TL026C
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIER WITH AGC
SLFS007A – JUNE 1985 – REVISED JULY 1990
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Low Output Common-Mode Sensitivity to
AGC Voltages
D
Input and Output Impedances Independent
of AGC Voltage
D
Peak Gain . . . 38 dB Typ
D
Wide AGC Range . . . 50 dB Typ
D
3-dB Bandwidth . . . 50 MHz
D
Other Characteristics Similar to NE592 and
uA733
description
This device is a monolithic two-stage high-
frequency amplifier with differential inputs and
outputs.
Internal feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Variable gain
based on signal summation provides large AGC control over a wide bandwidth with low harmonic distortion.
Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source biased to
obtain high common-mode and supply-voltage rejection ratios. The gain may be electronically attenuated by
applying a control voltage to the AGC pin. No external compensation components are required.
This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and disk-file
systems where AGC is needed. Other applications include video and pulse amplifiers where a large AGC range,
wide bandwidth, low phase shift, and excellent gain stability are required.
The TL026C is characterized for operation from 0°C to 70°C.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, VCC– (see Note 1) – 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage ±5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Common-mode input voltage ±6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current ±10 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range – 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature range 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and
functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions section of
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to the midpoint of VCC+ and VCC except differential input and output voltages.
DISSIPATION RATING TABLE
PACKAGE TA 25°C
POWER RATING OPERATING F ACTOR
ABOVE TA = 25°CTA = 70°C
POWER RATING
D725 mW 5.8 mW/°C464 mW
P1000 mW 8.0 mW/°C640 mW
Copyright 1990, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
IN–
REF OUT
VCC+
OUT–
1
2
3
4
8
7
6
5
IN+
AGC
VCC
OUT+
D OR P PACKAGE
(TOP VIEW)
symbol
+
AGC
IN +
IN –
7
4
5
2
1
8
REF OUT
OUT+
OUT–
TL026C
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIER WITH AGC
SLFS007A – JUNE 1985 – REVISED JULY 1990
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
recommended operating conditions
MIN NOM MAX UNIT
Supply voltage, VCC +3 6 8 V
Supply voltage, VCC – 3 – 6 – 8 V
Operating free-air temperature range, TA0 70 °C
electrical characteristics at 25°C operating free-air temperature, VCC+ = ±6 V, VAGC = 0, REF OUT pin
open (unless otherwise specified)
PARAMETER FIGURE TEST CONDITIONS MIN TYP MAX UNIT
AVD Large-signal differential voltage
amplification 1 VO(PP) = 3 V, RL = 2 k65 85 105 V/V
AVD Change in voltage amplification 1VIPP = 28.5 mV, RL = 2 kΩ,
VAGC – Vref = ±180 mV – 50 dB
Vref Voltage at REF OUT Iref = – 1 mA to 100 µA 1.3 1.5 V
BW Bandwidth (–3 dB) 2VO(PP) = 1 V,
VAGC – Vref = ±180 mV 50 MHz
IIO Input offset current 0.4 5µA
IIB Input bias current 10 30 µA
VICR Common-mode input voltage range 3±1 V
VOC Common-mode output voltage 1 RL = 3.25 3.75 4.25 V
VOC Change in common-mode output voltage 1 VAGC = 0 to 2 V, RL = 300 mV
VOO Output offset voltage 1 VID = 0, RL = 0.75 V
VO(PP) Maximum peak-to-peak output voltage
swing 1 RL = 2 k3 4 V
riInput resistance at AGC, IN+, or IN – 10 30 k
roOutput resistance 20
CMRR
Common mode rejection ratio
3
VIC = ±1 V, f = 100 kHz 60 86
dB
CMRR
Common
-
mode
rejection
ratio
3
VIC = ±1 V, f = 5 mHz 60
dB
kSVR Supply voltage rejection ratio
(VCC / VIO)4VCC + = ±0.5 V,
VCC = ±0.5 V 50 70 dB
VnBroadband equivalent noise voltage 4BW = 1 kHz to 10 MHz 12 µV
tpd Propagation delay time 2VO = 1 V 6 10 ns
trRise time 2VO = 1 V 4.5 12 ns
Isink(max) Maximum output sink current VID = 1 V, VO = 3 V 3 4 mA
ICC Supply current No load, No signal 22 27 mA
TL026C
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIER WITH AGC
SLFS007A – JUNE 1985 – REVISED JULY 1990
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range, VCC±= ±6 V,
VAGC = 0, REF OUT pin open (unless otherwise specified)
PARAMETER FIGURE TEST CONDITIONS MIN TYP MAX UNIT
AVD Large-signal differential voltage amplification 1 VO(PP) = 3 V, RL = 2 k55 115 V/V
IIO Input offset current 6µA
IIB Input bias current 40 µA
VICR Common-mode input voltage range 3±1 V
VOO Output offset voltage 1 VID = 0, RL = 1.5 V
VO(PP) Maximum peak-to-peak output voltage swing 1 RL = 2 k2.8 V
riInput resistance at AGC, IN+, or IN – 8 k
CMRR Common-mode rejection ratio 3 VIC = ±1 V, f = 100 kHz 50 dB
kSVR Supply voltage rejection ratio
(VCC / VIO)4VCC + = ±0.5 V,
VCC = ±0.5 V 50 dB
Isink(max) Maximum output sink current VID = 1 V, VO = 3 V 2.8 4 mA
ICC Supply current 1No load, No signal 30 mA
PARAMETER MEASUREMENT INFORMATION
IN +
IN –
AGC
OUT +
OUT –
REF OUT
RL
50 50 VOC
+
VO
))
VO
*
2
+
VAGC Vref
VID VOD
Figure 1. Test Circuit
1 k1 k
VO +
VO
50 50
+
VID
0.2 µF
0.2 µF
Figure 2. Test Circuit
1 k1 k
VO +
VO
50
50
+
0.2 µF
0.2 µF
VIC
Figure 3. Test Circuit
RL = 2 k
+
VOD
Figure 4. Test Circuit
TL026C
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIER WITH AGC
SLFS007A – JUNE 1985 – REVISED JULY 1990
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 5
– 200 – 100 0 100 200
A
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
DIFFERENTIAL GAIN-CONTROL VOLTAGE
VD
VAGC – V ref – Differential Gain-Control Voltage – mV
100
90
80
70
60
50
40
30
20
10
0
VCC + = 6 V
VCC = – 6 V
TA = 0°C
TA = 70°C
TA = 25°C
— Differential Voltage Amplification V/ V
TL026C
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIER WITH AGC
SLFS007A – JUNE 1985 – REVISED JULY 1990
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
gain characteristics
Figure 5 shows the differential voltage amplification versus the dif ferential gain-control voltage (VAGC – Vref).
VAGC is the absolute voltage applied to the AGC input and Vref is the dc voltage at the REF OUT output. As VAGC
increases with respect to V ref, the TL026C gain changes from maximum to minimum. As shown in Figure 5 for
example, V AGC would have to vary from approximately 180 mV less than Vref to approximately 180 mV greater
than Vref to change the gain from maximum to minimum. The total signal change in VAGC is defined by the
following equation.
VAGC = Vref + 180 mV – (Vref – 180 mV)
VAGC = 360 mV
(1)
However, because VAGC varies as the ac AGC signal varies and also differentially around Vref, then VAGC should
have an ac signal component and a dc component. To preserve the dc and thermal tracking of the device, this
dc voltage must be generated from Vref. To apply proper bias to the AGC input, the external circuit used to
generate VAGC must combine these two voltages. Figures 6 and 7 show two circuits that will perform this
operation and are easy to implement. The circuits use a standard dual operational amplifier for AGC feedback.
By providing rectification and the required feedback gain, these circuits are also complete AGC systems.
circuit operation
Amplifier A1 amplifies and inverts the rectified and filtered AGC signal voltage VC producing output voltage V1.
Amplifier A2 is a differential amplifier that inverts V1 again and adds the scaled Vref voltage. This conditioning
makes VAGC the sum of the signal plus the scaled V ref. As the signal voltage increases, VAGC increases and
the gain of the TL026C is reduced. This maintains a constant output level.
feedback circuit equations
Following the AGC input signal (Figures 6 and 7) from the OUT output through the feedback amplifiers to the
AGC input produces the following equations:
(2)
1. AC ouput to diode D1, assuming sinusoidal signals
VO = VOP (sin (wt))
where:
VOP = peak voltage of VO
(3)
2. Diode D1 and capacitor C1 output
VC = VOP – VF
where:
VF = forward voltage drop of D1
VC = voltage across capacitor C1
(4)
3. A1 output
V1
+*
R2
R1 VC
(5)
4. A2 output (R3 = R4)
VAGC
+
R2
R1 VC
)
2R6
R5
)
R6 Vref
TL026C
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIER WITH AGC
SLFS007A – JUNE 1985 – REVISED JULY 1990
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
Amplifier A2 inverts V1 producing a positive AGC signal voltage. Therefore, the input voltage to the TL026C
AGC pin consists of an AGC signal equal to:
(6)
R2
R1 VC
and a dc voltage derived from Vref, defined as the quiescent value of VAGC.
VAGC(q)
+
2R6
R5
)
R6Vref (7)
For the initial resistor calculations, V ref is assumed to be typically 1.4 V making quiescent V AGC approximately
1.22 V (V AGC(q) = Vref – 180 mV). This voltage allows the TL026C to operate at maximum gain under no-signal
and low-signal conditions. In addition, with V ref used as both internal and external reference, its variation from
device to device automatically adjusts the overall bias and makes AGC operation essentially independent of
the absolute value of Vref. The resistor divider needs to be calculated only once and is valid for the full tolerance
of Vref.
output voltage limits (see Figures 6 and 7)
The output voltage level desired must fall within the following limits:
1. Because the data sheet minimum output swing is 3 V peak-to-peak using a 2-k load resistor, the
user-selected design limit for the peak output swing should not exceed 1.5 V.
2. The voltage drop of the rectifying diode determines the lower voltage limit. When a silicon diode is
used, this voltage is approximately 0.7 V. The output voltage VO must have sufficient amplitude to
exceed the rectifying diode drop. Aschottky diode can be used to reduce the VO level required.
gain calculations for a peak output voltage of 1 V
A peak output voltage of 1 V was chosen for gain calculations because it is approximately midway between the
limits of conditions 1 and 2 in the preceding paragraph.
Using equation 3 (VC = VOP – Vd), VC is calculated as follows:
VC = 1 V – 0.7 V
VC = 0.3 V
Therefore, the gain of A1 must produce a voltage V1 that is equal to or greater than the total change in VAGC
for maximum TL026C gain change.
With a total change in VAGC of 360 mV and using equation 4, the calculation is as follows:
*
V1
VC
+
D
VAGC
VC
+
R2
R1
+
0.36
0.3
+
1.2
If R1 is 10 k, R2 is 1.2 time R1 or 12 k.
Since the output voltage for this circuit must be between 0.85 V and 1.3 V, the component values in
Figures 6 and 7 provide a nominal 1-V peak output limit. This limit is the best choice to allow for temperature
variations of the diode and minimum output voltage specification.
TL026C
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIER WITH AGC
SLFS007A – JUNE 1985 – REVISED JULY 1990
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
The circuit values in Figures 6 and 7 will produce the best results in this general application. Because of
rectification and device input constraints, the circuit in Figure 6 will not provide attenuation and has about
32 dB of control range. The circuit shown in Figure 7 will have approximately 25% variation in the peak output
voltage limit due to the variation in gain of the TL592 device to device. In addition, if a lower output voltage is
desired, the output of the TL026C can be used for approximately 40 mV of controlled signal.
considerations for the use of the TL026C
To obtain the most reliable results, RF breadboarding techniques must be used. A groundplane board should
be used and power supplies should be bypassed with 0.1-µF capacitors. Input leads and output leads should
be as short as possible and separated from each other.
A peak input voltage greater than 200 mV will begin to saturate the input stages of the TL026C and, while the
circuit is in the AGC mode, the output signal may become distorted.
To observe the output signal of TL026C or TL592, low-capacitance FET probes or the output voltage divider
technique shown in Figure 6 should be used.
+
+
OUT +
OUT –
0.1 µF
0.1 µF
REF
OUT
30 k
To Scope
Monitor
Vout
200
1.8 k
IN –
IN +
50 AGC
10 k
10 k
VAGC A2
20 k
50
VI
+
10 k
A1
12 k1N914
D1
0.1 µF
V1
1/2 TL082
1/2 TL082
TL026C
NOTE: VCC+ = 6 V and VCC = – 6 V for TL026C and amplifiers A1 and A2.
Figure 6. Typical Application Circuit With No Attenuation
TL026C
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIER WITH AGC
SLFS007A – JUNE 1985 – REVISED JULY 1990
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
+
R6
20 k
50
0.1 µF
VOUT
VOUT +
0.1 µF
A1
50
10 k
R1
12 k
R2
1/2 TL082
0.1 µF
OUT –
OUT +
IN –
IN +
AGC
To Scope
Monitor
+A2
10 k
R4
1/2 TL082
30 k
R5
10 k
R3
VAGC
VI
1.8 k
200
1N914
REF
OUT
TL026C
0.1 µF
TL592 2 k
2 k
510
+
+
X20
Gain
NOTE: VCC + = 6 V and VCC = – 6 V for TL026C and amplifiers A1 and A2.
Figure 7. Typical Application Circuit With Attenuation
PACKAGING INFORMATION
Orderable Device Status (1) Package
Type Package
Drawing Pins Package
Qty Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)
TL026CD ACTIVE SOIC D 8 75 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TL026CDE4 ACTIVE SOIC D 8 75 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TL026CDG4 ACTIVE SOIC D 8 75 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TL026CDR ACTIVE SOIC D 8 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TL026CDRE4 ACTIVE SOIC D 8 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TL026CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &
no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
TL026CP ACTIVE PDIP P 8 50 Pb-Free
(RoHS) CU NIPDAU N / A for Pkg Type
TL026CPE4 ACTIVE PDIP P 8 50 Pb-Free
(RoHS) CU NIPDAU N / A for Pkg Type
TL026CPSR ACTIVE SO PS 8 2000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL026CPSRE4 ACTIVE SO PS 8 2000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL026CPSRG4 ACTIVE SO PS 8 2000 Green (RoHS &
no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TL026ID OBSOLETE SOIC D 8 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
PACKAGE OPTION ADDENDUM
www.ti.com 4-Jun-2007
Addendum-Page 1
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 4-Jun-2007
Addendum-Page 2
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TL026CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL026CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TL026CDR SOIC D 8 2500 340.5 338.1 20.6
TL026CPSR SO PS 8 2000 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated