± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 1 of 26
Product Description
The KXTE9-1026 is a Tri-axis, silicon micromachined accelerometer
with a full-scale output range of +/-2g (19.6 m/s/s). The KXTE9
contains integrated orientation and activity detecting algorithms. The
sense element is fabricated using Kionix’s proprietary plasma
micromachining process technology. Acceleration sensing is based
on the principle of a differential capacitance arising from
acceleration-induced motion of the sense element, which further
utilizes common mode cancellation to decrease errors from process
variation, temperature, and environmental stress. The sense
element is hermetically sealed at the wafer level by bonding a
second silicon lid wafer to the device using a glass frit. A separate
ASIC device packaged with the sense element provides signal
conditioning, digital communication, and embedded logic for
orientation and activity detection. The accelerometer is delivered in a 3 x 3 x 0.9 mm LGA plastic
package operating from a 1.8 3.6V DC supply. An I
2
C interface is used for communication with
the chip to configure and check updates to the orientation and activity algorithms.
Functional Diagram
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 2 of 26
Product Specifications
Table 1. Mechanical
(specifications are for operation at 2.6V and T = 25C unless stated otherwise)
Parameters Units Min Typical Max
Operating Temperature Range ºC -40 - 85
Zero-g Offset counts 32
Zero-g Offset Accuracy mg -175 0 +175
Zero-g Offset Variation from RT over Temp. mg/ºC 0.6
Sensitivity counts/g 16
Sensitivity Accuracy % -10 0 +10
Sensitivity Variation from RT over Temp. %/ºC
0.01 (xy)
0.03 (z)
Non-Linearity % of FS 0.1
Cross Axis Sensitivity % 2
Resolution mg 62.5
Table 2. Electrical
(specifications are for operation at 2.6V and T = 25C unless stated otherwise)
Parameters Units Min Typical Max
Supply Voltage (V
dd
)
1
Operating V 1.8 2.6 3.6
I/O Pads Supply Voltage (V
IO
)
1
V 1.7 V
dd
Operating (full power) 20 30 40
Current Consumption
Standby µA
- 0.1
Output Low Voltage
2
V - - 0.3 * V
io
Output High Voltage V 0.9 * V
io
- -
Input Low Voltage V - - 0.2 * V
io
Input High Voltage V 0.8 * V
io
- -
Input Pull-down Current µA 0
Power Up Time
3
ms 50.5
I
2
C Communication Rate kHz 400
Output Data Rate (ODR)
4
Hz 1 NaN 40
Bandwidth (-3dB) Hz 2000
Notes:
1. Minimum voltage supply of 1.65V can be used over a reduced operating
temperature range of 0ºC to 45ºC.
2. Assuming minimum 1.5Kohm I
2
C pull-up resistor on SCL and SDA.
3. Power up time is to Vdd = valid and device is in active mode.
4. User selectable through I
2
C.
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 3 of 26
HF
Table 3. Environmental
Parameters Units Min Typical Max
Supply Voltage (V
dd
) Absolute Limits V -0.3 - 6.0
Operating Temperature Range ºC -40 - 85
Storage Temperature Range ºC -55 - 150
Mech. Shock (powered and unpowered) g - - 5000 for 0.5ms
10000 for 0.2ms
ESD HBM V - - 2000
Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling
can cause permanent damage to the device.
This product conforms to Directive 2002/95/EC of the European Parliament and of the
Council of the European Union (RoHS). Specifically, this product does not contain lead,
mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), or
polybrominated diphenyl ethers (PBDE) above the maximum concentration values
(MCV) by weight in any of its homogenous materials. Homogenous materials are "of
uniform composition throughout."
This product is halogen-free per IEC 61249-2-21. Specifically, the materials used in this
product contain a maximum total halogen content of 1500 ppm with less than 900-ppm
bromine and less than 900-ppm chlorine.
Soldering
Soldering recommendations are available upon request or from www.kionix.com.
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 4 of 26
Application Schematic
1
2
3
4
5
6
7
8
9
10
Vdd
C
1
SCL
SDA
KXTE9
INT
IO Vdd
Table 4. KXTE9 Pin Descriptions
Pin Name Description
1 IO Vdd The power supply input for the digital communication bus
2 NC Not Connected internally – may be connected to Vdd or GND
3 NC Not Connected internally – may be connected to Vdd or GND
4 GND Ground
5 Vdd The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor.
6 NC Not Connected internally – may be connected to Vdd or GND
7 INT Interrupt pin (Reports user-defined state changes)
8 NC Not Connected internally – may be connected to Vdd or GND
9 SCL I
2
C Serial Clock (requires 1.5k pull-up resistor)
10 SDA I
2
C Serial Data (requires 1.5k pull-up resistor)
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 5 of 26
Test Specifications
!
Special Characteristics:
These characteristics have been identified as being critical to the customer. Every part is tested to verify
its conformance to specification prior to shipment.
Table 5. Test Specifications
Parameter Specification Test Conditions
Zero-g Offset @ RT 32 +/- 2.8 counts 25C, Vdd = 2.6 V
Sensitivity @ RT 16 +/- 1.6 counts/g 25C, Vdd = 2.6 V
Current Consumption -- Operating 20 <= Idd <= 40 uA 25C, Vdd = 2.6 V
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 6 of 26
Package Dimensions and Orientation
3 x 3 x 0.9 mm LGA
All dimensions and tolerances conform to ASME Y14.5M-1994
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 7 of 26
Orientation
When device is accelerated in +X, +Y or +Z direction, the corresponding output will increase.
Static X/Y/Z Output Response versus Orientation to Earth’s surface (1g):
Position Up State
(Y+)
Right State
(X+)
Down State
(Y-)
Left State
(X-)
Face-Up
State (Z+)
Face-Down
State (Z-)
Position 1 2 3 4 5 6
Diagram
Top
Bottom
Bottom
Top
X 32 counts
48 counts
32 counts
16 counts
32 counts
32 counts
Y 48 counts
32 counts
16 counts
32 counts
32 counts
32 counts
Z 32 counts
32 counts
32 counts
32 counts
48 counts
16 counts
X
-Polarity 0 + 0 - 0 0
Y
-Polarity + 0 - 0 0 0
Z
-Polarity 0 0 0 0 + -
(1-g)
Earth’s Surface
Pin 1
+X
+Y
+Z
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 8 of 26
KXTE9 Digital Interface
The Kionix KXTE9 digital accelerometer has the ability to communicate over an I
2
C digital serial interface
bus. This flexibility eases system integration by eliminating analog-to-digital converter requirements and by
providing direct communication with system micro-controllers.
The serial interface terms and descriptions indicated in Table 6 below will be observed throughout this
document.
Term Description
Transmitter The device that transmits data to the bus.
Receiver The device that receives data from the bus.
Master The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave The device addressed by the Master.
Table 6. Serial Interface Terminologies
I
2
C Serial Interface
The KXTE9 has the ability to communicate on an I
2
C bus. I
2
C is primarily used for synchronous serial
communication between a Master device and one or more Slave devices. The Master, typically a micro
controller, provides the serial clock signal and addresses Slave devices on the bus. The KXTE9 always
operates as a Slave device during standard Master-Slave I
2
C operation.
I
2
C is a two-wire serial interface that contains a Serial Clock (SCL) line and a Serial Data (SDA) line. SCL
is a serial clock that is provided by the Master, but can be held low by any Slave device, putting the Master
into a wait condition. SDA is a bi-directional line used to transmit and receive data to and from the
interface. Data is transmitted MSB (Most Significant Bit) first in 8-bit per byte format, and the number of
bytes transmitted per transfer is unlimited. The I
2
C bus is considered free when both lines are high.
