK# at 0V; CKE £ 0.2V; Other control and address bus
inputs are FLOATING ; Dat a bus inputs are FLOATING. IDD6 x4, x8, x16 TBD TBD TBD mA
Operating bank interleave read current;
All bank interleaving reads, IOUT= 0mA; BL = 4, CL = CL (IDD),
AL = tRCD (IDD)-1 x tCK (IDD); tCK = tCK (IDD), tRC = tRC(IDD),
tRRD = tRRD(IDD), tRCD = tRCD(IDD); CKE is HIGH, CS# is HIGH
between valid commands; Address bus inputs are STABLE
during DESELECTs; Data bus inputs are SWITCHING; See IDD7
Conditions for detail.
IDD7 x4, x8, x16 TBD TBD TBD mA
Table 33: DDR2 IDD Specificatio ns an d Conditio ns (Continu ed)
Notes: 1–5; notes appear on page 86.
PARAMETER/CONDITION SYMBOL CONFIG -37E -5E -5 UNITS
Table 34: General IDD Parameters
IDD PARAMETER -37E -5E -5 UNITS
CL (IDD)434
tCK
tRCD ( IDD)15 15 20 ns
tRC (IDD)60 60 65 ns
tRRD ( IDD) - x4/x8 7.5 7.5 7.5 ns
tRRD ( IDD) - x16 10 10 10 ns
tCK (IDD)3.75 5 5 ns
tRAS MIN (IDD)45 45 45 ns
tRAS MAX (IDD)70,000 70,000 70,000 ns
tRP (IDD)15 15 20 ns
tRFC (IDD)105 105 105 ns
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 87 ©2003 Micron Technolog y, Inc. All rights reserv ed.
IDD7 Conditions
The detailed timings are shown below for IDD7.
Changes will be required if timing parameter changes
are made to the specification.
NOTE:
1. Legend: A = active; RA = read auto precharge; D = deselect.
2. All banks are being interleaved at minimum tRC (IDD) without violating tRRD (IDD) using a burst length of 4.
3. Control and address bus inputs are STABLE during DESELECTs.
4. IOUT = 0mA.
Table 35: IDD7 Timing Patterns
All Bank Interleave Read operation
SPEED GRADE IDD7 TIMING PATTERNS FOR x4/x8/x16
-5
A0 RA0 A1 RA 1 A2 R A2 A3 RA3 D D D D D
-5E
A0 RA0 A1 RA 1 A2 R A2 A3 RA3 D D D D
-37E
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 88 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Table 36: AC Operati ng Conditions (Sheet 1 of 4)
Notes: 1–5; notes appear on page 92; 0°C £ Tcase £ +85°C; VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V
AC CHARACTERISTICS -37E -5E -5
PARAMETER SYMBOL MIN MAX MIN MAX MIN MAX UNITS NOTES
Clock
Clock cycle
time CL = 4 tCK (4) 3, 750 8, 000 5,000 8,000 5,000 8,000 ps 16, 25
CL = 3 tCK (3) 5,000 8,000 5,000 8,000 ps 16, 25
CK high-level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK 19
CK low-level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK 19
Half clock period tHP MIN
(tCH,
tCL)
MIN
(tCH,
tCL)
MIN
(tCH,
tCL) ps 20
Clock jitter tJIT TBD TBD TBD TBD TBD TBD ps 18
Data
DQ output access time
from CK/CK# tAC -500 +500 -600 +600 -600 +600 ps
Data-out high-impe dance
window from CK/CK# tHZ tAC MAX tAC MAX tAC MAX ps 8, 9
Data-out low-impedance
window from CK/CK# tLZ tAC MIN tAC MAX tAC MIN tAC MAX tAC MIN tAC MAX ps 8, 10
DQ and DM input setup
time relative to DQS tDS 100 150 150 ps 7, 15,
22
DQ and DM input hold
time relative to DQS tDH 225 275 275 ps 7, 15,
22
DQ and DM input pulse
width (for each input) tDIPW 0.35 0.35 0.35 tCK
Data hold skew factor tQHS 400 450 450 ps
DQ–DQS hold, DQS to
first DQ to go nonvalid,
per access tQH tHP -
tQHS
tHP -
tQHS
tHP -
tQHS ps 15, 17
Data valid output
window (DVW) tDVW tQH -
tDQSQ
tQH -
tDQSQ tQH -
tDQSQ ns 15, 17
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 89 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Data Strobe
DQS input high pulse
width tDQSH 0.35 0.35 0.35 tCK
DQS input low pulse
width tDQSL 0.35 0.35 0.35 tCK
DQS output access time
from CK/CK# tDQSCK -450 +450 -500 +500 -500 +500 ps
DQS falling edge to CK
rising – setup time tDSS 0.2 0.2 0.2 tCK
DQS falling edge from CK
rising – hold time tDSH 0.2 0.2 0.2 tCK
DQS–DQ skew , DQS to last
DQ valid, per group, per
access tDQSQ 300 350 350 ps 15, 17
DQS r ead p reamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK
DQS read postamble tRPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
