This is information on a product in full production.
May 2017 DocID025743 Rev 6 1/106
STM32F031x4 STM32F031x6
ARM®-based 32-bit MCU with up to 32 Kbyte Flash, 9 timers,
ADC and communication interfaces, 2.0 - 3.6 V
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M0 CPU,
frequency up to 48 MHz
Memories
16 to 32 Kbytes of Flash memory
4 Kbytes of SRAM with HW parity
CRC calculation unit
Reset and power management
Digital and I/Os supply: 2.0 to 3.6 V
Analog supply: VDDA = from VDD to 3.6 V
Power-on/Power-down reset (POR/PDR)
Programmable voltage detector (PVD)
Low power modes: Sleep, Stop and
Standby
–V
BAT supply for RTC and backup registers
Clock management
4 to 32 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
Internal 8 MHz RC with x6 PLL option
Internal 40 kHz RC oscillator
Up to 39 fast I/Os
All mappable on external interrupt vectors
Up to 26 I/Os with 5 V tolerant capability
5-channel DMA controller
1 × 12-bit, 1.0 µs ADC (up to 10 channels)
Conversion range: 0 to 3.6V
Separate analog supply from 2.4 up to
3.6 V
Up to 9 timers
1 x 16-bit 7-channel advanced-control timer
for 6 channels PWM output, with deadtime
generation and emergency stop
1 x 32-bit and 1 x 16-bit timer, with up to 4
IC/OC, usable for IR control decoding
1 x 16-bit timer, with 2 IC/OC, 1 OCN,
deadtime generation and emergency stop
1 x 16-bit timer, with IC/OC and OCN,
deadtime generation, emergency stop and
modulator gate for IR control
1 x 16-bit timer with 1 IC/OC
Independent and system watchdog timers
SysTick timer: 24-bit downcounter
Calendar RTC with alarm and periodic wakeup
from Stop/Standby
Communication interfaces
1 x I2C interface, supporting Fast Mode
Plus (1 Mbit/s) with 20 mA current sink,
SMBus/PMBus, and wakeup from Stop
mode
1 x USART supporting master synchronous
SPI and modem control, ISO7816
interface, LIN, IrDA capability, auto baud
rate detection and wakeup feature
1 x SPI (18 Mbit/s) with 4 to 16
programmable bit frames, with I2S interface
multiplexed
Serial wire debug (SWD)
96-bit unique ID
Extended temperature range: -40 to +105°C
All packages ECOPACK®2
Table 1. Device summary
Reference Part number
STM32F031x6
STM32F031C6, STM32F031E6,
STM32F031F6, STM32F031G6,
STM32F031K6
STM32F031x4 STM32F031C4, STM32F031F4,
STM32F031G4, STM32F031K4
UFQFPN32 5x5 mm
TSSOP20
UFQFPN28 4x4 mm
LQFP32 7x7 mm
LQFP48 7x7 mm
WLCSP25
2.1x2.1 mm 6.5x4.4 mm
www.st.com
Contents STM32F031x4 STM32F031x6
2/106 DocID025743 Rev 6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 ARM®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 12
3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15
3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 15
3.10 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.11 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.11.2 General-purpose timers (TIM2, 3, 14, 16, 17) . . . . . . . . . . . . . . . . . . . . 17
3.11.3 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11.4 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19
3.13 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 20
DocID025743 Rev 6 3/106
STM32F031x4 STM32F031x6 Contents
4
3.15 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 21
3.16 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 42
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.18 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.19 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Contents STM32F031x4 STM32F031x6
4/106 DocID025743 Rev 6
6.3.20 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.4 UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.5 WLCSP25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.6 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.7.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.7.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 100
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DocID025743 Rev 6 5/106
STM32F031x4 STM32F031x6 List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F031x4/x6 family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 7. STM32F031x4/x6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 8. STM32F031x4/x6 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9. STM32F031x4/x6 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 10. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 11. Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 31
Table 13. Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 32
Table 14. Peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 15. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 16. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 17. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 18. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 19. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 20. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 21. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 22. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 23. Typical and maximum current consumption from VDD at 3.6 V . . . . . . . . . . . . . . . . . . . . . 44
Table 24. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 45
Table 25. Typical and maximum current consumption in Stop and Standby modes . . . . . . . . . . . . 46
Table 26. Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 47
Table 27. Typical current consumption, code executing from Flash memory,
running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 28. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 29. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 30. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 31. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 32. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 33. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 35. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 36. HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 37. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 38. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 39. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 40. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 47. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
List of tables STM32F031x4 STM32F031x6
6/106 DocID025743 Rev 6
Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 50. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 51. RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 52. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 53. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 54. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 55. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 56. IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 57. WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 58. I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 59. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 60. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 61. LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 62. LQFP32 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 63. UFQFPN32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 64. UFQFPN28 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 65. WLCSP25 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 66. WLCSP25 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 67. TSSOP20 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 68. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 69. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 70. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DocID025743 Rev 6 7/106
STM32F031x4 STM32F031x6 List of figures
7
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3. LQFP48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. LQFP32 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 5. UFQFPN32 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6. UFQFPN28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7. WLCSP25 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. TSSOP20 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 9. STM32F031x6 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 10. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 12. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 15. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 18. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 58
Figure 19. HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 20. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 22. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 23. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 24. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 25. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 27. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 28. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 29. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 30. I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 31. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 32. Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 33. LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 34. LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 35. Recommended footprint for LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 36. LQFP32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 37. UFQFPN32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 38. Recommended footprint for UFQFPN32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 39. UFQFPN32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 40. UFQFPN28 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 41. Recommended footprint for UFQFPN28 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 42. UFQFPN28 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 43. WLCSP25 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 44. Recommended footprint for WLCSP25 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 45. WLCSP25 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 46. TSSOP20 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 47. Recommended footprint for TSSOP20 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 48. TSSOP20 package marking example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Introduction STM32F031x4 STM32F031x6
8/106 DocID025743 Rev 6
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F031x4/x6 microcontrollers.
This document should be read in conjunction with the STM32F0xxxx reference manual
(RM0091). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical
Reference Manual, available from the www.arm.com website.
DocID025743 Rev 6 9/106
STM32F031x4 STM32F031x6 Description
22
2 Description
The STM32F031x4/x6 microcontrollers incorporate the high-performance ARM® Cortex®-
M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories
(up to 32 Kbytes of Flash memory and 4 Kbytes of SRAM), and an extensive range of
enhanced peripherals and I/Os. All devices offer standard communication interfaces (one
I2C, one SPI/ I2S and one USART), one 12-bit ADC,
five 16-bit timers, one 32-bit timer and an advanced-control PWM timer.
The STM32F031x4/x6 microcontrollers operate in the -40 to +85 °C and -40 to +105 °C
temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of
power-saving modes allows the design of low-power applications.
The STM32F031x4/x6 microcontrollers include devices in six different packages ranging
from 20 pins to 48 pins with a die form also available upon request. Depending on the
device chosen, different sets of peripherals are included.
These features make the STM32F031x4/x6 microcontrollers suitable for a wide range of
applications such as application control and user interfaces, hand-held equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.
Table 2. STM32F031x4/x6 family device features and peripheral counts
Peripheral STM32F031Fx STM32F031Ex STM32F031Gx STM32F031Kx STM32F031Cx
Flash memory (Kbyte) 16 32 32 16 32 16 32 16 32
SRAM (Kbyte) 4
Timers
Advanced
control 1 (16-bit)
General
purpose
4 (16-bit)
1 (32-bit)
Comm.
interfaces
SPI [I2S](1) 1 [1]
I2C1
USART 1
12-bit ADC
(number of channels)
1
(9 ext. + 3 int.)
1
(10 ext. + 3 int.)
GPIOs 15 20 23 25 (on LQFP32)
27 (on UFQFPN32) 39
Max. CPU frequency 48 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature Ambient operating temperature: -40°C to 85°C / -40°C to 105°C
Junction temperature: -40°C to 105°C / -40°C to 125°C
Packages TSSOP20 WLCSP25 UFQFPN28 LQFP32
UFQFPN32 LQFP48
1. The SPI interface can be used either in SPI mode or in I2S audio mode.
Description STM32F031x4 STM32F031x6
10/106 DocID025743 Rev 6
Figure 1. Block diagram
06Y9
6833/<
683(59,6,21
32:(5
3RZHUGRPDLQRIDQDORJEORFNV 9%$7 9''$
9''
FKDQQHOV
FRPSOFKDQQHOV
%5.(75LQSXWDV$)
5;7;&76576
&.DV$)
6&/6'$60%$
P$)0DV$)
#9''
#9''$
6\VWHPDQGSHULSKHUDO
FORFNV
$)
026,6'
0,620&.
6&.&.
166:6DV$)
#9''$
9''$
966$
6:&/.
6:',2
DV$)
[
$'LQSXW
#9''$
#9''
9''
325
5HVHW
,QW
9'' WR9
966
1567
9''$
966$
26&B,1
26&B287
9%$7 WR9
26&B,1
26&B287
7$03(557&
$/$50287
#9%$7
9''
+6,
+6,
/6,
3//&/.
9''
,5B287DV$)
FKDQQHO
FRPSO%5.DV$)
FKDQQHO
FRPSO%5.DV$)
FKDQQHODV$)
FK(75DV$)
FK(75DV$)
*3'0$
FKDQQHOV
&257(;0&38
I0$; 0+]
6HULDO:LUH
'HEXJ
19,&
(;7,7:.83
63,,6
6<6&)*,)
'%*0&8
:LQGRZ:'*
$3%
$+%
&5&
5(6(7&/2&.
&21752/
3:07,0(5
7,0(5ELW
7,0(5
7,0(5
7,0(5
7,0(5
86$57
,&
3RZHU
&RQWUROOHU
;7$/26&
0+]
,QG:LQGRZ:'*
39'
3253'5
)ODVK
PHPRU\
LQWHUIDFH
)ODVK*3/
8SWR.%
ELW
2EO
65$0
.%
7HPS
VHQVRU
,)
ELW$'&
57& %DFNXS
UHJ
57&LQWHUIDFH
5&0+]
5&0+]
5&N+]
3//
$+%GHFRGHU
;7$/N+]
65$0
FRQWUROOHU
%XVPDWUL[
92/75(*
9WR9
3)>@ *3,2SRUW)
3&>@ *3,2SRUW&
3%>@ *3,2SRUW%
3$>@ *3,2SRUW$
DocID025743 Rev 6 11/106
STM32F031x4 STM32F031x6 Functional overview
22
3 Functional overview
Figure 1 shows the general block diagram of the STM32F031x4/x6 devices.
3.1 ARM®-Cortex®-M0 core
The ARM® Cortex®-M0 is a generation of ARM 32-bit RISC processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM® Cortex®-M0 processors feature exceptional code-efficiency, delivering the high
performance expected from an ARM core, with memory sizes usually associated with 8- and
16-bit devices.
The STM32F031x4/x6 devices embed ARM core and are compatible with all ARM tools and
software.
3.2 Memories
The device has the following features:
4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states and featuring embedded parity checking with exception generation for fail-critical
applications.
The non-volatile memory is divided into two arrays:
16 to 32 Kbytes of embedded Flash memory for programs and data
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Cortex®-M0 serial wire) and
boot in RAM selection disabled
3.3 Boot modes
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
boot from User Flash memory
boot from System Memory
boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART on pins PA14/PA15 or PA9/PA10.
Functional overview STM32F031x4 STM32F031x6
12/106 DocID025743 Rev 6
3.4 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a CRC-32 (Ethernet) polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.5 Power management
3.5.1 Power supply schemes
VDD = VDDIO1 = 2.0 to 3.6 V: external power supply for I/Os (VDDIO1) and the internal
regulator. It is provided externally through VDD pins.
VDDA = from VDD to 3.6 V: external analog power supply for ADC, Reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). It is
provided externally through VDDA pin. The VDDA voltage level must be always greater
or equal to the VDD voltage level and must be established first.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
For more details on how to connect power pins, refer to Figure 12: Power supply scheme.
3.5.2 Power supply supervisors
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.5.3 Voltage regulator
The regulator has two operating modes and it is always enabled after reset.
Main (MR) is used in normal operating mode (Run).
Low power (LPR) can be used in Stop mode where the power demand is reduced.
DocID025743 Rev 6 13/106
STM32F031x4 STM32F031x6 Functional overview
22
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high
impedance and the kernel circuitry is powered down, inducing zero consumption (but the
contents of the registers and SRAM are lost).
3.5.4 Low-power modes
The STM32F031x4/x6 microcontrollers support three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in
normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines, the PVD output, RTC, I2C1 or USART1.
USART1 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as
to get clock for processing incoming data. If this is used when the voltage regulator is
put in low power mode, the regulator is first switched to normal mode before the clock
is provided to the given peripheral.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the RTC
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC event occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
Functional overview STM32F031x4 STM32F031x6
14/106 DocID025743 Rev 6
Figure 2. Clock tree
3.7 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.
06Y9
26&B,1
26&B287
26&B,1
26&B287
,:'*
3//08/
0&2
0DLQFORFN
RXWSXW
3//&/.
+6,
+6(
+&/.
3//&/.
$+%FRUHPHPRU\'0$
&RUWH[)&/.IUHHUXQFORFN
$'&
DV\QFKURQRXV
FORFNLQSXW
/6(
/6,
+6,
+6(
57&
3//65& 6:
0&2
57&&/.
57&6(/
6<6&/.
7,0

)/,7)&/. )ODVKPHPRU\
SURJUDPPLQJ
LQWHUIDFH
+6,
+6,
,&
86$57
/6(
+6,
6<6&/.
3&/.
6<6&/.
+6,
3&/.
,6
&RUWH[
V\VWHPWLPHU
$3%
SHULSKHUDOV
/6, /6(
35(',9
3//12',9
0&235(
WR7,0
/6(
+6(
&66
/HJHQG
ZKLWH FORFNWUHHFRQWUROHOHPHQW
FORFNOLQH
FRQWUROOLQH
EODFN FORFNWUHHHOHPHQW

0+]
+6(26&



0+]5&
+6,
«
«


N+]
/6(26&
N+]
/6,5&
3//
[[
[
[[



86$576:
335(
335(+35(
,&6:
6<6&/.
+6, +6,
0+]
+6,5&

DocID025743 Rev 6 15/106
STM32F031x4 STM32F031x6 Functional overview
22
3.8 Direct memory access controller (DMA)
The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory
and memory-to-peripheral transfers.
The DMA supports circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers
(except TIM14) and ADC.
3.9 Interrupts and events
3.9.1 Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M0) and 4
priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2 Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 24 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 39
GPIOs can be connected to the 16 external interrupt lines.
3.10 Analog-to-digital converter (ADC)
The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions
in single-shot or scan modes. In scan mode, automatic conversion is performed on a
selected group of analog inputs.
The ADC can be served by the DMA controller.
Functional overview STM32F031x4 STM32F031x6
16/106 DocID025743 Rev 6
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.10.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage
of VREFINT is individually measured for each part by ST during production test and stored in
the system memory area. It is accessible in read-only mode.
3.10.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
Table 3. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at a
temperature of 110 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7C2 - 0x1FFF F7C3
Table 4. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7BA - 0x1FFF F7BB
DocID025743 Rev 6 17/106
STM32F031x4 STM32F031x6 Functional overview
22
3.11 Timers and watchdogs
The STM32F031x4/x6 devices include up to five general-purpose timers and an advanced
control timer.
Table 5 compares the features of the different timers.
3.11.1 Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
input capture
output compare
PWM generation (edge or center-aligned modes)
one-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
3.11.2 General-purpose timers (TIM2, 3, 14, 16, 17)
There are five synchronizable general-purpose timers embedded in the STM32F031x4/x6
devices (see Table 5 for differences). Each general-purpose timer can be used to generate
PWM outputs, or as simple time base.
Table 5. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/compare
channels
Complementary
outputs
Advanced
control TIM1 16-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 3
General
purpose
TIM2 32-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 -
TIM3 16-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 -
TIM14 16-bit Up integer from
1 to 65536 No 1 -
TIM16
TIM17 16-bit Up integer from
1 to 65536 Yes 1 1
Functional overview STM32F031x4 STM32F031x6
18/106 DocID025743 Rev 6
TIM2, TIM3
STM32F031x4/x6 devices feature two synchronizable 4-channel general-purpose timers.
TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based
on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent
channels each for input capture/output compare, PWM or one-pulse mode output. This
gives up to 12 input captures/output compares/PWMs on the largest packages.
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-
control timer via the Timer Link feature for synchronization or event chaining.
TIM2 and TIM3 both have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
Their counters can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM16 and TIM17
Both timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
They each have a single channel for input capture/output compare, PWM or one-pulse
mode output.
TIM16 and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.11.3 Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
operates independently from the main clock, it can operate in Stop and Standby modes. It
can be used either as a watchdog to reset the device when a problem occurs, or as a free
running timer for application timeout management. It is hardware or software configurable
through the option bytes. The counter can be frozen in debug mode.
3.11.4 System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
DocID025743 Rev 6 19/106
STM32F031x4 STM32F031x6 Functional overview
22
3.11.5 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
a 24-bit down counter
autoreload capability
maskable system interrupt generation when the counter reaches 0
programmable clock source (HCLK or HCLK/8)
3.12 Real-time clock (RTC) and backup registers
The RTC and the five backup registers are supplied through a switch that takes power either
on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit
registers used to store 20 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, or at wake up from Standby mode.
The RTC is an independent BCD timer/counter. Its main features are the following:
calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
automatic correction for 28, 29 (leap year), 30, and 31 day of the month
programmable alarm with wake up from Stop and Standby mode capability
on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock
digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy
two anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection
timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection
reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision
The RTC clock sources can be:
a 32.768 kHz external crystal
a resonator or oscillator
the internal low-power RC oscillator (typical frequency of 40 kHz)
the high-speed external clock divided by 32
3.13 Inter-integrated circuit interface (I2C)
The I2C interface (I2C1) can operate in multimaster or slave modes. It can support Standard
mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s)
with 20 mA output drive.
It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two
addresses, one with configurable mask). It also includes programmable analog and digital
noise filters.
Functional overview STM32F031x4 STM32F031x6
20/106 DocID025743 Rev 6
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management. I2C1 also has a clock domain independent
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address
match.
The I2C peripheral can be served by the DMA controller.
3.14 Universal synchronous/asynchronous receiver/transmitter
(USART)
The device embeds one universal synchronous/asynchronous receiver/transmitter
(USART1) which communicates at speeds of up to 6 Mbit/s.
It provides hardware management of the CTS, RTS and RS485 DE signals, multiprocessor
communication mode, master synchronous communication and single-wire half-duplex
communication mode. USART1 supports also SmartCard communication (ISO 7816), IrDA
SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock
domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.
The USART interface can be served by the DMA controller.
Table 6. Comparison of I2C analog and digital filters
Aspect Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2Cx peripheral clocks
Benefits Available in Stop mode
–Extra filtering capability vs.
standard requirements
–Stable length
Drawbacks Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
Table 7. STM32F031x4/x6 I2C implementation
I2C features(1)
1. X = supported.
I2C1
7-bit addressing mode X
10-bit addressing mode X
Standard mode (up to 100 kbit/s) X
Fast mode (up to 400 kbit/s) X
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X
Independent clock X
SMBus X
Wakeup from STOP X
DocID025743 Rev 6 21/106
STM32F031x4 STM32F031x6 Functional overview
22
3.15 Serial peripheral interface (SPI) / Inter-integrated sound
interface (I2S)
The SPI is able to communicate up to 18 Mbit/s in slave and master modes in full-duplex
and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
One standard I2S interface (multiplexed with SPI1) supporting four different audio standards
can operate as master or slave at half-duplex communication mode. It can be configured to
transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a
specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit
programmable linear prescaler. When operating in master mode, it can output a clock for an
external audio component at 256 times the sampling frequency.
Table 8. STM32F031x4/x6 USART implementation
USART modes/features(1)
1. X = supported.
USART1
Hardware flow control for modem X
Continuous communication using DMA X
Multiprocessor communication X
Synchronous mode X
Smartcard mode X
Single-wire half-duplex communication X
IrDA SIR ENDEC block X
LIN mode X
Dual clock domain and wakeup from Stop mode X
Receiver timeout interrupt X
Modbus communication X
Auto baud rate detection X
Driver Enable X
Table 9. STM32F031x4/x6 SPI/I2S implementation
SPI features(1)
1. X = supported.
SPI
Hardware CRC calculation X
Rx/Tx FIFO X
NSS pulse mode X
I2S mode X
TI mode X
Functional overview STM32F031x4 STM32F031x6
22/106 DocID025743 Rev 6
3.16 Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
DocID025743 Rev 6 23/106
STM32F031x4 STM32F031x6 Pinouts and pin description
32
4 Pinouts and pin description
Figure 3. LQFP48 package pinout
Figure 4. LQFP32 package pinout
06Y9
3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
966
9''
9%$7
3&
3&26&B,1
3&26&B287
3)26&B,1
3)26&B287
1567
966$
9''$
3$
3$
3$
3)
3)
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
3$
3$
3%
3%
3%
3%
3%
%227
3%
3%
966
9''
7RSYLHZ
/4)3







































06Y9
3$
3$
3$
3$
3$
3%
3%
966
9''
3)26&B,1
3)26&B287
1567
9''$
3$
3$
3$
3$
3$
3$
3$
3$
3$
3$
9''
3$
3%
3%
3%
3%
3%
%227
966
7RSYLHZ
/4)3























Pinouts and pin description STM32F031x4 STM32F031x6
24/106 DocID025743 Rev 6
Figure 5. UFQFPN32 package pinout
Figure 6. UFQFPN28 package pinout
06Y9
([SRVHGSDG
3$
3$
3$
3$
3$
3%
3%
3%
9''
3)26&B,1
3)26&B287
1567
9''$
3$
3$
3$
3$
3$
3$
3$
3$
3$
3$
9''
3$
3%
3%
3%
3%
3%
%227
3%
7RSYLHZ
(
[
S
RVH
G
S
D
G
8)4)31























966
06Y9
3$
3$
3$
3$
3$
3$
3%
%227
3)26&B,1
3)26&B287
1567
9''$
3$
3$
3$
3$
3$
3$
9''
966
3%
3$
3$
3%
3%
3%
3%
3%
7RSYLHZ
8)4)31



















DocID025743 Rev 6 25/106
STM32F031x4 STM32F031x6 Pinouts and pin description
32
Figure 7. WLCSP25 package pinout
1. The above figure shows the package in top view, changing from bottom view in the previous document
versions.
Figure 8. TSSOP20 package pinout
06Y9
$
%
&
'
(
3)
3)
1567
9''$
3$
%227
3$
3$
3$
3$
3%
3$
3$
3$
3%
3$
3%
3%
3$
3%
3$
3$
3$
9''
966
7RSYLHZ
:/&63
Pinouts and pin description STM32F031x4 STM32F031x6
26/106 DocID025743 Rev 6
Table 10. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
Pin type
S Supply pin
I Input-only pin
I/O Input / output pin
I/O structure
FT 5 V-tolerant I/O
FTf 5 V-tolerant I/O, FM+ capable
TTa 3.3 V-tolerant I/O directly connected to ADC
TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 11. Pin definitions
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48
LQFP32
UFQFPN32
UFQFPN28
WLCSP25
TSSOP20
Alternate functions Additional
functions
1 - - - - - VBAT S - - Backup power supply
2----- PC13 I/OTC
(1)(2) -
RTC_TAMP1,
RTC_TS,
RTC_OUT,
WKUP2
3-----
PC14-OSC32_IN
(PC14) I/O TC (1)(2) - OSC32_IN
4-----
PC15-
OSC32_OUT
(PC15)
I/O TC (1)(2) - OSC32_OUT
5222A52 PF0-OSC_IN
(PF0) I/O FT - - OSC_IN
DocID025743 Rev 6 27/106
STM32F031x4 STM32F031x6 Pinouts and pin description
32
6333B53PF1-OSC_OUT
(PF1) I/O FT - - OSC_OUT
7 4 4 4 C5 4 NRST I/O RST - Device reset input / internal reset output
(active low)
816
(3) 0(3) 16
(3)
E1
(3)
15
(3) VSSA S - Analog ground
9 5 5 5 D5 5 VDDA S - Analog power supply
10 6 6 6 B4 6 PA0 I/O TTa - TIM2_CH1_ETR,
USART1_CTS
ADC_IN0,
RTC_TAMP2,
WKUP1
11 7 7 7 C4 7 PA1 I/O TTa -
TIM2_CH2,
EVENTOUT,
USART1_RTS
ADC_IN1
12 8 8 8 D4 8 PA2 I/O TTa - TIM2_CH3,
USART1_TX ADC_IN2
13 9 9 9 E5 9 PA3 I/O TTa - TIM2_CH4,
USART1_RX ADC_IN3
14 10 10 10 B3 10 PA4 I/O TTa -
SPI1_NSS,
I2S1_WS,
TIM14_CH1,
USART1_CK
ADC_IN4
15 11 11 11 C3 11 PA5 I/O TTa -
SPI1_SCK,
I2S1_CK,
TIM2_CH1_ETR
ADC_IN5
16 12 12 12 D3 12 PA6 I/O TTa -
SPI1_MISO,
I2S1_MCK,
TIM3_CH1,
TIM1_BKIN,
TIM16_CH1,
EVENTOUT
ADC_IN6
Table 11. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48
LQFP32
UFQFPN32
UFQFPN28
WLCSP25
TSSOP20
Alternate functions Additional
functions
Pinouts and pin description STM32F031x4 STM32F031x6
28/106 DocID025743 Rev 6
17 13 13 13 E4 13 PA7 I/O TTa -
SPI1_MOSI,
I2S1_SD,
TIM3_CH2,
TIM14_CH1,
TIM1_CH1N,
TIM17_CH1,
EVENTOUT
ADC_IN7
18 14 14 14 E3 - PB0 I/O TTa -
TIM3_CH3,
TIM1_CH2N,
EVENTOUT
ADC_IN8
19 15 15 15 E2 14 PB1 I/O TTa -
TIM3_CH4,
TIM14_CH1,
TIM1_CH3N
ADC_IN9
20 - 16 - - - PB2 I/O FT (4) --
21----- PB10 I/OFTf- TIM2_CH3,
I2C1_SCL -
22----- PB11 I/OFTf-
TIM2_CH4,
EVENTOUT,
I2C1_SDA
-
23 16 0 16 E1 15 VSS S - - Ground
24 17 17 17 D1 16 VDD S - - Digital power supply
25----- PB12 I/OFT -
TIM1_BKIN,
EVENTOUT,
SPI1_NSS
-
26----- PB13 I/OFT - TIM1_CH1N,
SPI1_SCK -
27----- PB14 I/OFT - TIM1_CH2N,
SPI1_MISO -
28----- PB15 I/OFT - TIM1_CH3N,
SPI1_MOSI RTC_REFIN
29 18 18 18 D2 - PA8 I/O FT -
USART1_CK,
TIM1_CH1,
EVENTOUT,
MCO
-
Table 11. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48
LQFP32
UFQFPN32
UFQFPN28
WLCSP25
TSSOP20
Alternate functions Additional
functions
DocID025743 Rev 6 29/106
STM32F031x4 STM32F031x6 Pinouts and pin description
32
30 19 19 19 C1 17 PA9 I/O FTf -
USART1_TX,
TIM1_CH2,
I2C1_SCL
-
31 20 20 20 B1 18 PA10 I/O FTf -
USART1_RX,
TIM1_CH3,
TIM17_BKIN,
I2C1_SDA
-
32 21 21 - - - PA11 I/O FT -
USART1_CTS,
TIM1_CH4,
EVENTOUT
-
33 22 22 - - - PA12 I/O FT -
USART1_RTS,
TIM1_ETR,
EVENTOUT
-
34 23 23 21 A1 19 PA13
(SWDIO) I/O FT (5) IR_OUT,
SWDIO -
35 - - - - - PF6 I/O FTf - I2C1_SCL -
36----- PF7 I/OFTf- I2C1_SDA -
37 24 24 22 A2 20 PA14
(SWCLK) I/O FT (5) USART1_TX,
SWCLK -
38 25 25 23 - - PA15 I/O FT (6)
SPI1_NSS,
I2S1_WS,
TIM2_CH_ETR,
EVENTOUT,
USART1_RX
-
39 26 26 24 - - PB3 I/O FT (6)
SPI1_SCK,
I2S1_CK,
TIM2_CH2,
EVENTOUT
-
40 27 27 25 - - PB4 I/O FT (6)
SPI1_MISO,
I2S1_MCK,
TIM3_CH1,
EVENTOUT
-
Table 11. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48
LQFP32
UFQFPN32
UFQFPN28
WLCSP25
TSSOP20
Alternate functions Additional
functions
Pinouts and pin description STM32F031x4 STM32F031x6
30/106 DocID025743 Rev 6
41 28 28 26 C2 - PB5 I/O FT -
SPI1_MOSI,
I2S1_SD,
I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2
-
42 29 29 27 B2 - PB6 I/O FTf -
I2C1_SCL,
USART1_TX,
TIM16_CH1N
-
43 30 30 28 A3 - PB7 I/O FTf -
I2C1_SDA,
USART1_RX,
TIM17_CH1N
-
44 31 31 1 A4 1 BOOT0 I B - Boot memory selection
45 - 32 - - - PB8 I/O FTf (4) I2C1_SCL,
TIM16_CH1 -
46----- PB9 I/OFTf -
I2C1_SDA,
IR_OUT,
TIM17_CH1,
EVENTOUT
-
47 32 0 - E1 - VSS S - - Ground
48 1 1 - - - VDD S - - Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content
of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC
domain and RTC register descriptions in the reference manual.
3. VSSA pin is not in package pinout. VSSA pad of the die is connected to VSS pin.
4. On the LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the
package, they are not forced to a defined level by hardware).
5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin
and the internal pull-down on the SWCLK pin are activated.
6. On the WLCSP25 package, PB3, PB4 and PA15 must be set to defined levels by software, as their corresponding pads on
the silicon die are left unconnected. Apply same recommendations as for unconnected pins.
Table 11. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48
LQFP32
UFQFPN32
UFQFPN28
WLCSP25
TSSOP20
Alternate functions Additional
functions
STM32F031x4 STM32F031x6 Pinouts and pin description
DocID025743 Rev 6 31/106
Table 12. Alternate functions selected through GPIOA_AFR registers for port A
Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PA0 - USART1_CTS TIM2_CH1_
ETR -- - --
PA1 EVENTOUT USART1_RTS TIM2_CH2 - - - - -
PA2 - USART1_TX TIM2_CH3 - - - - -
PA3 - USART1_RX TIM2_CH4 - - - - -
PA4 SPI1_NSS,
I2S1_WS USART1_CK - - TIM14_CH1 - - -
PA5 SPI1_SCK,
I2S1_CK -TIM2_CH1_
ETR -- - --
PA6 SPI1_MISO,
I2S1_MCK TIM3_CH1 TIM1_BKIN - - TIM16_CH1 EVENTOUT -
PA7 SPI1_MOSI,
I2S1_SD TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT -
PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - - -
PA9 - USART1_TX TIM1_CH2 - I2C1_SCL - - -
PA10 TIM17_BKIN USART1_RX TIM1_CH3 - I2C1_SDA - - -
PA11 EVENTOUT USART1_CTS TIM1_CH4 - - - - -
PA12 EVENTOUT USART1_RTS TIM1_ETR - - - - -
PA13 SWDIO IR_OUT - - - - - -
PA14 SWCLK USART1_TX - - - - - -
PA15 SPI1_NSS,
I2S1_WS USART1_RX TIM2_CH1_
ETR EVENTOUT - - - -
Pinouts and pin description STM32F031x4 STM32F031x6
32/106 DocID025743 Rev 6
Table 13. Alternate functions selected through GPIOB_AFR registers for port B
Pin name AF0 AF1 AF2 AF3
PB0 EVENTOUT TIM3_CH3 TIM1_CH2N -
PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N -
PB2----
PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 -
PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT -
PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN I2C1_SMBA
PB6 USART1_TX I2C1_SCL TIM16_CH1N -
PB7 USART1_RX I2C1_SDA TIM17_CH1N -
PB8 - I2C1_SCL TIM16_CH1 -
PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT
PB10 - I2C1_SCL TIM2_CH3 -
PB11 EVENTOUT I2C1_SDA TIM2_CH4 -
PB12 SPI1_NSS EVENTOUT TIM1_BKIN -
PB13 SPI1_SCK - TIM1_CH1N -
PB14 SPI1_MISO - TIM1_CH2N -
PB15 SPI1_MOSI - TIM1_CH3N -
DocID025743 Rev 6 33/106
STM32F031x4 STM32F031x6 Memory mapping
35
5 Memory mapping
To the difference of STM32F031x6 memory map in Figure 9, the two bottom code memory
spaces of STM32F031x4 end at 0x0000 3FFF and 0x0800 3FFF, respectively.
Figure 9. STM32F031x6 memory map
069
!("
[))))))))
3HULSKHUDOV
65$0
)ODVKPHPRU\
2ESERVED
6\VWHPPHPRU\
2SWLRQ%\WHV
[(
&LASHSYSTEM
MEMORYOR32!-
DEPENDINGON"//4
CONFIGURATION
[
[(
[&
[$
[
[
[
[
[
[
[
[)))(&
[))))
[)))))))
[
2ESERVED
&2'(
!0"
!0"
2ESERVED
[
[
[
[
2ESERVED
[
!("
[
2ESERVED
[))
[))
&RUWH[0LQWHUQDO
SHULSKHUDOV
2ESERVED
[))))&
2ESERVED
2ESERVED
2ESERVED
2ESERVED
2ESERVED
2ESERVED
2ESERVED
Memory mapping STM32F031x4 STM32F031x6
34/106 DocID025743 Rev 6
Table 14. Peripheral register boundary addresses
Bus Boundary address Size Peripheral
0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved
AHB2
0x4800 1400 - 0x4800 17FF 1KB GPIOF
0x4800 0C00 - 0x4800 13FF 2KB Reserved
0x4800 0800 - 0x4800 0BFF 1KB GPIOC
0x4800 0400 - 0x4800 07FF 1KB GPIOB
0x4800 0000 - 0x4800 03FF 1KB GPIOA
0x4002 4400 - 0x47FF FFFF ~128 MB Reserved
AHB1
0x4002 3400 - 0x4002 3FFF 3 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
0x4002 2000 - 0x4002 23FF 1 KB Flash memory interface
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0400 - 0x4002 0FFF 3 KB Reserved
0x4002 0000 - 0x4002 03FF 1 KB DMA
0x4001 8000 - 0x4001 FFFF 32 KB Reserved
APB
0x4001 5C00 - 0x4001 7FFF 9KB Reserved
0x4001 5800 - 0x4001 5BFF 1KB DBGMCU
0x4001 4C00 - 0x4001 57FF 3KB Reserved
0x4001 4800 - 0x4001 4BFF 1KB TIM17
0x4001 4400 - 0x4001 47FF 1KB TIM16
0x4001 3C00 - 0x4001 43FF 2KB Reserved
0x4001 3800 - 0x4001 3BFF 1KB USART1
0x4001 3400 - 0x4001 37FF 1KB Reserved
0x4001 3000 - 0x4001 33FF 1KB SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF 1KB TIM1
0x4001 2800 - 0x4001 2BFF 1KB Reserved
0x4001 2400 - 0x4001 27FF 1KB ADC
0x4001 0800 - 0x4001 23FF 7KB Reserved
0x4001 0400 - 0x4001 07FF 1KB EXTI
0x4001 0000 - 0x4001 03FF 1KB SYSCFG
0x4000 8000 - 0x4000 FFFF 32 KB Reserved
DocID025743 Rev 6 35/106
STM32F031x4 STM32F031x6 Memory mapping
35
APB
0x4000 7400 - 0x4000 7FFF 3KB Reserved
0x4000 7000 - 0x4000 73FF 1KB PWR
0x4000 5800 - 0x4000 6FFF 6KB Reserved
0x4000 5400 - 0x4000 57FF 1KB I2C1
0x4000 3400 - 0x4000 53FF 8KB Reserved
0x4000 3000 - 0x4000 33FF 1KB IWDG
0x4000 2C00 - 0x4000 2FFF 1KB WWDG
0x4000 2800 - 0x4000 2BFF 1KB RTC
0x4000 2400 - 0x4000 27FF 1KB Reserved
0x4000 2000 - 0x4000 23FF 1KB TIM14
0x4000 0800 - 0x4000 1FFF 6KB Reserved
0x4000 0400 - 0x4000 07FF 1KB TIM3
0x4000 0000 - 0x4000 03FF 1KB TIM2
Table 14. Peripheral register boundary addresses (continued)
Bus Boundary address Size Peripheral
Electrical characteristics STM32F031x4 STM32F031x6
36/106 DocID025743 Rev 6
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 10. Pin loading conditions Figure 11. Pin input voltage
069
0&8SLQ
& S)
069
0&8SLQ
9,1
DocID025743 Rev 6 37/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
6.1.6 Power supply scheme
Figure 12. Power supply scheme
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
9''
/HYHOVKLIWHU
,2
ORJLF
.HUQHOORJLF
&38'LJLWDO
0HPRULHV
/6(57&
:DNHXSORJLF
,1
287
5HJXODWRU
*3,2V
[Q)
[)
[966
[9''
9&25(
3RZHUVZLWFK
9'',2
$'& $QDORJ
5&V3//«
95()
95()
9''$
Q)
)
9''$
966$
±9
9%$7
06Y9
Electrical characteristics STM32F031x4 STM32F031x6
38/106 DocID025743 Rev 6
6.1.7 Current consumption measurement
Figure 13. Current consumption measurement scheme
069
9%$7
9''
9''$
,''
,''$
,''B9%$7
DocID025743 Rev 6 39/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics,
Table 16: Current characteristics and Table 17: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 15. Voltage characteristics(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage - 0.3 4.0 V
VDDA–VSS External analog supply voltage - 0.3 4.0 V
VDD–VDDA Allowed voltage difference for VDD > VDDA -0.4V
VBAT–VSS External backup supply voltage - 0.3 4.0 V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 16: Current characteristics for the maximum
allowed injected current values.
Input voltage on FT and FTf pins VSS - 0.3 VDDIOx + 4.0(3)
3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is
enabled, the maximum limit is 4 V.
V
Input voltage on TTa pins VSS - 0.3 4.0 V
BOOT0 0 9.0 V
Input voltage on any other pin VSS - 0.3 4.0 V
|VDDx| Variations between different VDD power pins - 50 mV
|VSSx - VSS|Variations between all the different ground
pins -50mV
VESD(HBM)
Electrostatic discharge voltage
(human body model)
see Section 6.3.12: Electrical
sensitivity characteristics -
Electrical characteristics STM32F031x4 STM32F031x6
40/106 DocID025743 Rev 6
Table 16. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD power lines (source)(1) 120
mA
ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) -120
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current source by any I/O and control pin -25
ΣIIO(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 80
Total output current sourced by sum of all I/Os and control pins(2) -80
IINJ(PIN)(3)
Injected current on B, FT and FTf pins -5/+0(4)
Injected current on TC and RST pin ± 5
Injected current on TTa pins(5) ± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 15: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the
device. See note (2) below Table 52: ADC accuracy.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 17. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
DocID025743 Rev 6 41/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
6.3 Operating conditions
6.3.1 General operating conditions
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 19 are derived from tests performed under the ambient
temperature condition summarized in Table 18.
Table 18. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 48
MHz
fPCLK Internal APB clock frequency - 0 48
VDD Standard operating voltage - 2.0 3.6 V
VDDA
Analog operating voltage
(ADC not used) Must have a potential equal
to or higher than VDD
VDD 3.6
V
Analog operating voltage
(ADC used) 2.4 3.6
VBAT Backup operating voltage - 1.65 3.6 V
VIN I/O input voltage
TC and RST I/O –0.3 VDDIOx+0.3
V
TTa I/O –0.3 VDDA+0.3(1)
FT and FTf I/O –0.3 5.5(1)
BOOT0 0 5.5
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(2)
LQFP48 - 364
mW
UFQFPN32 - 526
LQFP32 - 357
UFQFPN28 - 169
WLCSP25 - 267
TSSOP20 - 182
TA
Ambient temperature for the
suffix 6 version
Maximum power dissipation –40 85
°C
Low power dissipation(3) –40 105
Ambient temperature for the
suffix 7 version
Maximum power dissipation –40 105
°C
Low power dissipation(3) –40 125
TJ Junction temperature range
Suffix 6 version –40 105
°C
Suffix 7 version –40 125
1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.7: Thermal characteristics.
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.7:
Thermal characteristics).
Electrical characteristics STM32F031x4 STM32F031x6
42/106 DocID025743 Rev 6
6.3.3 Embedded reset and power control block characteristics
The parameters given in Table 20 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 18: General operating
conditions.
Table 19. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
0
µs/V
VDD fall time rate 20
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 20
Table 20. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPOR/PDR(1)
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
Power on/power down
reset threshold
Falling edge(2)
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.80 1.88 1.96(3)
3. Data based on characterization results, not tested in production.
V
Rising edge 1.84(3) 1.92 2.00 V
VPDRhyst PDR hysteresis - - 40 - mV
tRSTTEMPO(4)
4. Guaranteed by design, not tested in production.
Reset temporization - 1.50 2.50 4.50 ms
Table 21. Programmable voltage detector characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD0 PVD threshold 0
Rising edge 2.1 2.18 2.26 V
Falling edge 2 2.08 2.16 V
VPVD1 PVD threshold 1
Rising edge 2.19 2.28 2.37 V
Falling edge 2.09 2.18 2.27 V
VPVD2 PVD threshold 2
Rising edge 2.28 2.38 2.48 V
Falling edge 2.18 2.28 2.38 V
VPVD3 PVD threshold 3
Rising edge 2.38 2.48 2.58 V
Falling edge 2.28 2.38 2.48 V
VPVD4 PVD threshold 4
Rising edge 2.47 2.58 2.69 V
Falling edge 2.37 2.48 2.59 V
VPVD5 PVD threshold 5
Rising edge 2.57 2.68 2.79 V
Falling edge 2.47 2.58 2.69 V
DocID025743 Rev 6 43/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
6.3.4 Embedded reference voltage
The parameters given in Table 22 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 18: General operating
conditions.
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 13: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
VPVD6 PVD threshold 6
Rising edge 2.66 2.78 2.9 V
Falling edge 2.56 2.68 2.8 V
VPVD7 PVD threshold 7
Rising edge 2.76 2.88 3 V
Falling edge 2.66 2.78 2.9 V
VPVDhyst(1) PVD hysteresis - - 100 - mV
IDD(PVD) PVD current consumption - - 0.15 0.26(1) µA
1. Guaranteed by design, not tested in production.
Table 21. Programmable voltage detector characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 22. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.2 1.23 1.25 V
tSTART
ADC_IN17 buffer startup
time ---10
(1) µs
tS_vrefint
ADC sampling time when
reading the internal
reference voltage
-4(1)
1. Guaranteed by design, not tested in production.
-- µs
VREFINT
Internal reference voltage
spread over the
temperature range
VDDA = 3 V - - 10(1) mV
TCoeff Temperature coefficient - - 100(1) -100(1) ppm/°C
Electrical characteristics STM32F031x4 STM32F031x6
44/106 DocID025743 Rev 6
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 23Table 23 to Table 27 are derived from tests performed
under ambient temperature and supply voltage conditions summarized in Table 18: General
operating conditions.
Table 23. Typical and maximum current consumption from VDD at 3.6 V
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ
Max @ TA(1)
Typ
Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD
Supply
current in
Run mode,
code
executing
from Flash
memory
HSE
bypass,
PLL on
48 MHz 18.4 20.0 20.1 20.4 11.4 12.5 12.5 12.6
mA
32 MHz 12.4 13.2 13.2 13.8 7.9 8.3 8.5 8.6
24 MHz 9.9 10.7 10.7 11.0 6.2 6.8 7.0 7.0
HSE
bypass,
PLL off
8 MHz 3.3 3.6 3.8 3.9 2.2 2.6 2.6 2.6
1 MHz 0.8 1.1 1.1 1.1 0.7 0.9 0.9 0.9
HSI clock,
PLL on
48 MHz 18.9 20.9 21.1 21.5 11.7 12.3 12.9 13.1
32 MHz 12.8 13.7 14.2 14.8 8.0 8.7 9.1 9.1
24 MHz 9.7 10.4 11.2 11.3 6.1 6.5 6.7 6.9
HSI clock,
PLL off 8 MHz 3.5 4.0 4.0 4.1 2.4 2.6 2.7 2.7
Supply
current in
Run mode,
code
executing
from RAM
HSE
bypass,
PLL on
48 MHz 17.3 19.7(2) 19.8 20.0(2) 10.3 11.2(2) 11.3 11.7(2)
32 MHz 11.2 12.5 12.7 12.7 6.7 7.3 7.6 7.6
24 MHz 8.9 10.0 10.1 10.2 5.1 5.5 5.8 5.9
HSE
bypass,
PLL off
8 MHz 2.8 3.1 3.3 3.4 1.7 2.0 2.1 2.1
1 MHz 0.3 0.6 0.6 1.3 0.2 0.5 0.8 0.9
HSI clock,
PLL on
48 MHz 17.4 19.7 20.0 20.2 10.4 11.2 11.3 11.8
32 MHz 11.8 12.8 13.1 13.3 6.8 7.4 7.7 7.9
24 MHz 9.0 10.0 10.1 10.2 5.2 5.7 6.0 6.0
HSI clock,
PLL off 8 MHz 3.0 3.2 3.5 3.6 1.8 2.0 2.2 2.2
DocID025743 Rev 6 45/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
IDD
Supply
current in
Sleep
mode
HSE
bypass,
PLL on
48 MHz 10.7 11.7(2) 11.9 12.5(2) 2.4 2.6(2) 2.7 2.9(2)
mA
32 MHz 7.1 7.8 8.1 8.2 1.6 1.7 1.9 1.9
24 MHz 5.5 6.3 6.4 6.4 1.3 1.4 1.5 1.5
HSE
bypass,
PLL off
8 MHz 1.8 2.0 2.0 2.1 0.4 0.4 0.5 0.5
1 MHz 0.2 0.5 0.5 0.5 0.1 0.1 0.1 0.1
HSI clock,
PLL on
48 MHz 10.8 11.9 12.1 12.6 2.4 2.7 2.7 2.9
32 MHz 7.3 8.0 8.4 8.5 1.7 1.9 1.9 2.0
24 MHz 5.5 6.2 6.5 6.5 1.3 1.5 1.5 1.6
HSI clock,
PLL off 8 MHz 1.9 2.2 2.3 2.4 0.5 0.5 0.5 0.6
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA).
Table 23. Typical and maximum current consumption from VDD at 3.6 V (continued)
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ
Max @ TA(1)
Typ
Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
Table 24. Typical and maximum current consumption from the VDDA supply
Symbol Parameter Conditions
(1) fHCLK
VDDA = 2.4 V VDDA = 3.6 V
Unit
Typ
Max @ TA(2)
Typ
Max @ TA(2)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDDA
Supply
current in
Run or
Sleep
mode,
code
executing
from Flash
memory or
RAM
HSE
bypass,
PLL on
48 MHz 150 170(3) 178 182(3) 164 183(3) 195 198(3)
µA
32 MHz 104 121 126 128 113 129 135 138
24 MHz 82 96 100 103 88 102 106 108
HSE
bypass,
PLL off
8 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4
1 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4
HSI clock,
PLL on
48 MHz 220 240 248 252 244 263 275 278
32 MHz 174 191 196 198 193 209 215 218
24 MHz 152 167 173 174 168 183 190 192
HSI clock,
PLL off 8 MHz 72 79 82 83 83.5 91 94 95
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being
in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent of
clock frequencies.
2. Data based on characterization results, not tested in production unless otherwise specified.
3. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA).
Electrical characteristics STM32F031x4 STM32F031x6
46/106 DocID025743 Rev 6
Table 25. Typical and maximum current consumption in Stop and Standby modes
Sym-
bol
Para-
meter Conditions
Typ @VDD (VDD = VDDA)Max
(1)
Unit
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply
current
in Stop
mode
Regulator in run
mode, all oscillators
OFF
15 15.1 15.3 15.5 15.7 16 18(2) 38 55(2)
µA
Regulator in low-
power mode, all
oscillators OFF
3.2 3.3 3.4 3.5 3.7 4 5.5(2) 22 41(2)
Supply
current
in
Standby
mode
LSI ON and IWDG
ON 0.8 1.0 1.1 1.2 1.4 1.5 - - -
LSI OFF and IWDG
OFF 0.7 0.8 0.9 1.0 1.1 1.3 2(2) 2.5 3(2)
IDDA
Supply
current
in Stop
mode
VDDA monitoring ON
Regulator in run
mode, all
oscillators OFF
1.9 2 2.2 2.3 2.5 2.6 3.5(2) 3.5 4.5(2)
Regulator in low-
power mode, all
oscillators OFF
1.9 2 2.2 2.3 2.5 2.6 3.5(2) 3.5 4.5(2)
Supply
current
in
Standby
mode
LSI ON and
IWDG ON 2.3 2.5 2.7 2.9 3.1 3.3 - - -
LSI OFF and
IWDG OFF 1.8 1.9 2 2.2 2.3 2.5 3.5(2) 3.5 4.5(2)
Supply
current
in Stop
mode
VDDA monitoring OFF
Regulator in run
mode, all
oscillators OFF
1.1 1.2 1.2 1.2 1.3 1.4 - - -
Regulator in low-
power mode, all
oscillators OFF
1.1 1.2 1.2 1.2 1.3 1.4 - - -
Supply
current
in
Standby
mode
LSI ON and
IWDG ON 1.5 1.6 1.7 1.8 1.9 2.0 - - -
LSI OFF and
IWDG OFF 1 1.0 1.1 1.1 1.2 1.2 - - -
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA).
DocID025743 Rev 6 47/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Typical current consumption
The MCU is placed under the following conditions:
VDD = VDDA = 3.3 V
All I/O pins are in analog input configuration
The Flash memory access time is adjusted to fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled, fPCLK = fHCLK
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
Table 26. Typical and maximum current consumption from the VBAT supply
Symbol Parameter Conditions
Typ @ VBAT Max(1)
Unit
1.65 V
1.8 V
2.4 V
2.7 V
3.3 V
3.6 V
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_VBAT
RTC
domain
supply
current
LSE & RTC ON; “Xtal
mode”: lower driving
capability;
LSEDRV[1:0] = '00'
0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.7
µA
LSE & RTC ON; “Xtal
mode” higher driving
capability;
LSEDRV[1:0] = '11'
0.8 0.8 0.9 1.0 1.1 1.2 1.3 1.6 2.1
1. Data based on characterization results, not tested in production.
Electrical characteristics STM32F031x4 STM32F031x6
48/106 DocID025743 Rev 6
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Ta ble 46: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
Table 27. Typical current consumption, code executing from Flash memory,
running from HSE 8 MHz crystal
Symbol
Parameter fHCLK
Typical run mode Typical Sleep mode unit
Peripheral
s enabled
Peripheral
s disabled
Peripheral
s enabled
Peripheral
s disabled
-
IDD
Current
from VDD
supply
48MHz 20.2 12.3 11.1 2.9
mA
36 MHz 15.3 9.5 8.4 2.4
32 MHz 13.6 8.6 7.5 2.2
24 MHz 10.5 6.7 5.9 1.8
16 MHz 7.2 4.7 4.1 1.4
8 MHz 3.8 2.7 2.3 0.9
4 MHz 2.4 1.8 1.7 0.9
2 MHz 1.6 1.3 1.2 0.8
1 MHz 1.2 1.1 1.0 0.8
500 kHz 1.0 1.0 0.9 0.8
IDDA
Current
from VDDA
supply
48MHz 155
uA
36 MHz 117
32 MHz 105
24 MHz 83
16 MHz 60
8 MHz 2.2
4 MHz 2.2
2 MHz 2.2
1 MHz 2.2
500 kHz 2.2
DocID025743 Rev 6 49/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 29: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDDIOx fSW C××=
Electrical characteristics STM32F031x4 STM32F031x6
50/106 DocID025743 Rev 6
Table 28. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS = 7 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
ISW
I/O current
consumption
VDDIOx = 3.3 V
C =CINT
4 MHz 0.07
mA
8 MHz 0.15
16 MHz 0.31
24 MHz 0.53
48 MHz 0.92
VDDIOx = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
4 MHz 0.18
8 MHz 0.37
16 MHz 0.76
24 MHz 1.39
48 MHz 2.188
VDDIOx = 3.3 V
CEXT = 10 pF
C = CINT + CEXT+ CS
4 MHz 0.32
8 MHz 0.64
16 MHz 1.25
24 MHz 2.23
48 MHz 4.442
VDDIOx = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
4 MHz 0.49
8 MHz 0.94
16 MHz 2.38
24 MHz 3.99
VDDIOx = 3.3 V
CEXT = 33 pF
C = CINT + CEXT+ CS
4 MHz 0.64
8 MHz 1.25
16 MHz 3.24
24 MHz 5.02
VDDIOx = 3.3 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
4 MHz 0.81
8 MHz 1.7
16 MHz 3.67
VDDIOx = 2.4 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
4 MHz 0.66
8 MHz 1.43
16 MHz 2.45
24 MHz 4.97
DocID025743 Rev 6 51/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 29. The MCU is placed
under the following conditions:
All I/O pins are in analog mode
All peripherals are disabled unless otherwise mentioned
The given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
Ambient operating temperature and supply voltage conditions summarized in Table 15:
Voltage characteristics
The power consumption of the digital part of the on-chip peripherals is given in
Table 29. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 29. Peripheral current consumption
Peripheral Typical consumption at 25 °C Unit
AHB
BusMatrix(1) 3.8
µA/MHz
DMA1 6.3
SRAM 0.7
Flash memory interface 15.2
CRC 1.61
GPIOA 9.4
GPIOB 11.6
GPIOC 1.9
GPIOF 0.8
All AHB peripherals 47.5
Electrical characteristics STM32F031x4 STM32F031x6
52/106 DocID025743 Rev 6
APB
APB-Bridge (2) 2.6
µA/MHz
SYSCFG 1.7
ADC (3) 4.2
TIM1 17.1
SPI1 9.6
USART1 17.4
TIM16 8.2
TIM17 8.0
DBG (MCU Debug Support) 0.5
TIM2 17.4
TIM3 12.8
TIM14 6.0
WWDG 1.5
I2C1 5.1
PWR 1.2
All APB peripherals 110.9
1. The BusMatrix automatically is active when at least one master is ON (CPU or DMA1).
2. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.
3. The power consumption of the analog part (IDDA) of peripherals such as ADC is not included. Refer to the
tables of characteristics in the subsequent sections.
Table 29. Peripheral current consumption (continued)
Peripheral Typical consumption at 25 °C Unit
DocID025743 Rev 6 53/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
6.3.6 Wakeup time from low-power mode
The wakeup times given in Table 30 are the latency between the event and the execution of
the first user instruction. The device goes in low-power mode after the WFE (Wait For
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles
must be added to the following timings due to the interrupt latency in the Cortex M0
architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.
The wakeup source from Standby mode is the WKUP1 pin (PA0).
All timings are derived from tests performed under the ambient temperature and supply
voltage conditions summarized in Table 18: General operating conditions..
6.3.7 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 14: High-speed external clock
source AC timing diagram.
Table 30. Low-power mode wakeup timings
Symbol Parameter Conditions
Typ @VDD = VDDA
Max Unit
= 2.0 V = 2.4 V = 2.7 V = 3 V = 3.3 V
tWUSTOP
Wakeup from Stop
mode
Regulator in run
mode 3.23.12.92.92.85
µs
Regulator in low
power mode 7.05.85.24.94.69
tWUSTANDBY
Wakeup from
Standby mode - 60.4 55.6 53.5 52 51 -
tWUSLEEP
Wakeup from Sleep
mode - 4 SYSCLK cycles -
Table 31. High-speed external user clock characteristics
Symbol Parameter(1) Min Typ Max Unit
fHSE_ext User external clock source frequency - 8 32 MHz
VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx -V
DDIOx V
VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx
tw(HSEH)
tw(HSEL)
OSC_IN high or low time 15 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time - - 20
Electrical characteristics STM32F031x4 STM32F031x6
54/106 DocID025743 Rev 6
Figure 14. High-speed external clock source AC timing diagram
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 15.
Figure 15. Low-speed external clock source AC timing diagram
1. Guaranteed by design, not tested in production.
Table 32. Low-speed external user clock characteristics
Symbol Parameter(1)
1. Guaranteed by design, not tested in production.
Min Typ Max Unit
fLSE_ext User external clock source frequency - 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx -V
DDIOx V
VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time - - 50
069
9+6(+
WI+6(


7+6(
W
WU+6(
9+6(/
WZ+6(+
WZ+6(/
069
9/6(+
WI/6(


7/6(
W
WU/6(
9/6(/
WZ/6(+
WZ/6(/
DocID025743 Rev 6 55/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 33. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 33. HSE oscillator characteristics
Symbol Parameter Conditions(1)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min(2) Typ Max(2)
2. Guaranteed by design, not tested in production.
Unit
fOSC_IN Oscillator frequency - 4 8 32 MHz
RFFeedback resistor - - 200 - k
IDD HSE current consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
--8.5
mA
VDD = 3.3 V,
Rm = 30 ,
CL = 10 pF@8 MHz
-0.4-
VDD = 3.3 V,
Rm = 45 ,
CL = 10 pF@8 MHz
-0.5-
VDD = 3.3 V,
Rm = 30 ,
CL = 5 pF@32 MHz
-0.8-
VDD = 3.3 V,
Rm = 30 ,
CL = 10 pF@32 MHz
-1-
VDD = 3.3 V,
Rm = 30 ,
CL = 20 pF@32 MHz
-1.5-
gm Oscillator transconductance Startup 10 - - mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
Electrical characteristics STM32F031x4 STM32F031x6
56/106 DocID025743 Rev 6
Figure 16. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 34. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
069

26&B,1
26&B287
5)
%LDV
FRQWUROOHG
JDLQ
I+6(
5(;7
0+]
UHVRQDWRU
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
&/
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol Parameter Conditions(1) Min(2) Typ Max(2) Unit
IDD LSE current consumption
low drive capability - 0.5 0.9
µA
medium-low drive capability - - 1
medium-high drive capability - - 1.3
high drive capability - - 1.6
gm
Oscillator
transconductance
low drive capability 5 - -
µA/V
medium-low drive capability 8 - -
medium-high drive capability 15 - -
high drive capability 25 - -
tSU(LSE)(3) Startup time VDDIOx is stabilized - 2 - s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
DocID025743 Rev 6 57/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 17. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.8 Internal clock source characteristics
The parameters given in Table 35 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 18: General operating
conditions. The provided curves are characterization results, not tested in production.
069
26&B,1
26&B287
'ULYH
SURJUDPPDEOH
DPSOLILHU
I/6(
N+]
UHVRQDWRU
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
&/
Electrical characteristics STM32F031x4 STM32F031x6
58/106 DocID025743 Rev 6
High-speed internal (HSI) RC oscillator
Figure 18. HSI oscillator accuracy characterization results for soldered parts
Table 35. HSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI) Duty cycle - 45(2) -55
(2) %
ACCHSI
Accuracy of the HSI
oscillator
TA = -40 to 105°C -2.8(3)
3. Data based on characterization results, not tested in production.
-3.8
(3)
%
TA = -10 to 85°C -1.9(3) -2.3
(3)
TA = 0 to 85°C -1.9(3) -2
(3)
TA = 0 to 70°C -1.3(3) -2
(3)
TA = 0 to 55°C -1(3) -2
(3)
TA = 25°C(4)
4. Factory calibrated, parts not soldered.
-1 - 1
tsu(HSI) HSI oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI)
HSI oscillator power
consumption - - 80 100(2) µA
069
5<$>
"
."9
.*/
       









DocID025743 Rev 6 59/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Figure 19. HSI14 oscillator accuracy characterization results
Table 36. HSI14 oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI14 Frequency - - 14 - MHz
TRIM HSI14 user-trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI14) Duty cycle - 45(2) -55
(2) %
ACCHSI14
Accuracy of the HSI14
oscillator (factory calibrated)
TA = –40 to 105 °C –4.2(3)
3. Data based on characterization results, not tested in production.
-5.1
(3) %
TA = –10 to 85 °C –3.2(3) -3.1
(3) %
TA = 0 to 70 °C –2.5(3) -2.3
(3) %
TA = 25 °C –1 - 1 %
tsu(HSI14) HSI14 oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI14)
HSI14 oscillator power
consumption --100150
(2) µA
-36