I
2
C Operation
Transactions on the I
2
C bus begin after the Master transmits a start condition (S), which is defined as a
high-to-low transition on the data line while the SCL line is held high. The bus is considered busy after this
condition. The next byte of data transmitted after the start condition contains the Slave Address (SAD) in
the seven MSBs (Most Significant Bits), and the LSB (Least Significant Bit) tells whether the Master will be
receiving data ‘1’ from the Slave or transmitting data ‘0’ to the Slave. When a Slave Address is sent, each
device on the bus compares the seven MSBs with its internally-stored address. If they match, the device
considers itself addressed by the Master. The Slave Address associated with the KXTE9 is 0001111.
It is mandatory that receiving devices acknowledge (ACK) each transaction. Therefore, the transmitter
must release the SDA line during this ACK pulse. The receiver then pulls the data line low so that it
remains stable low during the high period of the ACK clock pulse. A receiver that has been addressed,
whether it is Master or Slave, is obliged to generate an ACK after each byte of data has been received. To
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 9 of 26
conclude a transaction, the Master must transmit a stop condition (P) by transitioning the SDA line from low
to high while SCL is high. The I
2
C bus is now free.
Writing to a KXTE9 8-bit Register
Upon power up, the Master must write to the KXTE9’s control registers to set its operational mode.
Therefore, when writing to a control register on the I
2
C bus, as shown Sequence 1 on the following page,
the following protocol must be observed: After a start condition, SAD+W transmission, and the KXTE9
ACK has been returned, an 8-bit Register Address (RA) command is transmitted by the Master. This
command is telling the KXTE9 to which 8-bit register the Master will be writing the data. Since this is I
2
C
mode, the MSB of the RA command should always be zero (0). The KXTE9 acknowledges the RA and the
Master transmits the data to be stored in the 8-bit register. The KXTE9 acknowledges that it has received
the data and the Master transmits a stop condition (P) to end the data transfer. The data sent to the
KXTE9 is now stored in the appropriate register. The KXTE9 automatically increments the received RA
commands and, therefore, multiple bytes of data can be written to sequential registers after each Slave
ACK as shown in Sequence 2 on the following page.
Reading from a KXTE9 8-bit Register
When reading data from a KXTE9 8-bit register on the I
2
C bus, as shown in Sequence 3 on the next page,
the following protocol must be observed: The Master first transmits a start condition (S) and the
appropriate Slave Address (SAD) with the LSB set at ‘0’ to write. The KXTE9 acknowledges and the
Master transmits the 8-bit RA of the register it wants to read. The KXTE9 again acknowledges, and the
Master transmits a repeated start condition (Sr). After the repeated start condition, the Master addresses
the KXTE9 with a ‘1’ in the LSB (SAD+R) to read from the previously selected register. The Slave then
acknowledges and transmits the data from the requested register. The Master does not acknowledge
(NACK) it received the transmitted data, but transmits a stop condition to end the data transfer. Note that
the KXTE9 automatically increments through its sequential registers, allowing data to be read from multiple
registers following a single SAD+R command as shown below in Sequence 4 on the following page.
If a receiver cannot transmit or receive another complete byte of data until it has performed some other
function, it can hold SCL low to force the transmitter into a wait state. Data transfer only continues when
the receiver is ready for another byte and releases SCL.
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 10 of 26
Data Transfer Sequences
The following information clearly illustrates the variety of data transfers that can occur on the I
2
C bus and
how the Master and Slave interact during these transfers. Table 7 defines the I
2
C terms used during the
data transfers.
Term Definition
S Start Condition
Sr Repeated Start Condition
SAD Slave Address
W Write Bit
R Read Bit
ACK Acknowledge
NACK Not Acknowledge
RA Register Address
Data Transmitted/Received Data
P Stop Condition
Table 7. I
2
C Terms
Sequence 1. The Master is writing one byte to the Slave.
Master S SAD + W
RA DATA P
Slave ACK
ACK
ACK
Sequence 2. The Master is writing multiple bytes to the Slave.
Master S SAD + W
RA DATA DATA P
Slave ACK
ACK
ACK
ACK
Sequence 3. The Master is receiving one byte of data from the Slave.
Master S SAD + W
RA Sr SAD + R
NACK
P
Slave ACK
ACK
ACK
DATA
Sequence 4. The Master is receiving multiple bytes of data from the Slave.