DQS write preamble
setup time tWPRES 000ps12, 13
DQS write preamble tWPRE 0.25 0.25 0.25 tCK
DQS write postamble tWPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK 11
Write command to first
DQS latching transition tDQSS WL -
0.25 WL +
0.25 WL -
0.25 WL +
0.25 WL -
0.25 WL +
0.25 tCK
Table 36: AC Operati ng Conditions (Sheet 2 of 4)
Notes: 1–5; notes appear on page 92; 0°C £ Tcase £ +85°C; VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V
AC CHARACTERISTICS -37E -5E -5
PARAMETER SYMBOL MIN MAX MIN MAX MIN MAX UNITS NOTES
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 90 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Command and Address
Address and control inpu t
pulse width for each
input tIPW 0.6 0.6 0.6 tCK
Address and control inpu t
setup time tIS 250 350 350 ps 6, 22
Address and control inpu t
hold time tIH 375 475 475 ps 6, 22
CAS# to CAS# command
delay tCCD 222
tCK
ACTIVE to ACTIVE (same
bank) command tRC 60 60 65 ns
ACTIVE bank a to ACTIVE
bank b co mma nd
tRRD
(x4, x8) 7.5 7.5 7.5 ns 28
tRRD
(x16) 10 10 10 ns 28
ACTIVE to READ or WRITE
delay tRCD 15 15 20 ns
ACTIVE to PRECHARGE
command tRAS 45 70,000 45 70,000 45 70,000 ns 21
Internal READ to
precharge command
delay tRTP 7.5 7.5 7.5 ns 24, 28
Write recovery time tWR 15 15 15 ns 28
Auto precharge write
recovery + precharge time tDAL tWR +
tRP
tWR +
tRP
tWR +
tRP ns 23
Internal WRITE to REA D
command dela y tWTR 7.5 10 10 ns 28
PRECHARGE command
period tRP 15 15 20 ns
LOAD MODE command
cycle time tMRD 222
tCK
CKE low to CK,CK#
uncertainty tDELAY 4.375 4.375 5.83 5.83 5.83 5.83 ns 29
Refresh
REFRESH to Active
command interval tRFC 105 70,000 105 70,000 105 70,000 ns 14
Aver age periodic refresh
interval tREFI 7.8 7.8 7.8 µs 14
Self Refresh
Exit self refresh to non-
READ command tXSNR
tRFC
(MIN) +
10
tRFC
(MIN) +
10
tRFC
(MIN) +
10 ns
Exit self refresh to READ
command tXSRD 200 200 200 tCK
Exit self refresh timing
reference tISXR 250 350 350 ps 6, 30
Table 36: AC Operati ng Conditions (Sheet 3 of 4)
Notes: 1–5; notes appear on page 92; 0°C £ Tcase £ +85°C; VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V
AC CHARACTERISTICS -37E -5E -5
PARAMETER SYMBOL MIN MAX MIN MAX MIN MAX UNITS NOTES
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 91 ©2003 Micron Technolog y, Inc. All rights reserv ed.
ODT
ODT turn-on delay tAOND 222222
tCK
ODT turn-on tAON tAC
(MIN)
tAC
(MAX) +
1,000
tAC
(MIN)
tAC
(MAX) +
1000
tAC
(MIN)
tAC
(MAX) +
1000 ps 26
ODT turn-off delay tAOFD 2.5 2.5 2.5 2.5 2.5 2.5 tCK
ODT turn-off tAOF tAC
(MIN)
tAC
(MAX) +
600
tAC
(MIN)
tAC
(MAX) +
600
tAC
(MIN)
tAC
(MAX) +
600 ps 27
ODT turn-on (power-
down mode) tAONPD
tAC
(MIN) +
2000
2 x tCK +
tAC
(MAX) +
1,000
tAC
(MIN) +
2,000
2 x tCK +
tAC
(MAX) +
1000
tAC
(MIN) +
2,000
2 x tCK +
tAC
(MAX) +
1000
ps
ODT turn-off (power-
down mode) tAOFPD
tAC
(MIN) +
2,000
2.5 x tCK
+ tAC
(MAX) +
1,000
tAC
(MIN) +
2,000
2.5 x tCK
+ tAC
(MAX) +
1,000
tAC
(MIN) +
2,000
2.5 x tCK
+ tAC
(MAX) +
1,000
ps
ODT to power-down
entry latency tANPD 333
tCK
ODT power-down exit
latency tAXPD 888
tCK
Power-Down
Exit active power-down to
READ command,
MR[bit12=0] tXARD 222tCK
Exit active power-down to
READ command,
MR[bit12=1] tXARDS 6 - AL 6 - AL 6 - AL tCK
Exit precharge power-
down to any non-READ
command. tXP 222
tCK
Exit precharge power-
down to READ command. tXPRD 6 - AL 6 - AL 6 - AL tCK
CKE minimum high/low
time tCKE 333
tCK
Table 36: AC Operati ng Conditions (Sheet 4 of 4)
Notes: 1–5; notes appear on page 92; 0°C £ Tcase £ +85°C; VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V
AC CHARACTERISTICS -37E -5E -5
PARAMETER SYMBOL MIN MAX MIN MAX MIN MAX UNITS NOTES
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 92 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Notes
