G E SOLID STATE 3875081 GE SOLID STATE Small-Signal MOSFETs 3N187 Silicon Dual Insulated-Gate Field-Effect Transistor With Integrated Gate-Protection Circuits For Military and Industrial Applications up to 300 MHz Ol DE Bse7soas Doz4o01g3 4 I O1E 24013 D T3125 Device Features e Back-to-back diodes protect each gate against hand! ing and in-circuit transients e High forward transconductance Gfs = 12,000 wmho (typ.) @ High unneutralized RF power gain Gps = 18 dB(typ.) at 200 MHz @ Low VHF noise figure 3.5 dB(typ.)at 200 MHz rarer ron, 1060 RCA-3N187 is an n-channel silicon, depletion type, dual insulated-gate field-effect transistor, Special back-to-back diodes are diffused directly into the MOS4 pellet and are electrically connected between each insulated gate and the FETs source. The diodes effectively bypass any voltage transients which exceed approximately +10 volts, This protects the gates against damage in all normal handling and usage. A feature of the back-to-back diode configuration is that it allows the 8N187 to retain the wide input signal dynamic range inherent in the MOSFET. In addition, the junction capacitance of these diodes adds little to the total capacitance shunting the signal gate. The excellent overall performance characteristics of the RCA-3N187 make it useful for a wide variety of rf- amplifier applications at frequencies up to 300 MHz. The two senially-connected channels with independent control gates make possible a greater dynamic range and lower cross-modulation than is normally achieved using devices having only a single control element, The two-gate arrangement of the 3N187 also makes possible a desirable reduction in feedback capacitance by operating in the common-source configuration and ac- grounding Gate No, 2. The reduced capacitance allows operation at maximum gain without neutralization; and, of special importance in rf-amplifiers, it reduces local oscillator feedthrough to the antenna. The 3N187 is hermetically sealed in the metal JEDEC TO-72 package. @ Formerly developmental type TA7669 4 Metal-Oxide-Semiconductor Applications e RF amplifier, mixer, and (F amplifier in military, and industrial communications equipment e Aircraft and marine vehicular receivers @ CATV and MATV equipment @ Telemetry and multiplex equipment Performance Features Superior cross-modulation performance and greater dynamic range than bipolar or single-gate FET's e Wide dynamic range permits large-signal handling before overload e Virtually no agc power required e Greatly reduces spurious responses in FM receivers Maximum Ratings, Absolute-Maximum Values, at T4=25C DRAIN-TO-SOURCE VOLTAGE, Vpsg +++ ~0.2to +20, v GATE No, 1-TO-SOURCE VOLTAGE, Vais: Continuous (de)... cece eee eee nes GtOF3 Vv Peak GC cece cccrsseccccecee + 6 to +6 Vv GATE No. 2-TO-SOURCE VOLTAGE, Voos: , Continuous (de)... .seecccees 6 to 30% of Vpg = V Peak ac. cece eee cece cee seneee Bto Vv * DRAIN-TO-GATE VOLTAGE, Vpa1 OR Vpgg -.