Master S SAD + W
RA Sr SAD + R
ACK
NACK
P
Slave ACK
ACK
ACK
DATA DATA
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 11 of 26
KXTE9 Embedded Registers
The KXTE9’s 23 embedded 8-bit registers that are accessible via I
2
C are listed in Table 8.
Type Address
Register Name Read/Write Hex Binary
CT_RESP R 0x0C 0000 1100
Reserved - 0x0D 0000 1101
Reserved - 0x0E 0000 1110
WHO_AM_I R 0x0F 0000 1111
TILT_POS_CUR R 0x10 0001 0000
TILT_POS_PRE R 0x11 0001 0001
XOUT R 0x12 0001 0010
YOUT R 0x13 0001 0011
ZOUT R 0x14 0001 0100
Not Used - 0x15 0001 0101
INT_SRC_REG1 R 0x16 0001 0110
INT_SRC_REG2 R 0x17 0001 0111
STATUS_REG R 0x18 0001 1000
Not Used - 0x19 0001 1001
INT_REL R 0x1A 0001 1010
CTRL_REG1 R/W 0x1B 0001 1011
CTRL_REG2 R/W 0x1C 0001 1100
CTRL_REG3 R/W 0x1D 0001 1101
INT_CTRL_REG1 R/W 0x1E 0001 1110
INT_CTRL_REG2 R/W 0x1F 0001 1111
Not Used - 0x20 – 0x27
-
TILT_TIMER R/W 0x28 0010 1000
WUF_TIMER R/W 0x29 0010 1001
B2S_TIMER R/W 0x2A 0010 1010
Reserved - 0x2B – 0x59
-
WUF_THRESH R/W 0x5A 0101 1010
B2S_THRESH
R/W 0x5B 0101 1011
TILT_ANGLE R/W 0x5C 0101 1010
Reserved - 0x5D – 0x5E
-
HYST_SET R/W 0x5F 0101 1111
Table 8. KXTE9 Register Map
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 12 of 26
KXTE9 Register Descriptions
CT_RESP
This register has a byte value of 0x55h except when the CTC bit in CTRL_REG3 is set, this value is
set to 0xAAh. The byte value is returned to 0x55h after each reading.
R R R R R R R R
STR7 STR6 STR5 STR4 STR3 STR2 STR1 STR0 Reset Value
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 01010101
I
2
C Address:
0x0Ch
WHO_AM_I
This register can be used for supplier recognition, as it can be factory written to a known byte value.
The default value is 0x00h.
R R R R R R R R
WIA7 WIA6 WIA5 WIA4 WIA3 WIA2 WIA1 WIA0 Reset Value
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 00000000
I
2
C Address:
0x0Fh
Tilt Position Registers
These two registers report previous and current position data that is updated at the user-defined
ODR frequency and is protected during register read. Table 9 describes the reported position for
each bit value
TILT_POS_CUR
Current tilt position register
R R R R R R R R Reset Value
0 0 LE RI DO UP FD FU 00100000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x10h
TILT_POS_PRE
Previous tilt position register
R R R R R R R R Reset Value
0 0 LE RI DO UP FD FU 00100000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x11h
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 13 of 26
Bit Description
LE Left State (X-)
RI Right State (X+)
DO Down State (Y-)
UP Up State (Y+)
FD Face-Down State (Z-)
FU Face-Up State (Z+)
Table 9. KXTE9 Tilt Position
Accelerometer Outputs
These registers contain 6-bits of valid acceleration data for each axis. The data is updated every
ODR period and can be converted from digital counts to acceleration (g) using Equation 1.
