3.1 Clock Input
The CLK controls the timing of the sampling process. To
achieve the optimum noise performance, the clock input
should be driven with a stable, low jitter clock signal in the
range indicated in the Electrical Table. The clock input signal
should also have a short transition region. This can be
achieved by passing a low-jitter sinusoidal clock source
through a high speed buffer gate. The trace carrying the clock
signal should be as short as possible and should not cross
any other signal line, analog or digital, not even at 90°.
The clock signal also drives an internal state machine. If the
clock is interrupted, or its frequency is too low, the charge on
the internal capacitors can dissipate to the point where the
accuracy of the output data will degrade. This is what limits
the minimum sample rate.
The clock line should be terminated at its source in the char-
acteristic impedance of that line. Take care to maintain a
constant clock line impedance throughout the length of the
line. Refer to Application Note AN-905 for information on set-
ting characteristic impedance.
It is highly desirable that the the source driving the ADC clock
pins only drive that pin. However, if that source is used to drive
other devices, then each driven pin should be AC terminated
with a series RC to ground, such that the resistor value is
equal to the characteristic impedance of the clock line and the
capacitor value is
where tPD is the signal propagation rate down the clock line,
"L" is the line length and ZO is the characteristic impedance
of the clock line. This termination should be as close as pos-
sible to the ADC clock pin but beyond it as seen from the clock
source. Typical tPD is about 150 ps/inch (60 ps/cm) on FR-4
board material. The units of "L" and tPD should be the same
(inches or centimeters).
The duty cycle of the clock signal can affect the performance
of the A/D Converter. Because achieving a precise duty cycle
is difficult, the ADC11DS105 has a Duty Cycle Stabilizer.
3.2 Power-Down (PD_A and PD_B)
The PD_A and PD_B pins, when high, hold the respective
channel of the ADC11DS105 in a power-down mode to con-
serve power when that channel is not being used. The chan-
nels may be powereed down individually or together. The data
in the pipeline is corrupted while in the power down mode.
The Power Down Mode Exit Cycle time is determined by the
value of the components on the reference bypass pins
( VRP, VCMO and VRN ). These capacitors loose their charge
in the Power Down mode and must be recharged by on-chip
circuitry before conversions can be accurate. Smaller capac-
itor values allow slightly faster recovery from the power down
mode, but can result in a reduction in SNR, SINAD and ENOB
performance.
Note: This signal has no effect when SPI_EN is high and the
serial control interface is enabled.
3.3 Reset_DLL
This pin is normally low. If the input clock frequency is
changed abruptly, the internal timing circuits may become
unlocked. Cycle this pin high for 1 microsecond to re-lock the
DLL. The DLL will lock in several microseconds after
Reset_DLL is asserted.
3.4 DLC
This pin sets the output data configuration. With this signal at
logic-1, all data is sourced on a single lane (SD1_x) for each
channel. When this signal is at logic-0, the data is sourced on
dual lanes (SD0_x and SD1_x) for each channel. This sim-
plifies data capture at higher data rates.
Note: This signal has no effect when SPI_EN is high and the
SPI interface is enabled.
3.5 TEST
When this signal is asserted high, a fixed test pattern
(101001100011 msb->lsb) is sourced at the data outputs.
When low, the ADC is in normal operation. The user may
specify a custom test pattern via the serial control interface.
Note: This signal has no effect when SPI_EN is high and the
SPI interface is enabled.
3.6 WAM
In dual-lane mode only, when this signal is at logic-0 the serial
data words are offset by half-word. With this signal at logic-1
the serial data words are aligned with each other. In single
lane mode this pin must be set to logic-0.
Note: This signal has no effect when SPI_EN is high and the
SPI interface is enabled.
3.7 SPI_EN
The SPI interface is enabled when this signal is asserted high.
In this case the direct control pins (OF/DCS, PD_A, PD_B,
DLC, WAM, TEST) have no effect. When this signal is de-
asserted, the SPI interface is disabled and the direct control
pins are enabled.
3.8 SCSb, SDI, SCLK
These pins are part of the SPI interface. See Section 5.0 for
more information.
4.0 DIGITAL OUTPUTS
Digital outputs consist of six LVDS signal pairs (SD0_A,
SD1_A, SD0_B, SD1_B, OUTCLK, FRAME) and CMOS logic
outputs ORA, ORB, DLL_Lock, and SDO.
4.1 LVDS Outputs
The digital output data word for each channel is 12 bits long
where D11 is the MSB and D0 is the LSB. D0 is always a logic
0.
The digital data for each channel is provided in a serial format.
Two modes of operation are available for the serial data for-
mat. Single-lane serial format (shown in ) uses one set of
differential data signals per channel. Dual-lane serial format
(shown in ) uses two sets of differential data signals per chan-
nel in order to slow down the data and clock frequency by a
factor of 2. At slower rates of operation (typically below 65
MSPS) the single-lane mode may the most efficient to use. At
higher rates the user may want to employ the dual-lane
scheme. In either case DDR-type clocking is used. For each
data channel, an overrange indication is also provided. The
OR signal is updated with each frame of data.
4.2 ORA, ORB
These CMOS outputs are asserted logic-high when their re-
spective channel’s data output is out-of-range in either high
or low direction.
4.3 DLL_Lock
When the internal DLL is locked to the input CLK, this pin
outputs a logic high. If the input CLK is changed abruptly, the
internal DLL may become unlocked and this pin will output a
17 www.national.com
ADC11DS105