--ee eee e cece +20 Vv * DRAIN CURRENT, Ipn...... e200 005 50 mA * TRANSISTOR DISSIPATION Pp: At ambient up to 25C ........4 330 mW temperatures { above 26C ...... .derate linearly at O * AMBIENT TEMPERATURE RANGE: 22 mW/C Storage and Operating -65 to +175 C *LEAD TEMPERATURE (During Soldering): At distances 2 1/32 inch from seating surface for 10 seconds max, 265 C *In accordance with JEDEC Registration Data Format JS-9 RDF-19A 3263 B-10G E SOLID STATE On DE Jas7soa1 OOe4v014 & 3875081 G E SOLID STATE DiE 24014 BD -3l-2 Small-Signal MOSFETs ELECTRICAL CHARACTERISTICS, at Ta = 25C unless otherwise specified LIMITS CHARACTERISTICS SYMBOL TEST CONDITIONS , UNITS Min. | Typ. | Max. Vos = 715 V, Ip = 50 nA *|Gate No. J-to-Source Cutoff Voltage Vels(off} Vagos = 4V -0,5 |-2 |-4 Vv * IGate No. 2-to-Source Cutoff Voltage Veas(oft) oy V, Ip = 50 zA 95-2 [aa Vv : Veis=4lV | Ty = 259 - ae nA *IGate No. 1-Terminal Forward Current \ GiS A GISSF Vgzs = Vpg =0{ Ta = 100C T- 15 [ua : Veig=-6 LT a= 25C - | -_ |50 nA * . Gate No. 1-Terminal Reverse Current le1ssr Ve2s =Vps-0 | Ta= 7009C = 5 aA +/Gate No. 2-Terminal Forward Current IgassF Vgag= +6 V [Ta = 25C = [> 450 nA Vgis = Vps=0 | Ta = 100C ~ | - [5 BA . Veos =-6 Ta = 25C - ~ 750 nA *|Gate No. 2-Terminal Reverse Current Igossr Ves ps0 i, joc 1 ok Vps = +15 V *|Zero-Bias Drain Current Ips Veas = +4 V 5 j15 = 730 mA Vgis =9 Forward Transconductance Vp = +15 V, Ip = 10 mA (Gate No. 1-to-Drain} Ss Vags = #4 V, f = 1kHz 7000 | 12,000) 18,000) mho */Smal{-Signal, Short-Circuit Input Capacitancet | Cigg 4.0 (6.0 185 pF * Small Signal, Shortcut, Vps = #15 V, Ip =10 mA 0.005 {0.02 {0.03 c everse Transfer Capacitance =< = . , . p (Drain-to-Gate No. 1) 4 rss Vgas = +4 V, f= 1 Miz *(Small-Signal, Short-Circuit Output Capacitanc | Coc. - 42.0 - pF Power Gain (see Fig. 1) Gps 16 18 22 dB {Maximum Available Power Gain MAG - 420 - dB Maximum Usable Power Gain (unneutralized) | MUG - {204 - dB [Noise Figure (see Fig. 1) NF - [35 [45 | aB + |Magnitude of Forward Transadmittance lYigl Vpg = +15 V, Ip = 10mA = {12,000 - | amho *}Phase Angle of Forward Transadmittance 0 Vegas = +4 V, f= 200 MHz - |-35 | - [Degrees |Magnitude of Reverse Transadmittance lYrsl - 2% - | pmho Angle of Reverse Transadmittance As ~ |-25 | - ] Degrees *IInput Resistance liss ~ 1.0 ~ 7koO * Output Resistance Toss ~ 12.8 - 4kQ . Gate-to-Source * Forward Breakdown Voltage: Gate No. 1 V(BR)GISSE IGissF = !GassF = 100 uA 6.5 {10 - V Gate No. 2 ViBR)G2SSF . Gaterto-Soutce Vol everse Breakdown Voltage: | _ Gate No. 1 ViBRYGISSR IgissR = leassr =-100 uA -6.5]-10 | - v Gate No. 2 {BR)G2SSR 4 Limited only by practical design considetations. OPERATING