1. All voltages referenced to VSS.
2. Tests for AC timing, IDD, and el ectrical AC and DC
characteristics may be conducted at nominal ref-
er enc e/ s upp l y volta ge level s, but the related spec-
ifications and device operation are guaranteed for
the full voltage range specified.
3. Outputs measured with equivalent load:
4. AC t iming and IDD tests may use a VIL-to-VIH swing
of up to 1.0V in the test environment and parame-
ter specifications are guaranteed for the specified
AC input level s und er nor mal u se cond itions. The
minimum slew rate for the input signals used to
test the device is 1.0V/ns for signals in the range
between VIL (AC) and VIH (AC).
5. The AC and DC input level specifications are as
defined in the SSTL_18 standard (i.e., the receiver
will effectively switch as a result of the signal
crossing th e AC input level and will remain in th at
state as long as the signal does not ring back
above [below] the DC input LOW [HIGH] level).
6. Command/Address minimum input slew rate =
1.0V/ns and is referenced to the crosspoint of CK/
CK#. tIS ti mi ng is referenced to VIH(ac) for a rising
signal and VIL(ac) for a falling signal as shown in
Figure65 on page 76. tIH timing is referenced to
VIH(dc) for a rising signal and VIL(DC) for a fal ling
signal as shown in Figure65 on page 76. Derating
values for Command/Address input signal slew
rates < 1.0V/ns is TBD.
7. Data minimum input slew rate = 1.0V/ns and is
referenced to the crosspoint of DQS/DQS# if dif-
ferential strobe feature is enabled. tDS timing is
referenced to VIH(ac) for a rising signal and
VIL(AC) for a falling signal as shown in Figure66
on page 77. tDH timing is referenced to VIH(DC)
for a rising signal and VIL(DC) for a falling signal
as shown in Figure 66 on p age 77. Derating values
for Data input signal slew rates < 1.0V/ns is TBD . I f
single-ended data strobe is enabled, the timing
reference used for DQS is VREF as shown in
Figure67 on page 77.
8. tHZ and tLZ transitions occur in the same access
time windows as valid data transitions. These
para meters ar e not referenc ed to a s peci fic v oltag e
level, but specify when the device output is no
longer dr iving (tHZ) or begins driving (tLZ).
9. This maximum value is derived from the refer-
enced test load. tHZ (MAX) will prevail over
tDQSCK (MAX) + tRPST (MAX) cond it ion.
10. tLZ (MIN) will prevail over a tDQSCK (MIN) +
tRPRE (MAX) condition.
11. The intent of the Dont Car e st ate after completion
of the postamble is the DQS-driven signal should
either be high, low or high-Z and that any signal
transition wi thin the input swit ching region mu st
follow valid input requirements. That is if DQS
transitions high (above VIHDC(min) then it must
not transition low (below VIH(DC) prior to
tDQSH(min).
12. This is not a device limit. The device will operate
with a negative value, but system performance
could be degraded due to bus turnaround.
13. It is recommended that DQS be valid (HIGH or
LOW) on or before the WRITE command. The
case shown (DQS going from High-Z to logic
LO W) applies when no WRITEs were previously in
progress on the bus. If a previous WRITE was in
progress, DQS could be HIGH during this time,
depending on tDQSS.
14. The refresh period is 64ms. This equates to an
average refresh rate of 7.8125µs. However, an
REFRESH command must be asserted at least
once every 70.3µs or tRFC (MAX). To ensure all
rows of all banks are properly refreshed, 8192
REFRESH commands must be issued every 64ms.
15. Referenced to each output group: x4 = DQS with
DQ0-DQ3; x8 = DQS with DQ0–DQ7; x16 = LDQS
with DQ0–DQ7; and UDQS with DQ8–DQ15.