    
-!8
-).
4;#=
!
Electrical characteristics STM32F031x4 STM32F031x6
60/106 DocID025743 Rev 6
Low-speed internal (LSI) RC oscillator
6.3.9 PLL characteristics
The parameters given in Table 38 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 18: General operating
conditions.
6.3.10 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 37. LSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI Frequency 30 40 50 kHz
tsu(LSI)(2)
2. Guaranteed by design, not tested in production.
LSI oscillator startup time - - 85 µs
IDDA(LSI)(2) LSI oscillator power consumption - 0.75 1.2 µA
Table 38. PLL characteristics
Symbol Parameter
Value
Unit
Min Typ Max
fPLL_IN
PLL input clock(1)
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT
.
1(2) 8.0 24(2) MHz
PLL input clock duty cycle 40(2) -60
(2) %
fPLL_OUT PLL multiplier output clock 16(2) -48MHz
tLOCK PLL lock time - - 200(2)
2. Guaranteed by design, not tested in production.
µs
JitterPLL Cycle-to-cycle jitter - - 300(2) ps
Table 39. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog 16-bit programming time TA = - 40 to +105 °C 40 53.5 60 µs
tERASE Page (1 KB) erase time TA = - 40 to +105 °C 20 - 40 ms
tME Mass erase time TA = - 40 to +105 °C 20 - 40 ms
IDD Supply current
Write mode - - 10 mA
Erase mode - - 12 mA
DocID025743 Rev 6 61/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
6.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Table 40. Flash memory endurance and data retention
Symbol Parameter Conditions Min(1)
1. Data based on characterization results, not tested in production.
Unit
NEND Endurance TA = –40 to +105 °C 10 kcycle
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Year1 kcycle(2) at TA = 105 °C 10
10 kcycle(2) at TA = 55 °C 20
Table 41. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP48, TA = +25 °C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP48, TA = +25°C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-4
4B
Electrical characteristics STM32F031x4 STM32F031x6
62/106 DocID025743 Rev 6
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.12 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 42. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C,
LQFP48 package
compliant with
IEC 61967-2
0.1 to 30 MHz -11
dBµV30 to 130 MHz 21
130 MHz to 1 GHz 21
EMI Level 4 -
DocID025743 Rev 6 63/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 45.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 43. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming
to JESD22-A114 All 2 2000 V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming
to ANSI/ESD STM5.3.1 All C3 250 V
1. Data based on characterization results, not tested in production.
Table 44. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Electrical characteristics STM32F031x4 STM32F031x6
64/106 DocID025743 Rev 6
6.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the conditions summarized in Table 18: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Table 45. I/O current injection susceptibility
Symbol Description
Functional
susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 –0 NA
mAInjected current on all FT and FTf pins –5 NA
Injected current on all TTa, TC and RESET pins –5 +5
Table 46. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Low level input
voltage
TC and TTa I/O - - 0.3 VDDIOx+0.07(1)
V
FT and FTf I/O - - 0.475 VDDIOx–0.2(1)
BOOT0 - - 0.3 VDDIOx–0.3(1)
All I/Os except
BOOT0 pin --0.3 V
DDIOx
VIH
High level input
voltage
TC and TTa I/O 0.445 VDDIOx+0.398(1) --
V
FT and FTf I/O 0.5 VDDIOx+0.2(1) --
BOOT0 0.2 VDDIOx+0.95(1) --
All I/Os except
BOOT0 pin 0.7 VDDIOx --
Vhys Schmitt trigger
hysteresis
TC and TTa I/O - 200(1) -
mVFT and FTf I/O - 100(1) -
BOOT0 - 300(1) -
Ilkg Input leakage
current(2)
TC, FT and FTf I/O
TTa in digital mode
VSS VIN VDDIOx
--± 0.1
µA
TTa in digital mode
VDDIOx VIN VDDA
--1
TTa in analog mode
VSS VIN VDDA
--± 0.2
FT and FTf I/O
VDDIOx VIN 5 V --10
DocID025743 Rev 6 65/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 20 for standard I/Os, and in Figure 21 for
5 V-tolerant I/Os. The following curves are design simulation results, not tested in
production.
RPU
Weak pull-up
equivalent resistor
(3)
VIN = VSS 25 40 55 k
RPD
Weak pull-down
equivalent
resistor(3)
VIN = - VDDIOx 25 40 55 k
CIO I/O pin capacitance - - 5 - pF
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45:
I/O current injection susceptibility.
3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
Table 46. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F031x4 STM32F031x6
66/106 DocID025743 Rev 6
Figure 20. TC and TTa I/O input characteristics
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics
06Y9
          



7(67('5$1*(
7(67('5$1*(
9
,+PLQ
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
9
,/PD[
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
81'(),1(',13875$1*(
9,+PLQ 9'',2[
9
,/PD[
 9
'',2[

9,19
9'',2[9
77/VWDQGDUGUHTXLUHPHQW
77/VWDQGDUGUHTXLUHPHQW
06Y9
          



7(67('5$1*(
7(67('5$1*(
9
,+PLQ
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
9
,/PD[
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
81'(),1(',13875$1*(
9,+PLQ 9'',2[
9,/PD[ 9'',2[
9,19
9'',2[9
77/VWDQGDUGUHTXLUHPHQW
77/VWDQGDUGUHTXLUHPHQW
DocID025743 Rev 6 67/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 15: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 15: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 18: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Table 47. Output voltage characteristics(1)
Symbol Parameter Conditions Min Max Unit
VOL Output low level voltage for an I/O pin CMOS port(2)
|IIO| = 8 mA
VDDIOx 2.7 V
-0.4
V
VOH Output high level voltage for an I/O pin VDDIOx–0.4 -
VOL Output low level voltage for an I/O pin TTL port(2)
|IIO| = 8 mA
VDDIOx 2.7 V
-0.4
V
VOH Output high level voltage for an I/O pin 2.4 -
VOL(3) Output low level voltage for an I/O pin |IIO| = 20 mA
VDDIOx 2.7 V
-1.3
V
VOH(3) Output high level voltage for an I/O pin VDDIOx–1.3 -
VOL(3) Output low level voltage for an I/O pin
|IIO| = 6 mA
-0.4
V
VOH(3) Output high level voltage for an I/O pin VDDIOx–0.4 -
VOLFm+(3) Output low level voltage for an FTf I/O pin in
Fm+ mode
|IIO| = 20 mA
VDDIOx 2.7 V -0.4V
|IIO| = 10 mA - 0.4 V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 15:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Data based on characterization results. Not tested in production.
Electrical characteristics STM32F031x4 STM32F031x6
68/106 DocID025743 Rev 6
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 22 and
Table 48, respectively. Unless otherwise specified, the parameters given are derived from
tests performed under the ambient temperature and supply voltage conditions summarized
in Table 18: General operating conditions.
Table 48. I/O AC characteristics(1)(2)
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference
manual for a description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
OSPEEDRy
[1:0]
value(1)
Symbol Parameter Conditions Min Max Unit
x0
fmax(IO)out Maximum frequency(3)
3. The maximum frequency is defined in Figure 22.
CL = 50 pF
-2MHz
tf(IO)out Output fall time - 125
ns
tr(IO)out Output rise time - 125
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF
-10MHz
tf(IO)out Output fall time - 25
ns
tr(IO)out Output rise time - 25
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDDIOx 2.7 V - 50
MHzCL = 50 pF, VDDIOx 2.7 V - 30
CL = 50 pF, VDDIOx < 2.7 V - 20
tf(IO)out Output fall time
CL = 30 pF, VDDIOx 2.7 V - 5
ns
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, VDDIOx < 2.7 V - 12
tr(IO)out Output rise time
CL = 30 pF, VDDIOx 2.7 V - 5
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, VDDIOx < 2.7 V - 12
Fm+
configuration
(4)
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference
manual RM0091 for a detailed description of Fm+ I/O configuration.
fmax(IO)out Maximum frequency(3)
CL = 50 pF
-2MHz
tf(IO)out Output fall time - 12
ns
tr(IO)out Output rise time - 34
-t
EXTIpw
Pulse width of external
signals detected by
the EXTI controller
-10-ns
DocID025743 Rev 6 69/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Figure 22. I/O AC characteristics definition
6.3.15 NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-
up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 18: General operating conditions.
069
7


 


0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW
ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ
UI
U,2RXW
WI,2RXW
W
-
7DQGLIWKHGXW\F\FOHLV
Table 49. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1)
V
VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) --
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis --200-mV
RPU
Weak pull-up equivalent
resistor(2) VIN = VSS 25 40 55 k
VF(NRST) NRST input filtered pulse - - - 100(1) ns
VNF(NRST) NRST input not filtered pulse
2.7 < VDD < 3.6 300(3) --
ns
2.0 < VDD < 3.6 500(3) --
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
Electrical characteristics STM32F031x4 STM32F031x6
70/106 DocID025743 Rev 6
Figure 23. Recommended NRST pin protection
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
6.3.16 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 50 are derived from tests
performed under the conditions summarized in Table 18: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
069
5
38
9
''
,QWHUQDOUHVHW
([WHUQDO
UHVHWFLUFXLW

1567

)LOWHU
)
Table 50. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply voltage for
ADC ON - 2.4 - 3.6 V
IDDA (ADC)
Current consumption of
the ADC(1) VDDA = 3.3 V - 0.9 - mA
fADC ADC clock frequency - 0.6 - 14 MHz
fS(2) Sampling rate 12-bit resolution 0.043 - 1 MHz
fTRIG(2) External trigger frequency
fADC = 14 MHz,
12-bit resolution --823kHz
12-bit resolution - - 17 1/fADC
VAIN Conversion voltage range - 0 - VDDA V
RAIN(2) External input impedance See Equation 1 and
Table 51 for details --50k
RADC(2) Sampling switch
resistance ---1k
CADC(2) Internal sample and hold
capacitor ---8pF
tCAL(2)(3) Calibration time
fADC = 14 MHz 5.9 µs
-831/f
ADC
DocID025743 Rev 6 71/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
WLATENCY(2)(4) ADC_DR register ready
latency
ADC clock = HSI14
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
-
ADC clock = PCLK/2 - 4.5 - fPCLK
cycle
ADC clock = PCLK/4 - 8.5 - fPCLK
cycle
tlatr(2) Trigger conversion latency
fADC = fPCLK/2 = 14 MHz 0.196 µs
fADC = fPCLK/2 5.5 1/fPCLK
fADC = fPCLK/4 = 12 MHz 0.219 µs
fADC = fPCLK/4 10.5 1/fPCLK
fADC = fHSI14 = 14 MHz 0.179 - 0.250 µs
JitterADC ADC jitter on trigger
conversion fADC = fHSI14 -1-1/f
HSI14
tS(2) Sampling time
fADC = 14 MHz 0.107 - 17.1 µs
- 1.5 - 239.5 1/fADC
tSTAB(2) Stabilization time - 14 1/fADC
tCONV(2) Total conversion time
(including sampling time)
fADC = 14 MHz,
12-bit resolution 1-18µs
12-bit resolution 14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
3. Specified value includes only ADC timing. It does not include the latency of the register access.
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.
Table 50. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
RAIN
TS
fADC CADC 2N2+
()ln××
----------------------------------------------------------------RADC
<
Table 51. RAIN max for fADC = 14 MHz
Ts (cycles) tS (µs) RAIN max (k)(1)
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
Electrical characteristics STM32F031x4 STM32F031x6
72/106 DocID025743 Rev 6
28.52.0425.2
41.52.9637.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Guaranteed by design, not tested in production.
Table 51. RAIN max for fADC = 14 MHz (continued)
Ts (cycles) tS (µs) RAIN max (k)(1)
Table 52. ADC accuracy(1)(2)(3)
Symbol Parameter Test conditions Typ Max(4) Unit
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 3 V to 3.6 V
TA = 25 °C
±1.3 ±2
LSB
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 2.7 V to 3.6 V
TA = - 40 to 105 °C
±3.3 ±4
LSB
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
EL Integral linearity error ±1.2 ±1.7
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 2.4 V to 3.6 V
TA = 25 °C
±3.3 ±4
LSB
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
EL Integral linearity error ±1.2 ±1.7
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
DocID025743 Rev 6 73/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Figure 24. ADC accuracy characteristics
Figure 25. Typical connection diagram using the ADC
1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 12: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
(
7
 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV
(
2
 2IIVHW(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW
LGHDORQH
(
*
 *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW
LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH
(
'
 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP
GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV
(
/
 ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
([DPSOHRIDQDFWXDOWUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QGSRLQWFRUUHODWLRQOLQH