CONSIDERATIONS 1 Capacitance between Gate No. 1 and all other terminals The flexible leads of the 3N187 are usually soldered to th 4 Three-terminal measurement with Gate No. 2 and circuit elements. As in the case of any high-frequency Source returned to ground terminal, semiconductor device, the tips of soldering irons MUST be * In accordance with JEDEC Registration Data Format JS-9 RDFe19A grounded. ; 1061 ~ 3266 B-133875081 G E SOLID STATE Small-Signal MOSFETs 3N187 OL de 3a7soa1 ooeuois g f r2rzs 2235 OR EQUIV.) aun, Gan DP TAD Tee T EXTERNAL SHIELD t | C4 OUTPUT i "s 1 I Tf Feurite bead (4): Pyroferric Co, Carbonyt J Q = 3N187 . 1 er Kee cue |" Q0din OD, G0 nH, OARS ie ee vise ceramic, 1 tt | Alltesistors in ohms * Tubular ceramic, | = g I All capacitors in pF FUT gov ! Cy: 18-87 fF vatiable air capacitor: E.F, Johnson Type 160-104, [2 . a a | or equivalent, 773 Co: 15-5 pF variable alr capaciter: .F, Johnson Type 160-102, L , | or equivatent, T 5 C3: 1-10 pF piston-lype variable air Capacitor: JFO Type VAM-010: j 27K 2 47K 2 - 100" I 3 Johanson ype a, of equivalent, 4 T I C4: 0.8-4.5 pF piston type variable air Capacitor: Erie 560-013 or ! = Rr = | 4 equivalent I (OHMITE TYPE I. L NOISE FIGURE (NF)dB POWER GAIN (Gps}aB 1062 Yoo IsV SSS OKA Fig, Ly: 4 tums silver-plated 0.02+in, thick, 0.075-0.085-in, wide, copper ribbon, Interna! diameter of winding = 0.25 in, winding length approx, 0,08 in. . Lo: 4% turns silver-plated 0,02+in thick, 0,085-0.095-in. wide, 5/16-in, ID. Coil =,90 in. long, 1-200 MHz Power gain and noise figure test circuit Typical Characteristics : AMBIENT TEMPERATURE (Ta)#25C FREQUENCY (f)= 200 MHz DRAIN-TO-SOURCE VOLTS (Vp5)#15 GATE No.I- VOLTAGE 1S ADJUSTED FOR Ip IOmAWHEN ray GATE GATE NOISE FIGURE (NF)d8 GATE No. 2-TO-SOURCE VOLTS (Vegas) 92CS15I09RI Fig. 2- NF vs. Vegas TEMPERATURE (1) }= 25C (f) #200 No. [-VOLTAGE (Vgig} ADJUSTED FOR Ip 10 Ve2s"4V 2 AT AC GROUND a a 5 o z = Z a 6 w a a = 2 $ < = x 3 z GATE Wo. 2-TO-SOURCE VOLTS (Vga5) gzcs-isoasni Fig. 4- Gps vs. Vg25 AMBIENT TEMPERATURE {Tal= 25C FREQUENCY (f}= 200 MHz ORAIN-TO-SOURCE VOLTS (Vos) #15 No,2-TO-SOURCE VOLTS No.{-TO-SOURCE VOLTS VARIED n a n ORAIN MILLIAMPERES (Ip) 9208151t0RI Fig. 3- NF vs. Ip COMMON SOURCE CIRCUIT AMBIENT TEMPERATURE (T,)<28C TO-SOURCE VOLTS (Vpg)#15 MILLIAMPERES (Ip)*t0 NO.2-TO-soURCE VOLTS (Vgag)* +4 FREQUENCY (1)-MHe 9288-4086 Fig. 5- MAG. vs. f . 