16. CK and CK# input slew rate must be ³ 1 V/ns (³ 2
V/ns if measured differentially).
17. The data valid window is derived by achieving
other specifications - tHP. (tCK/2), tDQSQ, and
tQH(tQH=tHP-tQHS). The data valid window der-
ates in direct proportion to the clock duty cycle
and a practical data valid window can be derived.
18. tJIT specification is currently TBD.
19. MIN( tCL, tCH) refers to the smaller of the actual
clock low time and the actual clock high time as
provided to the device (i.e. this value can be
greater than the minimum specification limits for
tCL and tCH). For example, tCL and tCH are = 50
percent of the period, less the half period jitter
Output
(VOUT)Reference
Point
25
VTT = VDDQ/2
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 93 ©2003 Micron Technolog y, Inc. All rights reserv ed.
[tJIT(HP)] of the clock source, and less the half
period jitter due to cross talk [tJIT(cross talk)] into
the clo ck traces.
20. tHP (MIN) is the lesser of tCL minimum and tCH
minimum actually applied to the device CK and
CK# inputs .
21. READs and WRITEs with auto precharge are
allowed to be issued before tRAS (MIN) is satisfied
since tRAS lockout feature is supported in DDR2
SDRAM.
22. VIL/VIH DDR2 overshoot/undershoot. See “AC
Overshoot/Un dershoot Sp ecificationon page 79.
23. tDAL = (nWR) + (tRP/tCK): For each of the terms
above, if not already an integer, round to the next
highes t inte ger. tCK refers t o the app licat ion c lock
period; nWR refers to th e tWR p aram eter st ored in
the MR[11,10,9] . Example: For -37E at tCK = 3.75
ns wit h tWR programmed to fo ur clocks. tDAL = 4
+ (15 ns/3.75 ns) clocks = 4 +(4)cl ocks = 8 clocks.
24. This is a minimum requirement. Minimum READ
to internal PRECHARGE timing is AL + BL/2 pro-
viding the tRTP and tRAS (MIN) have been satis-
fied. The DDR2 SDRAM will automatically delay
the internal PRECHARGE command until tRAS
(MIN) has been satisfied.
25. Operating frequency is only allowed to change
during self refresh mode (See “Self Refresh” on
page54), precharge power-down mode (See
“Power-Down Mode” on page 56), and system
reset condition (see “RESET Function (CKE LOW
Anytime)” on page 64.
26. OD T tu r n -o n ti me tAON (MIN) is when the device
leaves high impedance and ODT resistance
begins to turn on. ODT turn-on time tAO N ( MA X)
is when the ODT resistance is fully on. Both are
measured from tAOND.
27. ODT turn-off time tAOF (MIN) is when the device
starts to turn off ODT resistance. ODT turn off
time tAOF (MAX) is when the bus is in high
impedance. Both are measured from tAOFD.
28. This parameter has a two clock minimum require-
ment at any tCK.
29. tDELAY is calculated from tIS + tCK + tIH so that
CKE registration LOW is guaranteed prior to CK,
CK# being removed in a system RESE T condition.
See “RESET Function (CKE LOW Anytime)” on
page 64.
30. tISXR is equal to tIS and is used for CKE setup time
during self refresh exit shown in Figure 43 on
page 54.
512Mb: x4, x8, x16
DDR2 SD RAM
PRELIMINARY
09005aef80b88542 M icron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca t io ns w ith out notice.
512MbDDR2_2.fm - Rev. A 11/03 EN 94 ©2003 Micron Technolog y, Inc. All rights reserv ed.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Inter ne t: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
Figure 77: Package Drawing (x4,x8,x16 Configurations) 11mm x 19mm “FT” FBGA
NOTE:
All dimensions are in millimeters.
Data Sheet Designation
Preliminary: Initial characterization limits, subject
to change upon full characterization of production
devices.
BALL A1 ID
SUBSTRATE: PLASTIC LAMINATE
MOLD COMPOUND: EPOXY NOVOLAC
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb
OR 62% Sn, 36% Pb, 2% Ag
SOLDER BALL PAD: Ø 0.33mm
SEATING PLANE
0.850 ±0.075
BALL A9
SOLDER BALL DIAMETER
REFERS TO POST REFLOW
CONDITION. THE PRE-
REFLOW DIAMETER
IS Ø 0.40.
0.08 C C
C
0.100 ±0.013
0.80
TYP
16.00
1.20 MAX
8.00 ±0.05
9.50 ±0.05
1.80 ±0.05
CTR
BALL A1 ID
BALL A1
0.80
TYP
5.50 ±0.053.20 ±0.05
11.00 ±0.10
6.40
0.4592X Ø
C
L
C
L
19.00 ±0.10