    9''$
966$
(2
(7
(/
(*
('
/6%,'($/



069
069
$,1[
 $

&
SDUDVLWLF
,
/
9
7
9
7
ELW
FRQYHUWHU
&
$'&
5
$'&
9
''$
6DPSOHDQGKROG$'&
FRQYHUWHU
5
$,1
9
$,1

Electrical characteristics STM32F031x4 STM32F031x6
74/106 DocID025743 Rev 6
6.3.17 Temperature sensor characteristics
6.3.18 VBAT monitoring characteristics
6.3.19 Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 53. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ± 1 ± 2 °C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V30 Voltage at 30 °C (± 5 °C)(2) 1.34 1.43 1.52 V
tSTART(1) ADC_IN16 buffer startup time - - 10 µs
tS_temp(1) ADC sampling time when reading the
temperature 4- -µs
1. Guaranteed by design, not tested in production.
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:
Temperature sensor calibration values.
Table 54. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -2 x 50- k
QRatio on VBAT measurement - 2 - -
Er(1) Error on Q –1 - +1 %
tS_vbat(1) ADC sampling time when reading the VBAT 4- -µs
1. Guaranteed by design, not tested in production.
Table 55. TIMx characteristics
Symbol Parameter Conditions Min Typ Max Unit
tres(TIM) Timer resolution time
--1-
tTIMxCLK
fTIMxCLK = 48 MHz - 20.8 - ns
fEXT
Timer external clock
frequency on CH1 to
CH4
--
fTIMxCLK/2 -MHz
fTIMxCLK = 48 MHz - 24 - MHz
tMAX_COUNT
16-bit timer maximum
period
--
216 -tTIMxCLK
fTIMxCLK = 48 MHz - 1365 - µs
32-bit counter
maximum period
--
232 -tTIMxCLK
fTIMxCLK = 48 MHz - 89.48 - s
DocID025743 Rev 6 75/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
6.3.20 Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2Cx peripheral is
properly configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 56. IWDG min/max timeout period at 40 kHz (LSI)(1)
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Prescaler divider PR[2:0] bits Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF Unit
/4 0 0.1 409.6
ms
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 6 or 7 6.4 26214.4
Table 57. WWDG min/max timeout value at 48 MHz (PCLK)
Prescaler WDGTB Min timeout value Max timeout value Unit
1 0 0.0853 5.4613
ms
2 1 0.1706 10.9226
4 2 0.3413 21.8453
8 3 0.6826 43.6906
Electrical characteristics STM32F031x4 STM32F031x6
76/106 DocID025743 Rev 6
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 59 for SPI or in Table 60 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and
supply voltage conditions summarized in Table 18: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 58. I2C analog filter characteristics(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Min Max Unit
tAF
Maximum width of spikes that are
suppressed by the analog filter 50(2)
2. Spikes with widths below tAF(min) are filtered.
260(3)
3. Spikes with widths above tAF(max) are not filtered
ns
Table 59. SPI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode - 18
MHz
Slave mode - 18
tr(SCK)
tf(SCK)
SPI clock rise and fall
time Capacitive load: C = 15 pF - 6 ns
tsu(NSS) NSS setup time Slave mode 4Tpclk -
ns
th(NSS) NSS hold time Slave mode 2Tpclk + 10 -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode, fPCLK = 36 MHz,
presc = 4 Tpclk/2 -2 Tpclk/2 + 1
tsu(MI)
tsu(SI)
Data input setup time
Master mode 4 -
Slave mode 5 -
th(MI) Data input hold time
Master mode 4 -
th(SI) Slave mode 5 -
ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk
tdis(SO)(3) Data output disable time Slave mode 0 18
tv(SO) Data output valid time Slave mode (after enable edge) - 22.5
tv(MO) Data output valid time Master mode (after enable edge) - 6
th(SO) Data output hold time
Slave mode (after enable edge) 11.5 -
th(MO) Master mode (after enable edge) 2 -
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 25 75 %
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
DocID025743 Rev 6 77/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Figure 26. SPI timing diagram - slave mode and CPHA = 0
Figure 27. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6,
WK6,
WZ6&./
WZ6&.+
WF6&.
WU6&.
WK166
WGLV62
WVX166
WD62 WY62
1H[WELWV,1
/DVWELW287
)LUVWELW,1
)LUVWELW287 1H[WELWV287
WK62 WI6&.
/DVWELW,1
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6, WK6,
WZ6&./
WZ6&.+
WVX166
WF6&.
WD62 WY62
)LUVWELW287 1H[WELWV287
1H[WELWV,1
/DVWELW287
WK62 WU6&.
WI6&. WK166
WGLV62
)LUVWELW,1 /DVWELW,1
Electrical characteristics STM32F031x4 STM32F031x6
78/106 DocID025743 Rev 6
Figure 28. SPI timing diagram - master mode
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Table 60. I2S characteristics(1)
Symbol Parameter Conditions Min Max Unit
fCK
1/tc(CK)
I2S clock frequency
Master mode (data: 16 bits, Audio
frequency = 48 kHz) 1.597 1.601
MHz
Slave mode 0 6.5
tr(CK) I2S clock rise time
Capacitive load CL = 15 pF
-10
ns
tf(CK) I2S clock fall time - 12
tw(CKH) I2S clock high time Master fPCLK= 16 MHz, audio
frequency = 48 kHz
306 -
tw(CKL) I2S clock low time 312 -
tv(WS) WS valid time Master mode 2 -
th(WS) WS hold time Master mode 2 -
tsu(WS) WS setup time Slave mode 7 -
th(WS) WS hold time Slave mode 0 -
DuCy(SCK) I2S slave input clock duty
cycle Slave mode 25 75 %
DocID025743 Rev 6 79/106
STM32F031x4 STM32F031x6 Electrical characteristics
80
Figure 29. I2S slave timing diagram (Philips protocol)
1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
tsu(SD_MR) Data input setup time
Master receiver 6 -
ns
tsu(SD_SR) Slave receiver 2 -
th(SD_MR)(2)
Data input hold time
Master receiver 4 -
th(SD_SR)(2) Slave receiver 0.5 -
tv(SD_MT)(2)
Data output valid time
Master transmitter - 4
tv(SD_ST)(2) Slave transmitter - 20
th(SD_MT) Data output hold time
Master transmitter 0 -
th(SD_ST) Slave transmitter 13 -
1. Data based on design simulation and/or characterization results, not tested in production.
2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns.
Table 60. I2S characteristics(1) (continued)
Symbol Parameter Conditions Min Max Unit
06Y9
&.,QSXW
&32/ 
&32/ 
WF&.
:6LQSXW
6'WUDQVPLW
6'UHFHLYH
WZ&.+ WZ&./
WVX:6 WY6'B67 WK6'B67
WK:6
WVX6'B65 WK6'B65
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW
/6%UHFHLYH
/6%WUDQVPLW
Electrical characteristics STM32F031x4 STM32F031x6
80/106 DocID025743 Rev 6
Figure 30. I2S master timing diagram (Philips protocol)
1. Data based on characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
06Y9
&.RXWSXW
&32/ 
&32/ 
WF&.
:6RXWSXW
6'UHFHLYH
6'WUDQVPLW
WZ&.+
WZ&./
WVX6'B05
WY6'B07 WK6'B07
WK:6
WK6'B05
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW /6%WUDQVPLW
WI&. WU&.
WY:6
/6%UHFHLYH
/6%WUDQVPLW


DocID025743 Rev 6 81/106
STM32F031x4 STM32F031x6 Package information
102
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 LQFP48 package information
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.
Figure 31. LQFP48 package outline
1. Drawing is not to scale.
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
Package information STM32F031x4 STM32F031x6
82/106 DocID025743 Rev 6
Figure 32. Recommended footprint for LQFP48 package
1. Dimensions are expressed in millimeters.
Table 61. LQFP48 package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
  













AID

DocID025743 Rev 6 83/106
STM32F031x4 STM32F031x6 Package information
102
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 33. LQFP48 package marking example
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
D^ϯϴϯϵϰsϭ
WƌŽĚƵĐƚ
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
<::
^ƚĂŶĚĂƌĚ^důŽŐŽ
670)
&7
Package information STM32F031x4 STM32F031x6
84/106 DocID025743 Rev 6
7.2 LQFP32 package information
LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.
Figure 34. LQFP32 package outline
1. Drawing is not to scale.
$
$
$
%
%
%





!
,
,
+
!
!
!
C
B
'!5'%0,!.%
MM
3%!4).'
0,!.%
#
0).
)$%.4)&)#!4)/.
CCC #
7@.&@7
E
DocID025743 Rev 6 85/106
STM32F031x4 STM32F031x6 Package information
102
Figure 35. Recommended footprint for LQFP32 package
1. Dimensions are expressed in millimeters.
Table 62. LQFP32 package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
6?&0?6
















Package information STM32F031x4 STM32F031x6
86/106 DocID025743 Rev 6
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 36. LQFP32 package marking example
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
7.3 UFQFPN32 package information
UFQFPN32 is a 32-pin, 5x5 mm, 0.5 mm pitch ultra-thin fine-pitch quad flat package.
D^ϯϰϵϱϯsϮ
WƌŽĚƵĐƚ
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
<::
^ƚĂŶĚĂƌĚ^důŽŐŽ
670)
.7
DocID025743 Rev 6 87/106
STM32F031x4 STM32F031x6 Package information
102
Figure 37. UFQFPN32 package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device
ground and must be connected. It is referred to as pin 0 in Table: Pin definitions.
!"?-%?6

3,1,GHQWLILHU
6($7,1*
3/$1(
&
&
GGG
$
$
$
H
E
'
E
(
/
H
( (
' /
'
Package information STM32F031x4 STM32F031x6
88/106 DocID025743 Rev 6
Figure 38. Recommended footprint for UFQFPN32 package
1. Dimensions are expressed in millimeters.
Table 63. UFQFPN32 package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
A3 - 0.152 - - 0.0060 -
b 0.180 0.230 0.280 0.0071 0.0091 0.0110
D 4.900 5.000 5.100 0.1929 0.1969 0.2008
D1 3.400 3.500 3.600 0.1339 0.1378 0.1417
D2 3.400 3.500 3.600 0.1339 0.1378 0.1417
E 4.900 5.000 5.100 0.1929 0.1969 0.2008
E1 3.400 3.500 3.600 0.1339 0.1378 0.1417
E2 3.400 3.500 3.600 0.1339 0.1378 0.1417
e - 0.500 - - 0.0197 -
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd - - 0.080 - - 0.0031
$%B)3B9
















DocID025743 Rev 6 89/106
STM32F031x4 STM32F031x6 Package information
102
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 39. UFQFPN32 package marking example
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
WƌŽĚƵĐƚ
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
<::
^ƚĂŶĚĂƌĚ^důŽŐŽ
).
D^ϯϴϯϵϲsϭ
Package information STM32F031x4 STM32F031x6
90/106 DocID025743 Rev 6
7.4 UFQFPN28 package information
UFQFPN28 is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.
Figure 40. UFQFPN28 package outline
1. Drawing is not to scale.
Table 64. UFQFPN28 package mechanical data(1)
Symbol
millimeters inches
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 - 0.000 0.050 - 0.0000 0.0020
D 3.900 4.000 4.100 0.1535 0.1575 0.1614
D1 2.900 3.000 3.100 0.1142 0.1181 0.1220
E 3.900 4.000 4.100 0.1535 0.1575 0.1614
E1 2.900 3.000 3.100 0.1142 0.1181 0.1220
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
L1 0.250 0.350 0.450 0.0098 0.0138 0.0177
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
!"?-%?6
'
(
'
(
'HWDLO=
'HWDLO<
'
DocID025743 Rev 6 91/106
STM32F031x4 STM32F031x6 Package information
102
Figure 41. Recommended footprint for UFQFPN28 package
1. Dimensions are expressed in millimeters.
1. Values in inches are converted from mm and rounded to 4 decimal digits.