3265 B-12G E SOLID STATE O1 DE Bss7soai OOc4Oib O TEMPERATURE ORAIN-TO-SOURCE VOLTS DRAIN MILLIAMPERES (Ip) -t GATE No, I~ TO-SOURCE VOLTS (Vis) Fig. 6- Ip vs. Vg75 Typical Characteristics $2CS-J4790R2 ORAIN MILLIAMPERES (Ip) a a 5 nD an : No. AMBIENT TEMPERATURE (Ta)=25C DRAIN-TO-SOURCE VOLTS (Vpg)I5 GATE NalVOLTAGE (Vgjg) IS ADJUSTED FOR Ip =10mA& WHEN v T -3 ~2 -t GATE No.2-TO-SOURCE VOLTS (V@25) 920SI44/ IRI Fig. 7- Ip vs. Vg2s COMMON SOURCE CIRCUIT AMBIENT TEMPERATURE (Ta)=25C FREQUENCY (f)#200 MHz DRAIN MILLIAMPERES (Ip) 10 GATE No 2-TO-SOURCE VOLTS (Vgas)=+4 nm _ n INPUT CONDUCTANCE (ig)--MILLIMHOS Qe & 5 10 15 DRAIN-TO-SOURCE VOLTS (Vp5) Fig. 8- y;, vs. VDS GOMMON~SOURGE GIRGUIT AMBIENT TEMPERATURE (T)*25C t) a) GATE NO.2- VOLTS MILLIMHOS Ys o s to LJ DRAIN-TO-SOURCE VOLTS (Yps) Fig. 10- yf. vs. Vos Typical y Parameters o INPUT SUSCEPTANCE {big) MILLIMHOS 92CS-15342A1 o ws 2 & 3 = a 2 = & 2 ry = & Ss 2 & uw a 2 = $28S-4067 OUTPUT CONDUCTANCE (g9_) OR SUSCEPTANCE (bog) MILLIMHOS MO. 2-TO-SOURCE VOLTS (Vg2s)=4 a MAGNITUDE OF REVERSE TRANSADMITTANCE [Yea] ~mmbe 2 ia vs. Yps T TEMPERATURE (Ta) = 25C QUENCY ( ) = 200MHz MILLIAMPERES (1p) #10 TE NO.2-TO-SOURCE VOLTS [( 23 4 8 78 8g WH RB MY DRAIN-TO-SOURCE VOLTS (Vpg) 92CS~14783Ri Fig, 9- yos vs. VDS TEMPERATURE (Ty) 25C (f) = 200 MHz MILLIAMPERES {Ip} = 10 ! a ' 3 ANGLE OF REVERSE TRANSADMITTANCE (9,,) -DEGREES DRAIN-TO-SOURCE VOLTS {ps) SSI Fig. 11- yrs vs. Vos 3266 B13 = J or-3r-2zs Small-Signal MOSFETs 3N187G E SOLID STATE Ol De W3a7soa, oo2yai7 4 i D F325 Smail-Signal MOSFETs 3N187 Typical y Parameters vs. Ip COMMON SOURCE CIRCUIT AMBIENT TEMPERATURE (Tals 25C FREQUENCY (f)=200 MHz 2} DRAIN-TO- SOURCE VOLTS 15 GATE NO.2 -TO-SOURCE -SOURCE CIRCUIT AMBIENT ROO Mi (Ta) 25C fle i z TO-SOURCE VOLTS (Vpg)= 15 NO. 2-TO-SOURCE VOLTS (Vgzg) = 4 yn a a Og a SUSCEPTANCE ( bos} MILLIMHOS OUTPUT CONDUCTANCE (qos) OR wn a = z a zZ = 4 3 2 w o Zz < - o > 4 z 3 v b > = z INPUT SUSCEPTANCE (bjs) MILLIMHOS 5 10 18 DRAIN MILLIAMPERES (Ip) 928s-4088 DRAIN MILLIAMPERES (Ip} 92CS-14776Ri Fig. 12- yj, vs. Ip Fig. 13- yos vs. Ip SOURCE CIRCUIT TEMPERATURE (Ta)*25C {f}#200 MHz DRAIN-TO- SOURCE YOLTS (Vps)=I5 NO 2-TO- SOURCE VOLTS Weas)=4 TEMPERATURE (Tg} = 25C 200 MHz . TO-SOURCE VOLTS (ps) = 15 TE NO. 2-TO-SOQURCE VOLTS 2d 1gi- MILLIMHOS OF REVERSE TRANSCONDUCTANCE (8,,)-DEGREES MAGNITUDE OF FORWARD TRANSADMITTANCE MAGNITUDE OF REVERSE TRANSADMITTANCE [Y;4|-mmho DRAIN MI - RAIN MILLIAMPERES(Ip) DRAIN HILLIAMPERES (Ip) 9288-4089 SEAR Fig. 14+ yf. vs. Ip Fig. 15- yps vs. Ip 1064 a 3267 B-14Ol DE M3a750a1 ooe401ea 3 Small-Signal MOSFETs a 3N187 3875081 GE SOLID STATE O1E 24018 DT-ZI-2S Typical y Parameters vs.Vao5 COMMON-SOURCE CIRCUIT AMBIENT TEMPERATURE (Ta}= 25C FREQUENCY (f) 200 MHz DRAIN -TO-SOURCE VOLTS ( 15 GATE NOI-TO-SOURCE VOLTS COMMON -SOURCE CIRCUIT AMBIENT TEMPERATURE (Ta) * 25C FREQUENCY (f)* 200 MHz ORAIN-TO- SOURCE VOLTS (Vpg) 15 GATE NO i- TO-SOURCE VOLTS }-0 2 a INPUT SUSCEPTANCE ( bie) ~MILLIMHOS ne INPUT CONDUCTANCE (gj,) - MILLIMHOS OUTPUT SUSCEPTANCE (bos)-MILLIMHOS OUTPUT CONDUCTANCE ( pq)" MILL IMHOS 2 9 2 4 6 2. 