APEX MICROTECHNOLOGY CORPORATION • 5980 NORTH SHANNON ROAD • TUCSON, ARIZONA 85741 • USA • APPLICATIONS HOTLINE: 1 (800) 546-2739
4
SAFE OPERATING AREA
The MOSFET output stage of the PA240 is not limited by
second breakdown considerations as in bipolar output stages.
However there are still three distinct limitations:
1. Voltage withstand capability of the transistors.
2. Current handling capability of the die metalization.
3. Temperature of the output MOSFETS.
These limitations can be seen in the SOA (see Safe Operat-
ing Area graphs). Note that each pulse capability line shows
a constant power level (unlike second breakdown limitations
where power varies with voltage stress). These lines are shown
for a case temperature of 25°C. Pulse stress levels for other
case temperatures can be calculated in the same manner as
DC power levels at different temperatures. The output stage
is protected against transient flyback by the parasitic diodes of
the output stage MOSFET structure. However, for protection
against sustained high energy flyback external fast-recovery
diodes must be used.
HEATSINKING
The PA240CC 7-pin DDPAK surface mountable package
has a large exposed integrated copper heatslug to which the
monolithic amplifier is directly attached. The PA240CC requires
surface mount techniques of heatsinking. A solder connection
to a copper foil area as defined in Note 5 of Page 2 is recom-
mended for circuit board layouts. This may be adequate heat-
sinking but the large number of variables suggests temperature
measurements to be made on the top of the package. Do not
allow the temperature to exceed 85°C.
OPERATING
CONSIDERATIONS
PA240
GENERAL
Please read Application Note 1 "General Operating Consid-
erations" which covers stability, power supplies, heat sinking,
mounting, current limit, SOA interpretation, and specification
interpretation. Visit www.apexmicrotech.com for design tools
that help automate tasks such as calculations for stability,
internal power dissipation, current limit, heat sink selection,
Apex's complete Application Notes library, Technical Seminar
Workbook and Evaluation Kits.
PHASE COMPENSATION
Open loop gain and phase shift both increase with increas-
ing temperature. The PHASE COMPENSATION typical graph
shows closed loop gain and phase compensation capacitor
value relationships for four case temperatures. The curves
are based on achieving a phase margin of 50°. Calculate
the highest case temperature for the application (maximum
ambient temperature and highest internal power dissipation)
before choosing the compensation. Keep in mind that when
working with small values of compensation, parasitics may
play a large role in performance of the finished circuit. The
compensation capacitor must be rated for at least the total
voltage applied to the amplifier and should be a temperature
stable type such as NPO or COG.
OTHER STABILITY CONCERNS
There are two important concepts about closed loop gain
when choosing compensation. They stem from the fact that
while "gain" is the most commonly used term, β (the feedback
factor) is really what counts when designing for stability.
1. Gain must be calculated as a non-inverting circuit (equal
input and feedback resistors can provide a signal gain of
-1, but for calculating offset errors, noise, and stability, this
is a gain of 2).
2. Including a feedback capacitor changes the feedback factor
or gain of the circuit. Consider Rin=4.7k, Rf=47k for a gain
of 11. Compensation of 4.7 to 6.8pF would be reasonable.
Adding 33pF parallel to the 47k rolls off the circuit at 103kHz,
and at 2MHz has reduced gain from 11 to roughly 1.5 and
the circuit is likely to oscillate.
As a general rule the DC summing junction impedance
(parallel combination of the feedback resistor and all input
resistors) should be limited to 5k ohms or less. The amplifier
input capacitance of about 6pF, plus capacitance of connecting
traces or wires and (if used) a socket will cause undesirable
circuit performance and even oscillation if these resistances
are too high. In circuits requiring high resistances, measure or
estimate the total sum point capacitance, multiply by Rin/Rf, and
parallel Rf with this value. Capacitors included for this purpose
are usually in the single digit pF range. This technique results
in equal feedback factor calculations for AC and DC cases. It
does not produce a roll off, but merely keeps β constant over
a wide frequency range. Paragraph 6 of Application Note 19
details suitable stability tests for the finished circuit.