Acceleration (g) = (Output (counts) – 0g Offset (counts)) / Sensitivity (counts/g)
Equation 1. Acceleration (g) Calculation
XOUT
X-axis acceleration output (6-bit valid and updated every ODR period)
R R R R R R R R
XOUTD5
XOUTD4
XOUTD3
XOUTD2
XOUTD1
XOUTD0
X X
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x12h
YOUT
Y-axis acceleration output (6-bit valid and updated every ODR period)
R R R R R R R R
YOUTD5
YOUTD4
YOUTD3
YOUTD2
YOUTD1
YOUTD0
X X
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x13h
ZOUT
Z-axis acceleration output (6-bit valid and updated every ODR period)
R R R R R R R R
ZOUTD5
ZOUTD4
ZOUTD3
ZOUTD2
ZOUTD1
ZOUTD0
X X
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x14h
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 14 of 26
Interrupt Source Registers
These two registers report function state changes. Data may be updated at every ODR period.
INT_SRC_REG1
This register reports which function caused an interrupt.
R R R R R R R R
0 0 0 0 0 B2SS WUFS TPS
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x16h
B2SS reflects the status of the inactivity/back to sleep function.
B2SS = 0 – activity state has not changed to inactive
B2SS = 1 – activity state has changed to inactive
WUFS reflects the status of the activity/wake up function.
WUFS = 0 – activity state has not changed to active
WUFS = 1 – activity state has changed to active
TPS reflects the status of the tilt position function.
TPS = 0 – tilt position state has not changed
TPS = 1 - tilt position state has changed
INT_SRC_REG2
This register reports which axis and direction caused the activity state to transition from
inactive to active per Table 10.
R R R R R R R R
0 0 ALE ARI ADO AUP AFD AFU
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x17h
Bit Description
ALE X Negative (X-) Reported
ARI X Positive (X+) Reported
ADO Y Negative (Y-) Reported
AUP Y Positive (Y+) Reported
AFD Z Negative (Z-) Reported
AFU Z Positive (Z+) Reported
Table 10. KXTE9 Activity Reporting
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 15 of 26
STATUS_REG
This register reports the state of the interrupt and the status of information pertaining to the ODR
setting.
R R R R R R R R
0 0 DOR INT SODRA
SODRB
0 0
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x18h
DOR (output data overrun) bit is released after the next output data register read
DOR = 0 – no data overrun
DOR = 1 – data is overrun
INT reports the combined interrupt information of all enabled functions. This bit is
released to 0 when the interrupt release register (1Ah) is read.
INT = 0 – no interrupt event
INT = 1 – interrupt event has occurred
SODRA reports the status of the current ODRA setting that is being used.
SODRB reports the status of the current ODRB setting that is being used.
INT_REL
Latched interrupt source information is cleared and the physical interrupt latched pin (7) is set to the
inactive state when this register is read.
R R R R R R R R
X X X X X X X X
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x1Ah
CTRL_REG1
Read/write control register that controls the main feature set.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
PC1 0 0 ODRA ODRB B2SE WUFE TPE 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x1Bh
PC1 controls the operating mode of the KXTE9.
PC1 = 0 - stand-by mode
PC1 = 1 - operating mode
ODRA sets the initial output data rate per Table 11.
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 16 of 26
ODRB sets the initial output data rate per Table 11.
ODRA ODRB Output Data Rate
0 0 1Hz
0 1 3Hz
1 0 10Hz
1 1 40Hz
Table 11. Initial Output Data Rate
B2SE enables the Back To Sleep function that will detect a transition from active mode to
inactive mode.
B2SE = 0 - disable
B2SE = 1- enable
WUFE enables the Wake Up function that will detect a transition from inactive mode to
active mode.
WUFE = 0 - disable
WUFE = 1- enable
TPE enables the Tilt Position function that will detect changes in device orientation.
TPE = 0 - disable
TPE = 1- enable
CTRL_REG2
Read/write control register that controls tilt position state masking. Per Table 12, if a state’s bit is
set to one (1), the state change will generate an interrupt. If it is set to zero (0), the state change
will not generate an interrupt.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
0 0 LEM RIM DOM UPM FDM FUM 00111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x1Ch
Bit Description
LEM Left State Mask
RIM Right State Mask
DOM Down State Mask
UPM Up State Mask
FDM Face-Down State Mask
FUM Face-Up State Mask
Table 12. Tilt Position State Mask
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 17 of 26
CTRL_REG3
Read/write control register that provides more feature set control.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
SRST 0 0 CTC OB2SA OB2SB OWUFA
OWUFB
00000110
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x1Dh
SRST initiates software reset, which returns the internal RAM to Kionix default values.
This bit will remain high (1) for approximately 50 ms until the RAM load is finished.
SRST = 0 - no action or software reset has finished
SRST = 1 - start software reset
CTC initiates the communication-test function.
CTC = 0 - no action
CTC = 1 - sets CT_RESP register to 0xAAh and when CT_RESP is read, sets this
bit to 0 and sets CT_RESP to 0x55h
OB2SA sets the output data rate when in the inactive mode per Table 13.
OB2SB sets the output data rate when in the inactive mode per Table 13.
OB2SA OB2SB Output Data Rate
0 0 1Hz
0 1 3Hz
1 0 10Hz
1 1 40Hz
Table 13. Inactive Mode Output Data Rate
OWUFA sets the output data rate when in the active mode per Table 14.
OWUFB sets the output data rate when in the active mode per Table 14.
OWUFA OWUFB Output Data Rate
0 0 1Hz
0 1 3Hz
1 0 10Hz
1 1 40Hz
Table 14. Active Mode Output Data Rate
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 18 of 26
INT_CTRL_REG1
This register controls the settings for the physical interrupt pin (7).
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
0 0 0 IEN IEA IEL 0 0 00001000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x1Eh
IEN enables/disables the physical interrupt pin (7)
IEN = 0 - physical interrupt pin (7) is disabled
IEN = 1 - physical interrupt pin (7) is enabled
IEA sets the polarity of the physical interrupt pin (7)
IEA = 0 - polarity of the physical interrupt pin (7) is active low
IEA = 1 - polarity of the physical interrupt pin (7) is active high
IEL sets the response of the physical interrupt pin (7)
IEL = 0 - the physical interrupt pin (7) latches until it is cleared by reading INT_REL
IEL = 1 - the physical interrupt pin (7) will transmit one pulse with a period of 0.05 ms
INT_CTRL_REG2
This register controls activity/inactivity state masking. Per Table 15, if a state’s bit is set to one (1),
the state change will generate an interrupt. If it is set to zero (0), the state change will not generate
an interrupt.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
XBW YBW ZBW 0 0 0 0 0 11100000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x1Fh
Bit Description
XBW X-Axis State Mask
YBW Y-Axis State Mask
ZBW Z-Axis State Mask
Table 15. Activity/Inactivity State Mask
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 19 of 26
TILT_TIMER
This register is the programmable count register for the tilt position state timer (0 to 255 counts).
Every count is calculated as 1/ODR delay period. A new state must be valid as many measurement
periods before the change is accepted.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
TSC7 TSC6 TSC5 TSC4 TSC3 TSC2 TSC1 TSC0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x28h
WUF_TIMER
This register is the programmable count register for the inactivity to activity timer (0 to 255 counts).
Every count is calculated as 1/ODR delay period. A new state must be valid as many measurement
periods before the change is accepted.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
WUFC7
WUFC6
WUFC5
WUFC4
WUFC3
WUFC2
WUFC1
WUFC0
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Ad
dress:
0x29h
B2S_TIMER
This register is the programmable count register for the activity to inactivity timer (0 to 255 counts).
Every count is calculated as 16*(1/ODR) delay period. A new state must be valid as many
measurement periods before the change is accepted.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
B2SC7 B2SC6 B2SC5 B2SC4 B2SC3 B2SC2 B2SC1 B2SC0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x2Ah
WUF_THRESH
This register sets the WUF Threshold that is used to detect the transition from inactivity to activity.
The KXTE9 ships from the factory with WUF_THRESH set to a change in acceleration of 0.5g.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
WUFTH7
WUFTH6
WUFTH5
WUFTH4
WUFTH3
WUFTH2
WUFTH1
WUFTH0
00100000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x5Ah
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 20 of 26
B2S_THRESH
This register sets the B2S Threshold that is used to detect the transition from activity to inactivity.
The KXTE9 ships from the factory with B2S_THRESH set to a change in acceleration of 1.5g.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
B2STH7 B2STH6 B2STH5 B2STH4 B2STH3 B2STH2 B2STH1 B2STH0 01100000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x5Bh
TILT_ANGLE
This register sets the tilt angle that is used to detect the transition from Face-up/Face-down states
to Screen Rotation states. The KXTE9 ships from the factory with tilt angle set to a low threshold of
26° from horizontal. A different default tilt angle can be requested from the factory. Note that the
minimum suggested tilt angle is 10°.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
TA7 TA6 TA5 TA4 TA3 TA2 TA1 TA0 00011100
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x5Ch
HYST_SET
This register sets the Hysteresis that is placed in between the Screen Rotation states. The KXTE9
ships from the factory with HYST_SET set to +/-15° of hysteresis. A different default hysteresis can
be requested from the factory. Note that when writing a new value to this register the current
values of RES0 and RES1 must be preserved. These values are set at the factory and must not
change.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
RES1 RES0 0 0 HYST3 HYST2 HYST1 HYST0 --001000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
I
2
C Address:
0x5Fh
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 21 of 26
KXTE9 Embedded Applications
Orientation Detection Feature
The orientation detection feature of the KXTE9 will report changes in face up, face down, ± vertical and ±
horizontal orientation. This intelligent embedded algorithm considers very important factors that provide
accurate orientation detection from low cost tri-axis accelerometers. Factors such as: hysteresis, device
orientation angle and delay time are described below as these techniques are utilized inside the KXTE9.
Hysteresis
A 45° tilt angle threshold seems like a good choice because it is halfway between 0° and 90°.
However, a problem arises when the user holds the device near 45°. Slight vibrations, noise and
inherent sensor error will cause the acceleration to go above and below the threshold rapidly and
randomly, so the screen will quickly flip back and forth between the and the 90° orientations.
This problem is avoided in the KXTE9 by choosing a hysteresis angle. With a ±15° hysteresis
angle, the screen will not rotate from to 90° until the device is tilted to 60° (45°+15°). To rotate
back to 0°, the user must tilt back to 30° (45°-15°), thus avoiding the screen flipping problem. Table
16 shows the acceleration limits implemented for ±15° of hysteresis in between the four screen
rotation states.
Orientation
X Acceleration (g)
Y Acceleration (g)
/360° -0.5 < a
x
< 0.5 a
y
> 0.866
90° a
x
> 0.866 -0.5 < a
y
< 0.5
180° -0.5 < a
x
< 0.5 a
y
< -0.866
270° a
x
< -0.866 -0.5 < a
y
< 0.5
Table 16. Acceleration at the four orientations with ±15° of hysteresis
The KXTE9 allows the user to change the amount of hysteresis in between the four screen rotation states.
By simply writing to the HYST_SET register, the user can adjust the amount of hysteresis from ± to ±30°.
The plot in Figure 1 shows the typical amount of hysteresis applied for a given digital count value.
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 22 of 26
HYST_SET vs Hysteresis
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HYST_SET Value (counts)
Hysteresis (+/-degrees)
+/- Hysteresis
Figure 1. Hysteresis vs. HYST_SET value
Device Orientation Angle (aka Tilt Angle)
To ensure that horizontal and vertical device orientation changes are detected, even when it isn’t in
the ideal vertical orientation where the angle
θ
in Figure 2 is 90°, the KXTE9 considers device
orientation angle in its algorithm.
Figure 2. Device Orientation Angle
As the angle in Figure 2 is decreased, the maximum gravitational acceleration on the X-axis or Y-
axis will also decrease. Therefore, when the angle becomes small enough, the user will not be able
to make the screen orientation change. When the device orientation angle approaches (device
is flat on a desk or table), a
x
= a
y
= 0g, a
z
= +1g, and there is no way to determine which way the
Angle
θ
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 23 of 26
screen should be oriented, the internal algorithm determines that the device is in either the face-up
or face-down orientation, depending on the sign of the z-axis. The KXTE9 will only change the
screen orientation when the orientation angle is above the factory-defaulted/user-defined threshold
set in the TILT_ANGLE register. Equation 2 can be used to determine what value to write to the
TILT_ANGLE register to set the device orientation angle.
TILT_ANGLE (counts) = sin θ * (Sensitivity (counts/g) * 4)
Equation 2. Device Orientation Angle (aka Tilt Angle)
Tilt Timer
The 8-bit register, TILT_TIMER can be used to qualify changes in orientation. The KXTE9 does
this by incrementing a counter with a size that is specified by the value in TILT_TIMER for each set
of acceleration samples to verify that a change to a new orientation state is maintained. A user
defined output data rate (ODR) determines the time period for each sample. Equation 3 shows how
to calculate the TILT_TIMER register value for a desired delay time.
TILT_TIMER (counts) = Delay Time (sec) x ODR (Hz)
Equation 3. Tilt Position Delay Time
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 24 of 26
Active/Inactive Feature Description
The Active/Inactive feature of the KXTE9 reports qualified changes in acceleration based Wake Up (WUF)
and Back to Sleep (B2S) thresholds. If the change in acceleration on any axis is greater than the user-
defined wake up threshold (WUF_THRESH), the device has transitioned from an inactive state to an active
state. Equation 4 shows how to calculate the WUF_THRESH register value for a desired wake up
threshold.
WUF_THRESH (counts) = 4 x (Wake Up Threshold (g) x Sensitivity (counts/g))
Equation 4. Wake Up Threshold
If the change in acceleration on any axis is less than the user-defined back to sleep threshold
(B2S_THRESH), the device has transitioned from an active state to an inactive state. Equation 5 shows
how to calculate the B2S_THRESH register value for a desired wake up threshold.
B2S_THRESH (counts) = 4 x (Back to Sleep Threshold (g) x Sensitivity (counts/g))
Equation 5. Back to Sleep Threshold
Separate WUF (WUF_TIMER) and B2S (B2S_TIMER) 8-bit raw unsigned values represent counters that
permit the user to qualify each active/inactive state change. Note that each WUF Timer count qualifies 1
(one) user-defined ODR period (OB2S) and each B2S Timer count qualifies 16 (sixteen) user-defined
periods (initial ODR or OWUF). Equation 6 shows how to calculate the WUF_TIMER register value for a
desired wake up delay time.
WUF_TIMER (counts) = Wake Up Delay Time (sec) x OB2S (Hz)
Equation 6. Wake Up Delay Time
Equation 7 shows how to calculate the B2S_TIMER register value for a desired back to sleep delay time.
B2S_TIMER (counts) = (Back to Sleep Delay Time (sec) x OWUF (Hz)) / 16
Equation 7. Back to Sleep Delay Time
Figure 3 shows the response of the Active/Inactive algorithm with WUF Timer = 10 counts and B2S Timer
= 10 counts.
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 25 of 26
WUF Threshold
0g
Typical Active/Inactive Interrupt Example
Max Delta Acceleration
B2S Threshold
Ex: Delay Counter = 10
Active
10
Inactive
B2S Timer
WUF Timer
Figure 3. KXTE9 Inactive/Active Transitions
± 2g Tri-axis Digital Accelerometer
Specifications
PART NUMBER:
KXTE9-1026
Rev. 3
Nov-2009
36 Thornwood Dr. – Ithaca, NY 14850
tel: 607-257-1080 – fax:607-257-1146
www.kionix.com - info@kionix.com
© 2009 Kionix
All Rights Reserved
091104-02
Page 26 of 26
Revision History
REVISION DESCRIPTION DATE
1 Initial release 09-Apr-2009
2 Updated thermal performance 14-Aug-2009
3 Corrected typographical errors and clarified some confusing definitions 05-Nov-2009
"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or
otherwise under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not
assume responsibility for its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior
notice. This publication supersedes and replaces all information previously supplied.