1 2 3 4 5 6 GATE NO.2-TO-SOURCE VOLTS (Vgz) GATE NO.2-TO-SOURCE VOLTS (Vgog) $288-4090 92CS -l4767R1 Fig. 16- yi, vs. VG25 Fig. 17- yos vs YG2S COKMON. SOURCE CIRCUIT AMBIENT TEMPERATURE (Ta) = 25 C FREQUENCY (1) = 200 MHz DRAIN-TO-SOURCE VOLTS {Yps) = 15 SET Yo1s FOR Ip = 10 mA AT Voag 2 4 COMMON - SOURCE CIRCUIT AMBIENT TEMPERATURE (Ta) * 25C FREQUENCY {f} = 200 MHz DRAIN-TO-SOURCE VOLTS = 1S GATE NOL -TO-SOURCE 5-06 EY tg I- MILLIMHOS w 3 = - a Z & & 9 e & & w 3 = gq MAGNITUDE OF FORWARD TRANSADMITTANCE 2 q i = = wh v = e E Zz a < 2 z = & e w a & ai > w mw u o w a = Ee z So < = ANGLE OF REVERSE TRANSADAITTANCE +2 0 2 4 6 GATE NO2-TO-SOURCE VOLTS ( Vgas ) GATE HO. 2-TO-SOURCE VOLTS (VG25) aussa5is . 9255-4091 Fig. 18- yfs vs. G25 Fig. 19- y,, vs. Ve2s 1065 3268 ~~ C-O1earned G E SOLID STATE O1 DE fss7s0a1 O0e401L49 5 I Small-Signal MOSFETs 3N187 3875081 G E SOLID STATE O1E 24019 OD T2325 Typical y Parameters vs. Frequency SOURCE AMBIE TEMPERA 25C ORAIN-TO-SQURCE VOLTS iE} DRAIN MILLIAMPERES {ip}* GATE NO.2-TO-SOURCE VOLTS (Vg2gk+4 COMMON SOURCE CIRCUIT AMBIENT TEMPERATURE (Tal 25C ORAIN-TO-SOURCE VOLTS (Vp9)=I5 SIORAIN MILLIAMPERES (Ip) 10 GATE NO 2-TO-SOURCE VOLTS (VGaskt4 > ny wa 9 =x z J 2 = 1 2 = Ww oS q - oO > a z 5 b > a 2 OUTPUT SUSCEPTANCE (b,,)MILLIMHOS INPUT SUSCEPTANCE (bj,)-MILLIMHOS QUTPUT CONDUCTANCE (9,,)MILLIMHOS 300 00 200 300 400 FREQUENCY (t}- MHz FREQUENCY (f)~ MHz S2SS-4092R1 8255- W093RL Fig. 20- y;, vs. frequency Fig. 21- yo, vs. frequency COMMON SOURCE CIRCUIT AMBIENT TEMPERATURE DRAIN-TO-SOURCE VOLTS ORAIN MILLIAMPERES (ip}* GATE NO.2-TO-SOURCE VOLTS AMSIENT TEMPERATURE (T4) = 25 C DRAIN- TO-SOURCE VOLTS (ps) = 15 DRAIN MILLIAMPERES (Ip) = 10 GATE NO. 2TO-SOURCE VOLTS (g25) = +4 1, 1 Yj, ! MILLIMHOS w g = a =z 3 z & 5 cc g 5 5 z MAGNITUDE OF FORWARD TRANSADMITTANCE 2 2 & i a = a W z E z 3 < a Zz =< ~ e ug a x wo > iy ~ w 6 oS w 3 > & < 2 ANGLE OF REVERSE FREQUENCY ()MHz S2SS-408R1 FREQUENCY (MHz) 9978-4576 Fig. 22- y4, vs. frequency Fig. 23.- y,, vs. frequency 1066 3269 c-02G E SOLID STATE Oo. DE Jsa7soa1 oo024020 1 i Small-Signal MOSFETs 3875081 GE SOLID STATE 01 3N187 E 24020 D Te3t-2S Typical Characteristics COMMON-SOURCE CIRCUIT, GATE WO. 1 INPUT COMMON SOURCE CIRCUIT AMBIENT TEMPERATURE (Tg) = 25C AMBIENT TEMPERATURE [Ty)}# 28C ORAIN=TO= SOURCE VOLTS (Vpg) 15 cea eee EL KHE as (Vogl ta ERES {Ip GATE HO. I~TO SOURCE VOLTS (Vg jg)*-O5V GATE NO 2 AT AC~GROUND POTENTIAL MILLIMHOS DRAIN MILLI AMP! o FORWARD TRANSCONDUCTANCE GATE NO. 2TO- SOURCE VOLTS (Voog) 22C$-15345R 2 a] +1 GATE NO.I-TO+SOURCE VOLTS (Vrs) 0288-4096 Fig. 24- gts and Ip vs. Vg25 Fig. 25.- gf5 vs. Vaqs TERMINAL DIAGRAM 2 TURE (Ty )= 25C f)e (kHe -TO-SOURCE VOLTS Wos! #18 ~ MILLIMHOS LEAD 1-DRAIN LEAD 2-GATE No. 2 LEAD 3-GATE No. | rere LEAD 4-SOURCE, SUBSTRATE GATE NO.2-TO-SOURCE VOLTS (Vg2g} AND CASE 9208 -14787R2 GATE NO. 2-TO-ORAIN TRANSCONDUCTANCE (ce Fig. 26- so v8 VG2s 1067 3270 c-03