 








$%B)3B9
Package information STM32F031x4 STM32F031x6
92/106 DocID025743 Rev 6
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 42. UFQFPN28 package marking example
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
D^ϯϴϯϵϳsϭ
WƌŽĚƵĐƚ
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
;ϭͿ
Žƚ
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
<::
*
;ƉŝŶϭŝĚĞŶƚŝĨŝĞƌͿ
DocID025743 Rev 6 93/106
STM32F031x4 STM32F031x6 Package information
102
7.5 WLCSP25 package information
WLCSP25 is a 25-ball, 2.423 x 2.325 mm, 0.4 mm pitch wafer level chip scale package.
Figure 43. WLCSP25 package outline
1. Drawing is not to scale.
Table 65. WLCSP25 package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3(2) - 0.025 - - 0.0010 -
b(3) (4) 0.220 0.250 0.280 0.0087 0.0098 0.0110
D 2.388 2.423 2.458 0.0940 0.0954 0.0968
E 2.29 2.325 2.36 0.0902 0.0915 0.0929
e - 0.400 - - 0.0157 -
e1 - 1.600 - - 0.0630 -
e2 - 1.600 - - 0.0630 -
F - 0.4115 - - 0.0162 -
G - 0.3625 - - 0.0143 -
:/&63B$1B0(B9
$
RULHQWDWLRQ
UHIHUHQFH
:DIHUEDFNVLGH
'HWDLO$
URWDWHG
6HDWLQJSODQH
$
%XPS
E
6LGHYLHZ
$
$
'HWDLO$
H )
*
H
H$EDOOORFDWLRQ
H
%XPSVLGH
HHH =
(
$
$
=;<
=
FFF
GGG
EEDOOV
=
DDD
[
EEE =
Package information STM32F031x4 STM32F031x6
94/106 DocID025743 Rev 6
Figure 44. Recommended footprint for WLCSP25 package
aaa - 0.100 - - 0.0039 -
bbb - 0.100 - - 0.0039 -
ccc - 0.100 - - 0.0039 -
ddd - 0.050 - - 0.0020 -
eee - 0.050 - - 0.0020 -
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
4. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
Table 66. WLCSP25 recommended PCB design rules
Dimension Recommended values
Pitch 0.4 mm
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
Table 65. WLCSP25 package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
:/&63B$1B)3B9
'SDG
'VP
DocID025743 Rev 6 95/106
STM32F031x4 STM32F031x6 Package information
102
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 45. WLCSP25 package marking example
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
D^ϯϵϬϯϭsϮ
5HYLVLRQFRGH
<::
)
5
'DWHFRGH
3URGXFW
LGHQWLILFDWLRQ
'RW
Package information STM32F031x4 STM32F031x6
96/106 DocID025743 Rev 6
7.6 TSSOP20 package information
TSSOP20 is a 20-lead thin shrink small-outline, 6.5 x 4.4 mm, 0.65 mm pitch, package.
Figure 46.TSSOP20 package outline
1. Drawing is not to scale.
Table 67. TSSOP20 package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.200 - - 0.0472
A1 0.050 - 0.150 0.0020 - 0.0059
A2 0.800 1.000 1.050 0.0315 0.0394 0.0413
b 0.190 - 0.300 0.0075 - 0.0118
c 0.090 - 0.200 0.0035 - 0.0079
D(2) 6.400 6.500 6.600 0.2520 0.2559 0.2598
E 6.200 6.400 6.600 0.2441 0.2520 0.2598
E1(3) 4.300 4.400 4.500 0.1693 0.1732 0.1772
e - 0.650 - - 0.0256 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
zͺDͺsϯ
ϭ
ϮϬ
Đ
>
ϭ
Ϯ
Ŭ
Ğď
ϭϬ
ϭϭ
ϭ
ĂĂĂ
^d/E'
W>E
'h'W>E
ϬϮϱŵŵ
W/Eϭ
/Ed/&/d/KE
DocID025743 Rev 6 97/106
STM32F031x4 STM32F031x6 Package information
102
Figure 47. Recommended footprint for TSSOP20 package
1. Dimensions are expressed in millimeters.
k - -
aaa - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
shall not exceed 0.15mm per side.
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not
exceed 0.25mm per side.
Table 67. TSSOP20 package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
9!?&0?6
 




 



Package information STM32F031x4 STM32F031x6
98/106 DocID025743 Rev 6
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 48. TSSOP20 package marking example
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
WƌŽĚƵĐƚ
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
ZĞǀŝƐŝŽŶĐŽĚĞ
ĂƚĞĐŽĚĞ
<::
^ƚĂŶĚĂƌĚ^důŽŐŽ
))3
D^ϯϴϯϵϱsϭ
DocID025743 Rev 6 99/106
STM32F031x4 STM32F031x6 Package information
102
7.7 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 18: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ ((VDDIOx – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.7.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
Table 68. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm 55
°C/W
Thermal resistance junction-ambient
UFQFPN32 - 5 × 5 mm 38
Thermal resistance junction-ambient
LQFP32 - 7 × 7 mm 56
Thermal resistance junction-ambient
UFQFPN28 - 4 × 4 mm 118
Thermal resistance junction-ambient
WLCSP25 - 2.13 x 2.07 mm 74
Thermal resistance junction-ambient
TSSOP20 - 6.5 x 4.4 mm 110
Package information STM32F031x4 STM32F031x6
100/106 DocID025743 Rev 6
7.7.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Ordering information.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F031x4/x6 at maximum dissipation, it is
useful to calculate the exact power consumption and junction temperature to determine
which temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 80 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Using the values obtained in Table 68 TJmax is calculated as follows:
For LQFP48, 55 °C/W
TJmax = 80 °C + (55°C/W × 447 mW) = 80 °C + 24.585 °C = 104.585 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C) see Table 18:
General operating conditions.
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Ordering information).
Note: With this given PDmax we can find the TAmax allowed for a given device temperature range (order code suffix
6 or 7).
Suffix 6: TAmax = TJmax - (55°C/W × 447 mW) = 105-24.585 = 80.415 °C
Suffix 7: TAmax = TJmax - (55°C/W × 447 mW) = 125-24.585 = 100.415 °C
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
DocID025743 Rev 6 101/106
STM32F031x4 STM32F031x6 Package information
102
Assuming the following application conditions:
Maximum ambient temperature TAmax = 100 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
Using the values obtained in Table 68 TJmax is calculated as follows:
For LQFP48, 55 °C/W
TJmax = 100 °C + (55 °C/W × 134 mW) = 100 °C + 7.37 °C = 107.37 °C
This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Ordering information) unless we reduce the power dissipation in order to be able
to use suffix 6 parts.
Ordering information STM32F031x4 STM32F031x6
102/106 DocID025743 Rev 6
8 Ordering information
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
Table 69. Ordering information scheme
Example:STM32F031 G 6 T6x
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
031 = STM32F031xx
Pin count
F = 20 pins
E = 25 pins
G = 28 pins
K = 32 pins
C = 48 pins
User code memory size
4 = 16 Kbyte
6 = 32 Kbyte
Package
P = TSSOP
U = UFQFPN
T = LQFP
Y = WLCSP
Temperature range
6 = –40 °C to +85 °C
7 = –40 °C to +105 °C
Options
xxx = code ID of programmed parts (includes packing type)
TR = tape and reel packing
blank = tray packing
DocID025743 Rev 6 103/106
STM32F031x4 STM32F031x6 Revision history
105
9 Revision history
Table 70. Document revision history
Date Revision Changes
13-Jan-2014 1 Initial release.
11-Jul-2014 2
Changed the document status to Datasheet - production
data.
Updated the following:
Table: STM32F031x4/6 family device features and
peripheral counts,
Figure: Clock tree,
Figure: Power supply scheme,
Table: Peripheral current consumption.
Replaced Table Typical current consumption in Run
mode, code with data processing running from Flash
and Table Typical current consumption in Sleep mode,
code running from Flash or RAM with Table: Typical
current consumption, code executing from Flash,
running from HSE 8 MHz crystal.
Added the LQFP32 package: updates in Section:
Description, Section: Pinouts and pin description and
Section: Package information.
28-Aug-2015 3
Updated:
Figure 9: STM32F031x6 memory map
AF1 alternate functions for PA0, PA1, PA2, PA3 and
PA4 in Table 12: Alternate functions selected through
GPIOA_AFR registers for port A
the footnote for VIN max value in Table 15: Voltage
characteristics
the footnote for max VIN in Table 18: General
operating conditions
Table 22: Embedded internal reference voltage with
the addition of tSTART parameter
Table 50: ADC characteristics
Table 53: TS characteristics: removed the min. value
for tSTART parameter
the typical value for R parameter in Table 54: VBAT
monitoring characteristics
the structure of Section 7: Package information.
Added:
Figure 33: LQFP48 marking example (package top
view), Figure 36: LQFP32 marking example (package
top view), Figure 39: UFQFPN32 marking example
(package top view), Figure 42: UFQFPN28 marking
example (package top view), Figure 48: TSSOP20
marking example (package top view)
Revision history STM32F031x4 STM32F031x6
104/106 DocID025743 Rev 6
28-Aug-2015 3
(continued)
Added WLCSP25 package, updates in the following:
Table 1: Device summary,
Section 2: Description,
Table 2: STM32F031x4/x6 family device features and
peripheral counts,
Section 4: Pinouts and pin description: addition of
Figure 7: WLCSP25 25-ball package ballout (bump
side) and update of Table 11: Pin definitions,
Table 18: General operating conditions,
Section 7: Package information with the addition of
Section 7.5: WLCSP25 package information,
Table 68: Package thermal characteristics.
16-Dec-2015 4
Cover page:
number of timers added in the title
Table 1: Device summary - STM32F031x4 added
Section 2: Description:
Figure 1: Block diagram updated
Section 3: Functional overview:
Figure 2: Clock tree updated
Section 3.5.4: Low-power modes - added explicit inf.
on peripherals configurable to operate with HSI
Section 3.10.2: Internal voltage reference (VREFINT) -
removed information on comparators
Section 3.11.2: General-purpose timers (TIM2, 3, 14,
16, 17) - number of gen-purpose timers corrected
Table 7: STM32F031x4/x6 I2C implementation -
added 20mA output drive current
Section 4: Pinouts and pin description:
Package pinout figures updated (look and feel)
Figure 7: WLCSP25 package pinout - now presented
in top view
Table 11: Pin definitions - notes 3 and 6 added
Section 5: Memory mapping:
added information on memory mapping difference of
STM32F031x4 from STM32F031x6
Section 6: Electrical characteristics:
Table 22: Embedded internal reference voltage:
removed -40°-to-85° condition and associated note for
VREFINT
Table 25 and Table 26 values rounded to 1 decimal
Table 46: I/O static characteristics - removed note
Table 50: ADC characteristics - updated some
parameter values, test conditions and added
footnotes (3) and (4)
Table 70. Document revision history (continued)
Date Revision Changes
DocID025743 Rev 6 105/106
STM32F031x4 STM32F031x6 Revision history
105
16-Dec-2015 4
(continued)
Section 6.3.16: 12-bit ADC characteristics - changed
introductory sentence
Table 60: I2S characteristics: table reorganized,
tv(SD_ST) max value updated
Section 7: Package information:
Figure 41: Recommended footprint for UFQFPN28
package updated
Section 8: Part numbering:
added tray packing to options
06-Jan-2017 5
Section 6: Electrical characteristics:
Table 34: LSE oscillator characteristics (fLSE = 32.768
kHz) - information on configuring different drive
capabilities removed. See the corresponding
reference manual.
Table 22: Embedded internal reference voltage -
VREFINT values
Figure 26: SPI timing diagram - slave mode and
CPHA = 0 and Figure 27: SPI timing diagram - slave
mode and CPHA = 1 enhanced and corrected
Section 8: Ordering information:
The name of the section changed from the previous
“Part numbering”
15-May-2017 6
Section 7: Package information:
Figure 45: WLCSP25 package marking example - the
composition of the package marking fields and
character sizes corrected. Check the product errata
sheet for additional information.
Notes under package marking figures modified.
Table 70. Document revision history (continued)
Date Revision Changes
STM32F031x4 STM32F031x6
106/106 DocID025743 Rev 6
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved