34.807IRELESS
IMPORTANT NOTICE
Dear customer,
As from August 2nd 2008, the wireless operations of STMicroelectronics have moved to a
new company, ST-NXP Wireless.
As a result, the following changes are applicable to the attached document.
Company name - STMicroelectronics NV is replaced with ST-NXP Wireless.
Copyright - the copyright notice at the bottom of the last page “© STMicroelectronics
200x - All rights reserved”, shall now read: “© ST-NXP Wireless 200x - All rights
reserved”.
Web site - http://www.st.com is replaced with http://www.stnwireless.com
Contact information - the list of sales offices is found at http://www.stnwireless.com
under Contacts.
If you have any questions related to the document, please contact our nearest sales office.
Thank you for your cooperation and understanding.
ST-NXP Wireless
34.807IRELESS
www.stnwireless.com
September 2007 Rev 9 1/78
1
STw4810
Power management for multimedia processors
Features
2 Step-down converters
1 to 1.5V with 15 steps at 600mA
1.8V at 600mA for general purpose usage
3 Low-drop output regulators for different uses
PLL analog supplies:
1.05V, 1.2V, 1.3V 1.8V - 10mA
Processor analogue functions:
2.5V - 10mA
Auxiliary device:
1.5V, 1.8V, 2.5V, 2.8V - 150 mA
USB OTG module
Full and low speed USB OTG transceiver
Charge-pump (5V, 100mA) for USB cable
Mass memory cards (SD/MMC/SDIO)
1 linear regulator: 1.8V, 2.85V, 3V - 150mA
Level shifter
Miscellaneous
32 kHz control for multimedia processor
Processor supply monitoring
Processor reset control
2 Serial I2C interfaces
Application
ST NOMADIKTM STn88x x
Multimedia processor
Mobile phones, PDA, videophone
Description
STw4810 is a power management companion
chip for multimedia processors used in portable
applications. It supplies the multimedia processor
including its memories and peripherals. STw4810
supports the main mass memory standard cards.
SDIOTM is also supported and allows to connect
multimedia peripherals like cameras.
6x6x1.2mm
0.5m m pit ch
TFBGA 84
4.6x4.6x1.0mm
0.4m m pit ch
VFBGA 84
STw4810CHD
STw4810CRA
www.st.com
Contents STw4810
2/78
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Ball information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Ball c onnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Ball functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Digi tal control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 POWER OFF / VDDOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.3 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.4 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.5 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.6 IT generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.7 Clock switching and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Power management modu le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Bandgap, biasing and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 VCORE regulator: DC/DC step-down regulator . . . . . . . . . . . . . . . . . . . 35
4.3.3 VIO_VMEM regulator: DC/DC step- down regulator . . . . . . . . . . . . . . . 35
4.3.4 VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.5 VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.6 VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.7 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.8 Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.9 Thermal shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 USB OTG module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Modes and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.3 USB enable control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 SD/MMC/SDIO module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
STw4810 Contents
3/78
5 Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2 VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.3 VCORE DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.4 VIO_VMEM DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.5 LDO regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.6 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Digital specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.1 CMOS input/output static characteristics: I2C interface . . . . . . . . . . . . . 57
5.4.2 CMOS input/output dynamic characteristics: I2C interface . . . . . . . . . . 58
5.4.3 CMOS input/output static characteristics: VIO level . . . . . . . . . . . . . . . 59
5.4.4 CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . 61
5.4.5 CMOS input/output static characteristics: VMMC level . . . . . . . . . . . . . 62
5.5 USB OTG transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 SD/MMC card interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1 TFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 VFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
List of tables STw4810
4/78
List of tables
Table 1. STw4810 ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. STw4810 balls function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4. Register address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. Register data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 6. Register general information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 7. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 8. Power control register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 9. USB register address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. Vendor ID and Product ID: Read only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 11. USB control register 1 (address = 04h set and 05h clearh) . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 12. USB control register 2 (Address = 06h set and 07h clearh) . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 13. USB Interrupt source register (address = 08h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 14. USB interrupt latch registers (address = 0Ah set and 0Bh clearh). . . . . . . . . . . . . . . . . . . 25
Table 15. USB interrupt mask false register (address = 0Ch and 0Dh) . . . . . . . . . . . . . . . . . . . . . . . 26
Table 16. USB interrupt mask true register (address = 0Eh and 0Fh) . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 17. USB EN register (address = 10h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 18. SD MMC control register (11h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 19. Power control register - General information (Address = 1Eh). . . . . . . . . . . . . . . . . . . . . . 28
Table 20. Power control register - General information (Address = 1Fh) . . . . . . . . . . . . . . . . . . . . . . 28
Table 21. Power control register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 22. Power control register at address 05h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 23. Power control register at address 06h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 24. Power control register at address 07h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 25. Power control register at address 08h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 26. Power control register at address 09h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 27. Power control register at address 0Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 28. Twarning register (Address = 20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 29. Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 30. Thermal threshold values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 31. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0 . . . . . . . . 42
Table 32. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1 . . . . . . . . 42
Table 33. Data receiver via USB control register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 34. STw4810 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 35. Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 36. Operating conditions (Temp range: -30 to +85 °C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 37. VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 38. VCORE DC/DC step-down converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 39. VIO_VMEM DC/DC step-down converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 40. LDO regulators - VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 41. LDO regulators - VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 42. LDO regulators - VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 43. Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 44. CMOS input/output static characteristics: I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 45. CMOS input/output dynamic characteristics: I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 46. VIO level: USB and control I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 47. VIO level: MMC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 48. CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
STw4810 List of tables
5/78
Table 49. CMOS input/output static characteristics VMMC level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 50. USB OTG transceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 51. SD/MMC card interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 52. Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 53. Recommended coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 55. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch dimensions . . . . . . . . . . . . . . . . . . 72
Table 56. VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch . . . . . . . . . . . . . . . . . . . . 74
Table 57. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 58. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
List of figures STw4810
6/78
List of figures
Figure 1. Typical mobile multimedia system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. STw4810 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Start-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. Switching POWER to sleep timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. VDDOK block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. I2C interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7. Control interface: I2C format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8. Control interface: I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9. Clock switching between master and internal clock (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 10. Block diagram of biasing and references of the device . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 11. Thermal threshold temperatures for ‘it_warn’ bit and VDDOK ball. . . . . . . . . . . . . . . . . . . 38
Figure 12. USB OTG transceiver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 13. SD MMC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 14. Propagation and clock/data skew times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 15. STw4810 application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 16. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing . . . . . . . . . . . . . . . . . . . . . 73
Figure 17. VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
STw4810 Overview
7/78
1 Overview
The STw4810 power management device has the following features:
Power management module
1 Step-down converter for processor core (1 to 1.5 V with 15 steps at 600 mA)
1 Step-down converter (1.8 V at 600 mA) for general purpose usage such as
processor input/output supply, external memory, DDR and SDRAM and
peripherals
1 Low-drop output regulator f or analog supplies, such as PLL (1.05 V, 1.2 V, 1.3 V,
1.8 V at 10 mA)
1 Low-drop output regulator for processor analogue functions (2.5 V at 10 mA)
1 Low-drop output regulator for auxiliary devices (1.5 V, 1.8 V, 2.5 V, 2.8 V at
150 mA)
USB OTG module
Full and low speed USB OTG transceiver
1 Linear regulators (3.1 V at 40 mA) supplying transceiver
1 Charge-pump (5 V at 100 mA) supplying VBUS line of the USB cable
Mass memory cards (SD/MMC/SDIO)
1 Linear regulator (1.8 V, 2.85 V, 3 V at 150 mA)
Level shifter
Miscellaneous
32 kHz control for multimedia processor
Proces so r suppl y mon itoring
Processor reset control
2 Serial I2C interfaces
Figure 1. Typical mobile multimedia system
Functional block diagram STw4810
8/78
2 Functional block diagram
Figure 2. STw4810 block diagram
VPLL_LDO
1.05V,1.2V,1.3V,1.8V,
VAUX
VCORE
VBAT_VCORE
VMINUS_VCORE
VPLL
VANA_LDO
2.5V, 10mA VANA
VBAT_VPLL_ANA
VBAT_VIO_VMEM
VLX_VIO_VMEM
VMINUS_VIO_VMEM
VIO_VMEM
1.8V- 600mA
VREF_VIO_VMEM
VREF_VCORE
VREF_VPLL
SOFT_START
VAUX_LDO
1.5V,1.8V2.5V,2.8V,
VREF_18
BG Buffer
BIAS
VREF_VAUX
Thermal
shutdown
VBAT_ANA
Internal
oscillator
clock
switching
and
control
MASTER_CLK
SCL
SDA I2C
interface
VBAT_DIG
VMINUS_DIG
General
control
PON
VDDOK
PORn
PWREN
SW_RESETn
Control
registers
USB
control
USB OTG transceiver interface VBAT_USB
ID
CP
CN
VBUS
DP
DN
Charge
pump
VUSB
3.1V - 40mA
5V - 100mA
Driver
USBOEn
USBVP
USBVM
USBRCV
Control
SD/MMC/
SD/ MMC/SDIO interface
1.8/2.85/3V-150mA
VBAT_MMC
VMMC
Driver
Level
shifter LATCHCLK
CLKOUT
DATAOUT0
CMDOUT
DATAOUT[3:1]
MCCLK
MCFBCLK
MCCMDDIR
MCDAT0DIR
MCDAT2DIR
MCCMD
MCDATA[3:1]
MCDATA0
REQUEST_MC
VBAT_VAUX
CLK32K
CLK32K_IN
PORn_VBAT
VMINUS_ANA
1V=>1.5 V- 600mA
VLX_VCORE
TCXO_EN Monitoring
IT_WAKE_UP
GPO1
GPO2
I2C
Mux
USBSCL
USBSDA
USBINTn
MCDAT31DIR
VMINUS_USB
Level
shifter Pull
up &
down
SDIO control
10mA
150mA
STw4810 Ball information
9/78
3 Ball information
3.1 Ball connections
3.2 Ball functions
STw4810 includes the following ball types
VDDD/VDDA: digital/analog power supply
VSSD/VSSA: digital/analog ground supply
DO/DI/DIO: Digital Output / Digital Input / Digital Input Output
DOz: Digital Output with high impedance capability
AO/AI/AIO: Analog Output / Analog Input / Analog Input-Output
G: to be connected to ground
O: to be left open
Int-Ref: Associated to internal reference
Table 2
details the ballout.
Table 1. STw4810 ball connections
12345678910
ACLK32K_IN VMINUS_
VIO_VMEM
VLX_VIO_
VMEM VBAT_VIO_
VMEM VIO_VMEM VAUX VANA VPLL VREF_18 VCORE
B“Reserved” REQUEST_
MC VMINUS_
VIO_VMEM VBAT_VIO_
VMEM VMINUS_
ANA VBAT_
VAUX “Reserved” “Reserved” “Reserved” VMINUS_
VCORE
CTCXO_EN IT_WAKE_
UP VMINUS_
DIG VLX_VIO_
VMEM “Reserved” VBAT_ANA VBAT_
VPLL_ANA PON VMINUS_
VCORE VLX_
VCORE
DVBAT_DIG MASTER_
CLK “reserved” VLX_
VCORE VBAT_
VCORE VBAT_
VCORE
EDATAOUT0 DATAOUT
<1> DATAOUT
<2> ID DP DN
FDATAOUT
<3> CMDOUT LATCHCLK “Reserved” VBAT_USB VUSB
GCLKOUT MCCLK MCCMD
DIR “Reserved” USBSCL VBUS
HMCCMD MCDATA
<3> MCDATA
<1> MCDATA31
DIR MCFBCLK PWREN SDA USBINTn USBSDA CP
JMCDATA
<2> VDDOK PORN VBAT_
MMC GPO1 SCL USBVP USBVM VMINUS_
USB CN
KMCDATA0 MCDAT0
DIR CLK32K SW_
RESET VMMC GPO2 USBRCV USBOEn MCDAT2
DIR “Reserved”
Ball information STw4810
10/78
Table 2. STw4810 balls function
Ball Ball name Ball type Description
General supplies
D1 VBAT_DIG VDDD-VBAT Battery supply for digital/oscillator
C3 VMINUS_DIG VSSD Ground for digital and oscillator
C6 VBAT_ANA VDDA-VBAT Battery supply for analog
B5 VMINUS_ANA VSSA Ground for analog
F9 VBAT_USB VDDA-VBAT Battery supply for USB block
J9 VMINUS_USB VSSA Ground for USB block
A9 VREF_18 Int-Ref Internal reference
Control balls
C8 PON DI(VBAT)
Pull Down 1.5MΩPower-on and reset
K4 SW_RESETn DI(VIO_VMEM)
Pull Up 1.5MΩ
Software reset, reset all applications when
SW_RESETn = 0
J2 VDDOK DO(VIO_VMEM) Supply monitoring for mult imedia processors.
Interruption for high temperature warning
J3 PORn DO(VIO_ V MEM ) Multimed ia proc es so r Resetn
H6 PWREN DI(VIO_VMEM)
Pull Up 1.5MΩSleep mode from multimedia processor
C1 TCXO_EN DI(VIO_VMEM)
Pull Down 1.5MΩRequest of master clock from modem part
B2 REQUEST_MC DO(VIO_VMEM) R equest to master clock oscillator
J6 SCL DI(VIO_VMEM) Clock for Main I2C interface
H7 SDA DIO(V IO_VMEM) SDA for Main I2C interface
D2 MASTER_CLK AI
Pull Down 1.5MΩ26 MHz, 13 MHz or 19.2 MHz from modem
A1 CLK32K_IN DI(VIO_VMEM)
Pull Down 1.5MΩ32 kHz input
K3 CLK32K DO(VIO_VMEM) 32 kHz to multimedia processor
STw4810 Ball information
11/78
Regulator balls
A4
B4 VBAT_VIO_VMEM VDDA-VBAT Battery power supply for step down
VIO_VMEM
A2
B3 VMINUS_VIO_VMEM VSSA Ground for step down VIO_VMEM
A3
C4 VLX_VIO_VMEM AIO BUCK of step down VIO_VMEM
A5 VIO_VMEM AI VIO_VMEM Feed back input
D9
D10 VBAT_VCORE VDDA-VBAT Battery power supply for step down VCORE
B10
C9 VMINUS_VCORE VSSA Ground for step down VCORE
C10
D8 VLX_VCORE AIO BUCK of step-down VCORE
A10 VCORE AI VCORE sense
C7 VBAT_VPLL_ANA VDDA-VBAT Battery supply for VPLL, VANA
A7 VANA AO VANA output
A8 VPLL AO VPLL output
A6 VAUX AO VAUX output
B6 VBAT_VAUX VDDA-VBAT Battery supply for VAUX
USB balls
C2 IT_WAKE_UP DO(VBAT-DIG) Interrupt to modem for wake-up due to USB
plug
K8 USBOEn DIO(VIO_VMEM)
Pull Down 1.5MΩ
Output enable of the differential driver in the
USB mode
J7 USBVP DIO(VIO_VMEM)
Pull Down 1.5MΩ
Data input in the USB transmit mode, positive
data input the single-ended transmit mode, or
TXD in UART mode
J8 USBVM DIO(VIO_VMEM)
Pull Down 1.5MΩ
Single-ended zero input in the USB transmit
mode, negative data input in the single-ended
transmit mode, or RXD in the UART mode
K7 USBRCV DO(VIO_VMEM) Differential receiver output
E9 DP AIO(VUSB) Positive data line in the USB mode, or serial
data input in the UART mode
E10 DN AIO(VUSB) Negative data line in the USB mode, or serial
data output in the UART mode.
E8 ID AI(VBAT-USB) ID ball of the USB detector used for protocol
identification.
H10 CP AIO(VBUS) C plus flying capacitor
(VBUS level 4.4 to 5.25)
Table 2. STw4810 balls function (continued)
Ball Ball name Ball type Description
Ball information STw4810
12/78
J10 CN AIO(VBUS) C minus flying capacitor (VBUS Level)
G10 VBUS AIO(VBUS) USB cable supply (VBUS Level)
F10 VUSB AIO Decoupling capacitor for USB internal regulator
G9 USBSCL DI(VIO_VMEM) Clock for dedicated USB I2C
H9 USBSDA DIO(VIO_VMEM) SDA for dedicated USB I2C
H8 USBINTn DO(VIO_VMEM) Interrupt to multimedi a proc ess or for USB or
accessory plug
SD MMC balls
G3 MCCMDDIR DI(VIO_VMEM)
Pull Down 1.5MΩ
CMD direction.
- “high”: CMD signal from processor to card
- “Low”: CMD signal from card to processor
K2 MCDAT0DIR DI(VIO_VMEM)
Pull Down 1.5MΩ
DATA0 direction
- “high”: DATA0 signal from processor to card
- “Low”: DATA0 signal from card to processor
K9 MCDAT2DIR DI(VIO_VMEM)
Pull Down 1.5MΩ
DATA2 direction
- “high”: DATA2 signal from processor to card
- “Low”: DATA2 signal from card to processor
H4 MCDAT31DIR DI(VIO_VMEM)
Pull Down 1.5MΩ
DATA(3,1) direction
- “high”: DATA(3,1) signal from processor to
card
- “Low”: DATA(3,1) signal from card to
processor
G2 MCCLK DI(VIO_VMEM)
Pull Down 1.5MΩ
Host clock, between processor and STw4810,
to the card (processor clock).
H5 MCFBCLK DO(VIO_VMEM) Host feedback clock between STw4810 and
processor, to re-synchronize data in processor.
H1 MCCMD DIO(VIO_VMEM)
Pull Up 1.5MΩBidirectional command/response signal
between processor and STw4810.
K1 MCDATA0 DIO(VIO_VMEM)
Pull Up1.5MΩ
Bidirectional data0 between processor and
STw4810
H2
H3
J1 MCDATA[3:1] DIO(VIO_VMEM)
Pull Up 1.5MΩ
Bidirectional data [3:1] between processor and
STw4810.
F3 LATCHCLK DI(VMMC)
Pull Down 1.5MΩ
Host feedback clock to STw4810, to re-
synchron ize data in proc essor.
G1 CLKOUT DO(VMMC) Host clock, between STw4810 and card
(processor clock).
F2 CMDOUT DIO(VMMC)
Pull Up 1.5MΩ
Bidirectional command/response signal
between STw4810 and processor.
E1 DATAOUT0 DIO(VMMC)
Pull Up 1.5MΩBidirectional data0 between STw4810 and card
Table 2. STw4810 balls function (continued)
Ball Ball name Ball type Description
STw4810 Ball information
13/78
F1
E3
E2 DATAOUT[3:1] DIO(VMMC)
Pull Up 1.5MΩBidirectional data[3:1] between STw4810 and
card.
J4 VBAT_MMC VDDA-VBAT Battery supply for VMMC
K5 VMMC AIO VMMC supply output
Other balls
J5 GPO1 AO General purpose output
K6 GPO2 AO General purpose output
B9
D3 “Reserved” G To be connect ed to ground
B1
B7
B8
C5
F8
G8
K10
“Reserved” O To be left open
Table 2. STw4810 balls function (continued)
Ball Ball name Ball type Description
Functional description STw4810
14/78
4 Functional description
4.1 Introduction
The STw4810 integrates all the power supplies for a multimedia processor as well as
memories and peripherals:
Two switched mode power supply regulators: one for the multimedia processor core,
one for multimedia processor I/Os and memories
Three low-drop output regulators for multimedia processor analog supplies (PLL and
others) and auxiliary components
USB OTG FS/LS physical interface
MMC card power supplies and level shifters
Multimedia processor supply monitoring / power-on reset and power supply alarms /
interrupt management
Two serial I2C communication interfaces; one to control the de vices (SDA, SCL) and
one to control the USB (USBSDA, USBSCL).
4.2 Digital control module
This module describes the interfaces used to program the device and the related registers.
4.2.1 State machine
Description of each states: (
Figure 3.
)
Off: In this mode the STw4810 is switched off. Off is when PON=0, when battery level is
under 2.4 V or when thermal shutdown is activated. There is no multimedia processor power
supply. The only activ e cell is the USB cable detection and VBAT level detection.
OSC_START: Oscillator is enabled and the power up module is waiting f or the rising edge of
the internal signal OSC_OK to start power up sequence. This state duration is 300 µs.
START_BIAS: Bias, ref erence and thermal shut-down are enabled, a counter is activated to
wait for rising edge of internal signals PDN_regulators. This state duration has a typical
value of 7.77 ms and a worst case value of 9.46 ms.
START_PM: after a 1 ms wait, multimedia processor power supplies are available
(VIO_VMEM, VCORE, VPLL, and VANA). The device can allow I2C communication, output
power supply monitoring and application (USB,SD/MMC).
OFF2: STw4810 is waiting for the 32 kHz multimedia processor signal. This state has an
indeterminate duration. If 32kHz is present during the states describes above, it has no
effect. The 32 kHz signal is taken into account by STw4810 only when the ‘VDDOK’ ball is
hig h, that is at the end of START_PM state.
Reset: STw4810 forces a reset during 10*32 kHz period before setting PORn high.
INT_OSC: The STw4810 can work without MASTER_CLK via its internal oscillator. The
device waits for an external clock detection before switching to the external clock. When
receiving a rising edge on PWREN ball (coming from multimedia processor) or on
TCXO_EN ball (coming from modem), STw4810 answers by asserting to “1” the
STw4810 Functional description
15/78
REQUEST_MC ball. STw4810 remains in internal oscillator mode until it receives the
external clock signal on MASTER_CLK ball.
EXT_CLK: When MASTER_CLK is detected, the STw4810 uses this clock as ref erence and
s witches off its internal oscillator to save quiescent. MASTERCLK should remain connected
up to sleep mode.
Sleep: Sleep mode is required by multimedia processor by setting a PWREN at low level.
Then VDDOK is forced to 0, regulators (VCORE, VIO_VMEM) switch to sleep mode and
wait f or PWREN at high level (
Figure 4
).
Wake-up: From sleep mode, the multimedia processor requests to switch back to Normal
mode. Thus the de vice restarts its internal oscillator and then switches regulators from sleep
to normal mode and informs multimedia processor with VDDOK at high level (
Figure 4
).
Note: By default VAUX is in stand by mode, pdn_vaux = 0 (Table 18). It can be programmed in
normal mode only by asserted pdn_vaux bit to “1”.
Functional description STw4810
16/78
Figure 3. Start-up timing
All regulators are started with PDN_regulators but can be switched off from the beginning or
during application by software (
Table 27
)
PON ball
PDN__OSC
PDN_regulators
VDDOK ball
CLK32K_IN ball
PORn ball
PWREN ball
OFF
START_PM
Reset
1ms
INT_OSC
TCXO_EN ball
Internal_OSC
11*(1/32kHz)
OFF2
MASTER_CLK ball
REQUEST_MC ball
VBAT
300µs
9.38ms (11ms wc)
Reset
START_BIAS
7.77ms (9.46ms wc)
“or”
Delays are worst case maximum delays
Voutput(s) ball
VPLL / VIO_VMEM
VCORE
CLK32K ball
(*)
(*) If 32 kHz available before VDDOK signal rising edge, OFF2 state duration is null
PWREN unmasked
STw4810 Functional description
17/78
Figure 4. Switching POWER to sleep timing
Registers reset
In the event of a har dware rese t coming from the modem, P ON ball s et to “0”, all registers
are reset at initial value when PON ball goes back to “1” level.
A software reset from multimedia processor of STw4810, through SW_RESETn ball set to
“0”, reset all registers except power control register (at address 1E & 1F).
Main clock oscillator control
REQUEST_MC is an OR output gate between PWREN (coming from multimedia processor)
and TCXO_EN (coming from modem supply), it is synchronized on 32 kHz, except during
power-up where PWREN is masked and considered as high.
REQUEST_MC enabled or disabled the master clock oscillator device.
PDN_regulators
VDDOK
CLK32K
PWREN
Sleep regulators
HPM SLEEP HPM
MASTER_CLK
Internal_OSC
PDN_intOSC
int_OSC_detect
~100µs
REQUEST_MC
Functional description STw4810
18/78
4.2.2 POWER OFF / VDDOK
In case of VDDOK falling edge due to under voltage on VCORE or VIO_VMEM
detected, or ‘it_twarn’ bit set to “1” (
Table 18
), then multimedia processor is reset
(PORn low during a minimum time of 312.5 µs) and restarted with no time-out. (see
Figure 5
). In case of VDDOK falling edge because PWREN balls equals “0”, there is no
reset (PORn still high).
In case of PON falling edge (STw4810 switched off from modem) multimedia processor
is also reset with no time-out. We consider that clean switch off between modem and
multimedia processor is done by software directly.
Figure 5. VDDOK block diagram
4.2.3 Sleep mode
STw4810 goes into sleep mode by different ways.
Whether VCORE, VIO_VMEM and V AUX are programmed to sleep mode or not is indicated
in
Table 27
.
Digital block
&
vcore_monitor
vio_monitor &VDDOK
it_twarn
Reg status
register reset after
read operation
or PON fa lling edge
or PORN_VBAT.
mask_twarn
VDDOK
PORn 312.5 µs
(10* 32 Khz)
Under voltage detection
Operating voltage threshold value reached
PWREN
STw4810 Functional description
19/78
4.2.4 I2C Interface
The device suppo r ts two I2C bus interfaces. One main i nterface (SDA,SCL) contro ls power
managem ent and all pr ogrammable functions, the second inte rface (USBS DA , USBSCL) is
dedicated to USB control. STw4810 allows to work with only the main I2C interface to
control all the functions, including the USB, via USB_I2C_CTRL bit of power control register
(
Table 27
). I2C Interface is used to read status information from inside the device.
Flags, interrupt and write registers are used to configure the device functions (threshold,
clock division, output voltage, etc....). By default, the main I2C interface (SCL,SDA) controls
the main registers and USB I2C interface (USBSCL, USBSDA) controls USB registers.
Figure 6. I2C interface block diagram
Both I2C are configured as slave serial interface compatible with I2C registered trademar k
of Phillips Inc. (version 2.1).
I2C interface description
STw4810 I2C is a slave serial interf ace with a serial data line (SD A or USBSD A) and a serial
clock line (SCL or USBSCL):
SCL / USBSCL: input clock used to shift data
SDA / USBSDA: input/output bidirectional data transfers
It is composed of:
One filter to reject spikes on the bus data line and preserve data integrity
Bidirectional data transfers up to 400kbit/s (Fast-mode) via SDA or USBSDA
signal
The SDA or USBSDA signal contains the input/output control and data signals that are
shifted in the device, MSB first. The first bit must be high (START) followed by the Device ID
(7 bits) and Read/Write bit control (1 indicates read access, a logical 0 indicates a write
access).
Device ID in write mode: 5Ah (01011010)
Device ID in read mode: 5Bh (01011011)
Then STw4810 sends an acknowledge at the end of an 8 bits transfer. The next 8 bits
correspond to the register address f ollowed by another acknowledge. The 8 bits data field is
sent last, followed by a last acknowledge.
Main registers
SDA
USBSCL
SCL
MUX
SDA or USBSDA
SCL or USBSCL
USBSDA USB registers
SDA
SCL
usb_i2c_ctrl
Functional description STw4810
20/78
I2C interface modes
Figure 7. Control interface: I2C format
Figure 8. Control interface: I2C timing
Table 3. Device ID
b7 b6 b5 b4 b3 b2 b1 b0
AdrID6 AdrID5 AdrID4 AdrID3 AdrID2 AdrID1 AdrID0 R/W
Table 4. Register address
b7 b6 b5 b4 b3 b2 b1 b0
RegADR7 RegADR6 RegADR5 RegADR4 RegADR3 RegADR2 RegADR1 RegADR0
Table 5. Register data
b7 b6 b5 b4 b3 b2 b1 b0
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0
DEVICE ADDRESS
0 1 0 1 1 0 1 0 REGn ADDRESS
REGn Data In
WRITE
SINGLE BYTE
START
ACK ACK
ACK
STOP
DEVICE ADDRESS
0 1 0 1 1 0 1 0 REGn ADDRESS
START
ACK ACK
DEVICE ADDRESS
0 1 0 1 1 0 1 1 REGn Data Out
START
ACK NO ACK
RANDOM ADDR
SINGLE BYTE
READ
DEVICE ADDRESS
0 1 0 1 1 0 1 0
REGn ADDRESS
START
ACK ACK DEVICE ADDRESS
0 1 0 1 1 0 1 1
START
Reg n Data Out ACK NO A CK
STOP
m+1 data bytes
ACK Reg n + m D ata Out
RANDOM ADDR
MULTI BYTE
READ
ACK
StopStart repeatedStop
tbuf thd_statftlow
tr
thigh
thd_dat tsu_dat
Start
SDA
SCL
tsu_sta
thd_sta tsu_sto
USBSDA
USBSCL
STw4810 Functional description
21/78
4.2.5 Control registers
Control registers have the following functions:
Select level of regulation for multimedia processor supply
Control the USB interface
Control the SD/MMC/SDIO interface
Control the state machine
Table 6. Register general information
Address Comment I2C control
00h to 10h USB Registers (
Table 9
to
Table 17
) USBSDA / USBSCL or SDA / SCL (1)
11h SD MMC Control register (
Table 18
) SDA / SCL
12h to 1Dh Test registers
1Eh to 1Fh Power control registers (
Table 19
to
Table 27
) SDA / SCL
20h twarning register (
Table 28
) SDA / SCL
1. Controlled by USB_I2C_CTRL bit of Power control register (
Table 27
)
Table 7. Register summary
RegisterAddr.7 6543210
Vendor ID 00h1 0000011
01h0 0000100
Product ID 02h0 0010000
03h0 1000000
USB control
register 1 04h
05h Not used uart_en oe_int_
en bdis_
acon_en not used dat_se0 suspend speed
USB control
register 2 06h
07h vb us_ chr g vbus_
dischrg vbus_
drv id_gnd dn_
pulldown dp_
pulldown dn_
pullup dp_
pullup
USB interrupt
source 08h cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
USB interrupt
latch 0Ah
0Bh cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
USB interrupt
mask false 0Ch
0Dh cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
USB interrupt
mask true 0Eh
0Fh cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vld vbus_vld
USB EN 10h Not used usb_en not used
SD MMC control 11h pdn_ vaux it_warn
monitori
ng_vio_
vmem_
vcore
gpo2 gpo1 sel_vmmc<1:0> pdn_
vmmc
Twarning 20h Not used mask_
twarn
Functional description STw4810
22/78
Registers controlled by I2C USB bus
The registers described in this chapter are controlled through the USB serial I2C interface,
USBSC L and USBSDA balls.
These registers could also be controlled through the main I2C interface, SCL and SDA balls
by setting to “1” USB-I2C_CTRL bit in Power control register (
Table 23
).
Note: A bit of register 1 is set at “1” by writing a “1” at address 04h, is reset at “0” b y writing a “1” at
address 05h. This is also applicable for USB Control Register 2 (06h, 07h), USB Interrupt
register (0Ah,0Bh), USB Interrupt Mask False register (0Ch, 0Dh) and USB Interrupt Mask
True register (0Eh, 0Fh). Writing “0” at any address has not effect on the content of any
register.
Table 8. Power control register
Register Addr. 15 14 13 12 11 10 9 8
Power control 1Fh Not used reg address 2 bits
Register Addr. 7 6 5 4 3 2 1 0
Power control 1 Eh reg address 3 bits data din/dout 4 bits ena write
Table 9. USB register address
Address Register Type
00h - 01h Vendor ID R
02h - 03h Product ID R
04h set USB Control Register 1 R/W
05h clearh USB Control Register 1 R/W
06h set USB Control Register 2 R/W
07h clearh USB Control Register 2 R/W
08h USB Interrupt Source R
09h Not used
0Ah set USB Interrupt Latch R/W
0Bh clearh USB Interrupt Latch R/W
0Ch set USB Interrupt Mask False R/W
0Dh clearh USB Interrupt Mask False R/W
0Eh set USB Interrupt Mask True R/W
0Fh clearh USB Interrupt Mask True R/W
10h USB_EN R/W
STw4810 Functional description
23/78
USB control register 1
Table 10. Vendor ID and Product ID: Read only
Name Address Register Value
Vendor ID 00h 83h
Vendor ID 01h 04h
Product ID 02h 10h
03h 40h
Table 11. USB control register 1 (address = 04h set and 05h clearh)
Register 76543210
Bit name Not
used uart_en oe_int_
en bdis_
acon_en not used dat_se0 suspend speed
Type - R/W R/W R/W - R/W R/W R/W
Bits Name Value Settings Default
6 uart_en 0
1Inactive
UART logic buffers are enabled 0
5 oe_int_en 0
1Inactive
Allow to send interruption through USBOEn 0
4 bdis_acon_en 0
1Inactive (default)
Enable A-device to connect if B-device disconnect
detected: 0
2 dat_se0 0
1VP_VM USB mode
DAT_SE0 USB mode 0
1 suspend 0
1Inactive (default)
Put transceiver in low power mode 0
0 speed 0
1
Set rise and fall times of transmit
Low speed
Full speed 0
Functional description STw4810
24/78
USB control register 2
Table 12. USB control register 2 (Address = 06h set and 07h clearh)
Register 76543 210
Bit name vbus_
chrg vbus_
dischrg vbus_
drv id_gnd dn_
pulldown
dp_
pulldow
n
dn_
pullup dp_
pullup
Type R/W R/W R/W R/W R/W R/W R/W R/W
Bits Name Value Settings Default
7 vbus_chrg 0
1Inactive
Charge VBUS through a resistor 0
6 vbus_dischrg 0
1Inactive
Discharge VBUS through a resistor to ground. 0
5 vbus_drv 0
1Inactive
Provide power to VBUS 0
4 id_gnd 0
1Inactive
Connect ID ball to ground 0
3 dn_pulldown 0
1Inactive
Conne ct DN pul l-down 0
2 dp_pulldown 0
1Inactive
Conne ct DP pul l-d o w n 0
1 dn_pullup 0
1Inactive
Conne ct DN pul l-up 0
0 dp_pullup 0
1Inactive
Conne ct DP pul l-u p 0
STw4810 Functional description
25/78
USB interrupt source register
USB latch register
USB interrupt latch register bits indicate which sources have generate an interrupt.
Table 13. USB Interrupt source register (address = 08h)
Register 76543210
Bit name cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_
vld vbus_
vld
Type RRRRRRRR
Bits Name Value Settings Default
7cr_int 0
1Inactive
DP ball is above the carkit interrupt threshold 0
6 bdis_acon 0
1
Inactive
Set when bdis_acon_en is set, and transceiver
asserts dp_pullup after detecting B-device
disconnect.
0
5 id_float 0
1Inactive
ID ball float ing 0
4 dn_hi 0
1Inactive
DN ball is high 0
3 id_gnd_forced 0
1Inactive
ID ball gro und ed 0
2 dp_hi 0
1Inactive
DP assert ed during SRP, 0
1 sess_vld 0
1Session valid comparator threshold <0.8V or >4.4V
0.8V < Session valid comparator threshold < 4.4V 0
0vbus_vld 0
1A-device VBUS valid comparator threshold <4.4V
A-device VBUS valid comparator threshold >4.4V 0
Table 14. USB interrupt latch registers (address = 0Ah set and 0Bh clearh)
Register 76543210
Bit name cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_
vld vbus_
vld
Default 00000000
Type R/W R/W R/W R/W R/W R/W R/W R/W
Functional description STw4810
26/78
USB interrupt mask false register
USB interrupt mask false register bits enable transition from true to false.
USB interrupt mask true register
USB interrupt mask true register bits enable interrupts on transition from false to true.
USB EN register
Table 15. USB interrupt mask false register (address = 0Ch and 0Dh)
Register 76543210
Bit name cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vl
dvbus_vl
d
Default 00000000
Type R/W R/W R/W R/W R/W R/W R/W R/W
Table 16. USB interrupt mask true register (address = 0Eh and 0Fh)
Register 76543210
Bit name cr_int bdis_
acon id_float dn_hi id_gnd_
forced dp_hi sess_vl
dvbus_vl
d
Type R/W R/W R/W R/W R/W R/W R/W R/W
Table 17. USB EN register (address = 10h)
Register 76543210
Bit name Not used usb_en not used
Type ------R/W-
Bits Name Value Settings Default
1 usb_en 0
1Inactive
Enable USB PHY 0
STw4810 Functional description
27/78
Registers controlled by main I2C bus
I²C controlled registers are controlled through the main serial I2C interface, SCL and SDA
balls.
SD MMC control register
In Flash OTP two registers allow to program STw4810 energy management part.
These two registers are at address 1E and 1F and must be programmed with 1F register
first followed by 1E register.
Table 18. SD MMC control register (11h)
Register 76543210
Bit name pdn_
vaux it_warn
monitori
ng_vio_
vmem_
vcore
gpo2 gpo1 sel_vmmc<1:0> pdn_
vmmc
Type R/W R(1) R(1)
1. These bits are reset (0) after reading
R/W R/W R/W R/W
Bits Name Value Settings Default
7 pdn_vaux 0
1Inactive
Enable LDO vaux 0
6it_warn 0
1Below tem per a ture thresh old
Above temperature threshold 0
5monitoring_vio_
vmem_vcore 0
1Outputs in the good range
Outputs lower than expected on vio_vmem or vcore 0
4 gpo2 0
1Output GPO2 HZ
Output GPO 2 Lo w 0
3 gpo1 0
1Output GPO1 HZ
Output GPO1 low 0
[2:1] sel_vmmc<1:0>
00
01
10
11
1.8V selection
1.8V selection
2.85V selection
3V selection
00
0pdn_vmmc 0
1Inactive
Enable SD/MMC or SDIO function. 0
Functional description STw4810
28/78
Power control register at address 1Eh
Power control register at address 1Fh
Power control register mapping
Caution: Only the latest value written in register at address 1E/1F can be read.
Table 19. Power control register - General information (Address = 1Eh)
Register 76543210
Bit name reg address 3 bits LSB’s data din/dout 4 bits EN
Type R/W R/W R/W
Bits Name Value Settings Default
[7:5] reg address 3
bits See
Table 21
“Address” co lumn (LSB’s). 0
[4:1] data din/
dout 4 bits See
Table 21
control register 0
0EN 0
1Read enabled
Write enab l ed 0
Table 20. Power control register - General information (Address = 1Fh)
Register 15 14 13 12 11 10 9 8
Bit name Not used reg addres s 2 bits
MSB’s
Type R/W
Bits Name Value Settings Default
[9:8] reg address 2
bits MSB’s See
Table 21
“Address” column (MSBs). 0
Table 21. Power control register mapping
Address 1Fh Address 1Eh
Comments
reg address
Not used 2 bits
MSB’s
3 bits
LSB’s
data din/dout
4 bits EN
1514131211109876543210
00h to 04h Test purpose
05h to 0Ah Setting See
Table 22
to
Table 27
0Bh to 1E Te st purpose
STw4810 Functional description
29/78
Power control register at address 05h
Table 22. Power control register at address 05h
Address 1Fh Address 1Eh
15141312111098765 43210
Not used 00101 vcore_sel [3:0] EN
Bits Name Value Settings Default
[4:1] vcore_sel [3:0]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
= 1.00V
= 1.05V
= 1.10V
= 1.15V
= 1.20V (default)
= 1.22V
= 1.24V
= 1.26V
= 1.28V
= 1.30V
= 1.32V
= 1.34V
= 1.36V
= 1.38V
= 1.40V
= 1.50V
0100
Functional description STw4810
30/78
Power control register at address 06h
Power control register at address 07h
Table 23. Power control register at address 06h
Address 1Fh Address 1Eh
15141312111098765 4 3 2 1 0
Not used 00110
vpll_sel
[0] vaux_sel
<1:0> usb_
i2c_ctrl EN
Bits Name Value Settings Default
4vpll_sel[1:0]
on 06h and 07h
address
00
01
10
11
= 1.05V
= 1.2V
= 1.3V
= 1.8V
11
[3:2] vaux_sel[1:0]
00
01
10
11
= 1.5V
= 1.8V
= 2.5V
= 2.8V
00
1 usb_i2c_ctrl 0
1USB I2C interface controls USB registers
Main I2C interface controls USB registers 0
Table 24. Power control register at address 07h
Address 1Fh Address 1Eh
15141312111098765 4 3 2 1 0
Not used 00111en_vpllnot
used en_
vcore vpll_sel
[1] EN
Bits Name Value Settings Default
4 en_vpll 0
1Disabled / VPLL = OFF
Enabled / VPLL = ON(1)
1. No soft start feature at supply enabled after a disabled/enabled sequence
1
2 en_vcore 0
1Disabled / VCORE = OFF
Enabled / VCORE = ON(1) 1
1 vpll_sel[1] - See
Table 23
-
STw4810 Functional description
31/78
Power control register at address 08h
Power control register at address 09h
Table 25. Power control register at address 08h
Address 1Fh Address 1Eh
15141312111098765 43210
Not used 01000
en_clk
square
r
en_mo
nitorin
g
en_
vana not
used EN
Bits Name Value Settings Default
4 en_clock_squarer 0
1Disabled
Enabled (sine wave signal input) 0
3 en_monitoring 0
1Disabled / MONITORING = OFF
Enabled / VCORE & VIO_VMEM monitoring = ON 1
2 en_vana 0
1Disabled / VANA = OFF
Enabled / VANA = ON 1
Table 26. Power control register at address 09h
Address 1Fh Address 1Eh
15141312111098765 43210
Not used 01001
vaux_
sleep not
used not
used not
used EN
Bits Name Value Settings Default
4 vaux_sleep 0
1
When PWREN is low:
VAUX stays in normal mode
VAUX goes in sleep mode (default) 1
2 Not used Reserved 1
1 Not used Reserved 1
Functional description STw4810
32/78
Power control register at address 0Ah
Twarning register
Table 27. Power control register at address 0Ah
Address 1Fh Address 1Eh
15141312111098765 43210
Not used 01010
vaux_
force_
sleep
not
used
vio_
vmem_
force_
sleep
vcore_
force_
sleep EN
Bits Name Value Settings Default
4 vaux_force_sleep 0
10: VAUX in normal mode
1: VAUX goes in sleep mode (for any PWREN level) 0
2vio_vmem_force_
sleep 0
1
0: VIO_VMEM in normal mode
1: VIO_VMEM goes in sleep mode (for any PWREN
level) 0
1 vcore_force_sleep 0
10: VCORE stays in normal mode
1: VCORE goes i n slee p mod e (f or any PWREN level) 0
Table 28. Twarning register (Address = 20h)
Register 76543210
Bit name Not used mask_
twarn
Type -R/W
Bits Name Value Settings Default
0 mask_twarn 0
1Inactive
Mask TWARN interruption (it_twarn bit) through
VDDOK 0
STw4810 Functional description
33/78
4.2.6 IT generation
STw4810 has three interrupt balls:
IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is
plugged this interrupt is activated to wake up the host or the modem, depends of application
(active low).
USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor
VDDOK: This ball has two functions:
- When high, it indicates that VIO_VMEM and VCORE output voltages are within the right
range and that the device internal temperature is below the maximum allowed temperature.
- When low, it indicates that output regulators (VCORE or VIO_VMEM) are not regulated
properly or PWREN = “0”, or that the temperature is above the allowed threshold (see
Thermal shut-down
section). The interruption source in the application register (address
11h) needs to be checked.
4.2.7 Clock switching and control
This block generates the clock used by the DC/DC converter (USB charge pump, step-down
VIO_VMEM and step-down VCORE). STw4810 is able to sustain the master clock
frequen ci es of 26 MHz, 19.2 MHz and 13 MHz. It can als o sus tai n dedi ca ted MAS TER_ C LK
signal in the frequency range of 750KHz to 1MHz. If the clock is not detected the internal
oscillator is automatically selected.
Note: When present the Master clock should remain connected up to sleep mode.
Figure 9. Clock switching between master and internal clock (1)
INT_OSC
PON
INT_OSC_OK
MASTER_CLK_OK
PDN_INT_OSC
CONTROL_SWITCH
STEP_DOWN_CLK
Third rising edge after switching
internal clock external clocktransition
* Phase delay is less than 90 between int and ext clock
MASTER_DIV_CLK
Functional description STw4810
34/78
4.3 Power management module
STw4810 includes several regulators that supply the multimedia processor and its
peripherals. All regulators can work in different modes depending on the processor needs.
When th e STw4810 is in ‘low current mode’”, the output curren t is reduced to save energy
via the lower quiescent current. The nominal mode is called high power mode (HPM). The
mode is selected by PWREN signal according to both multimedia processor and STw4810
state.
When PWREN = “0”, sleep mode is sele cted. HPM is selected as default when PWREN =
“1”.
Each regulator has a dedicated battery power supply. It can be powered down by a signal
called PDN_regulator_name as shown in the
Figure 2: STw4810 block diagram
. In this
mode, the regulator is switched off and only a leakage current is present (max. 1µA).
VCORE, VAUX and VPLL output voltages are programmable, through main I2C interface,
using the “Regulator”_SEL[x:0] bits of the power control registers (
Table 22
to
Table 27
).
In addition, an output current limitation prevents high current delivery in case of output short
circuit.
All multi media pr ocessor power sup plies have the same sof t start to prevent leak age in the
multimedia processor device during the start-up phase. There is an exception with VAUX
which can be started independently.
4.3.1 Bandgap, biasing and references
Figure 10. Block diagram of biasing and references of the device
BG
All internal
references
VREF_18
All internal
biasing
Bias generat or
Voltage reference
contro l
STw4810 Functional description
35/78
4.3.2 VCORE regulator: DC/DC step-down regulator
This regulator drives the core of the multimedia processor. VCORE is a DC/DC step-down
regulator that generates the regulated pow er supply with very high efficiency. The 15 voltage
levels enable dynamic voltage and frequency scaling suitable for any supply voltage of
CMOS process, they also follow the processor process roadmap. The regulated output
voltage levels are adjustable by the power control registers (
Table 22
), via the main I2C
interface (SDA, SCL).
The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to
generate the switching clock of the SMPS. When this clock is not available, regulators run
the internal RC oscillator.
The DC/DC step-down regulator has the following main features;
Programmable output voltage, 15 levels from 1.0 V to 1.5 V (VCORE_SEL [3:0] bits of
power control register -
Table 22
)
3 power domains:
‘Normal mode’ when multimedia processor is in run mode, 600 mA full load
‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current
capability.
Fast switching from low current to normal mode.
The regulator is in ‘low current mode’ when multimedia processor is in sleep
mode. PWREN signal indicates that the multimedia processor is about to s witch to
run mode. VDDOK signal indicates to the multimedia processor that all supplies
are in the specified range.
Note: The definition of sleep mode is given in section 4.2.3: Sleep mode.
‘Po wer down mode’ or ‘standby mode’ when regulator is switched off, no consumption
(EN_VCORE bit of power control register -
Table 28
)
Soft start circuitry at start up, from power off to normal mode, when PON ball changes
from “0” to “1”.
Default setting defined by start-up configuration.
4.3.3 VIO_VMEM regulator: DC/DC step- down regulator
VIO_VMEM step-down regulator has the same structure than VCORE.
The VIO_VMEM regulator supplies the IOs of the multimedia processor and its peripherals.
This regulator can be used to supply the memories working with the multimedia processor,
such as DDR-SDRAM. A switched mode power supply - voltage down converter is used to
generate the 1.8 V regulated power supply with very high efficiency.
The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to
generate th e S MP S switchi ng clo ck. Wh en th is c lock is n ot available, regul ator s ca n run the
internal RC oscillat or.
Main features
Fixed 1.8 V output voltage
Two power domains:
‘Normal mode’ when multimedia processor is in run mode - 600 mA full load
‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current
capability.
Functional description STw4810
36/78
Fast switching from low current to normal mode.
The regulator is in ‘low current mode’ when multimedia processor is in sleep
mode. PWREN signal indicates that the multimedia processor is about to s witch to
run mode. VDDOK signal indicates to the multimedia processor that all supplies
are in the specified range.
Note: The definition of sleep mode is given in 4.2.3: Sl eep mode section.
Soft start circuitry at start up, from power off to normal mode, when PON ball changes
from “0” to “1”.
Default setting defined by start-up configuration.
4.3.4 VPLL
This LDO is dedicated to the multimedia processor PLL (1.05 V, 1.2 V, 1.3 V, 1.8 V) power
supply with 10 mA max full load (Power Control Registers -
Table 27
and
Table 28
).
Main features
Programmable output voltage, (VPLL_SEL[1:0] bits of power control register -
Table 27
and
Table 28
)
Two power domains:
‘Nor m al mode’ 10 m A full load
‘Power down mode’ or ‘standby mode’ when regulators are switched off and there
is no power consumption (EN_VPLL bit of power control register -
Table 28
)
Soft start circuitry at start up, from power off to normal mode, when PON ball changes
from “0” to “1”.
Default setting defined by start-up configuration.
4.3.5 VANA
This LDO is dedic ated to the mul timedia p rocessor an alogue funct ion (2.5 V ) power supply
with 10 mA full load.
Main features:
2.5 V output voltage,
Two power domains
‘Nor m al mode’ 10 m A full load
‘Power down mode’ or ‘standby mode’ when regulators are switched off and there
is no power consumption (EN_VANA bit of power control register -
Table 29
),
Default setting defined by start-up configuration.
STw4810 Functional description
37/78
4.3.6 VAUX
This LDO is dedicated either to the multimedia processor input/output signals or to the
auxiliary devices. Power supply values are 1.5 V,1.8 V, 2.5 V, 2.8 V with 150 mA full load and
0.5 mA in sleep mode. In case of 1.5 V on the output, this LDO can be supplied by using
VIO_VMEM DC/DC converter (1.8 V). One pad feed-back is used.
Main features:
Programmable output voltage, 4 levels
(VAUX_SEL[1:0] bits of Power control register -
Table 27
)
Three power domains:
‘Normal mode’ when multimedia processor is in run mode, 150 mA full load
‘Low current mode’ when multimedia processor is in sleep mode, 0.5 mA current
capability.
Fast switching from low current to normal mode.
Note: Definition of sleep mode is given in 4.2.3: Sleep mode section.
‘Power down mode’ or ‘standby mode’ when regulator is switched off, no power
consumption (PDN_VAUX bit of SD MMC control register -
Table 18
)
Default setting defined by start-up configuration
4.3.7 Power supply monitoring
This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM
drop below the threshold, the multimedia processor is reset.
This feature can be desactivated by setting EN_MONITORING bit of Power control register
(
Table 29
) to “0”.
4.3.8 Power supply domains
Table 29
lists the register bits that control STw4810 supply domains for each supply.
Note: More details on VMMC supply are given in Section 4.5
Table 29. Power supply domains
Supply
name Description
Supply domains
Normal Sleep Power down
VCORE STEP-DOWN 15 values
VCORE_SEL[3:0] VCORE_SLEEP
VCORE_FORCE_SLEEP EN_VCORE
VIO_VMEM STEP-DO WN 1 .8 V VIO_MEM_SLEEP
VIO_VMEM_FORCE_SLEEP
VPLL LDO 4 values
VPLL_SEL[1:0] EN_VPLL
VANA LDO 2.5 V EN_VANA
VAUX LDO 4 values
VAUX_SEL[1:0] VAUX_SLEEP
VAUX_FORCE_SLEEP PDN_VAUX
VMMC LDO 3 values
SEL_VMMC[1:0] PDN_VMMC
Functional description STw4810
38/78
4.3.9 Thermal shut-down
A thermal sensor is used to monitor the die temperature.
As soon as the die temperature exceeds the thermal w arning rising threshold, VDDOK
ball goes to “0” and ‘it_warn’ bit is set to “1” (SD MMC control register -
Table 18
). The
IC turns back VDDOK ball to “1” and ‘it_warn’ bit to “0” when the device temperature
drops below the thermal warning falling threshold of the thermal sensor.
A second thermal detection level, thermal shutdown threshold, puts all STw4810
supplies OFF, the supplies goes back to goes back to ON state when the temperature
is under the thermal shutdown threshold and after a new startup phase.
Figure 11. Thermal threshold temperatures for ‘it_warn’ bit and VDDOK ball
Table 30. Thermal threshold values
Description Min Typ Max Unit
Thermal warning threshold
Rising threshold 134 140 149 °C
Falling threshold 117 123 131 °C
Thermal shutdown threshold
Threshold 149 155 164 °C
‘it_w arn’ bit
VDDOK ball
Temperature
Rising warning
threshold Shutdown
threshold
All supplies
are turn “OFF”
STw4810 Functional description
39/78
4.4 USB OTG module
This transceiver complies with the USB specification:
Universal Serial Bus spe ci fi ca t ion revision 2.0
‘On the Go’ supplement to the USB specification revision 1.0-a
Car kit interface specification (see: OTG transceiver specification revision 0.92)
The USB OTG transceiver has two modes: USB mode and U ART mode. It includes:
Full and low speed transceiver (12 Mbit/s and 1.5 Mbit/s data rate)
Support data line and VBUS pulsing session request
Host Negotiation Protocol (HNP) command and status register
Charge pump regulator (5 V at 100 mA) to supply VBUS line of the USB cable
VBUS pull-up and pull-down resistors as defined by Session Request Protocol (SRP)
VBUS threshol d com parator s
VUSB LDO internal regulator which provides power supply for the bus driver and
receiver.
ID line detector and interrupt generator
Dedicated I²C serial control interface
Functional description STw4810
40/78
4.4.1 Block diagram
Figure 12. USB OTG transceiver block diagram
VUSB
VBAT_USB
VUSB_LDO
VBAT_DIG
VMINUS_DIG
out_diff_Rx
Control
Registers
TRANCEIVER
VBAT_USB
ID
CP CN
VBUS
DP
DN
CHARGE
PUMP
5V - 100mA
OE_TP_INT
DAT_VP
SEO_VM
RCV
suspend
VP
VM
id_float
id_gnd
vbus_vld
sess_vld
vbus_session_end
DP
VBUS_MONITOR
DP_MONITOR
VBUS > 4.4 V
2V < VBUS < 4.4 V
VBUS < 0.8V
ID Detector
Diff Tx
Diff Rx
SE_DP
SE_DN
DECODER
SINGLE
RXD
RXD
speed
dat_se0
bdis_acon_en
oe_int_en
uart_en
dp_pullup
dn_pullup
dp_pulldown
dn_pulldown
id_gnd_forced
vbus_drv
vbus_dischrg
vbus_chrg
dp_hi
id_gnd
dn_hi
bdis_acon
Gnd
RA_BUS_IN
CLK
REF
RPU_DN
RPU_DP
RPD_DN
RPD_DP
R_VBUS_SRP
R_VBUS_PD
vbus_chrg
vbus_dischrg
dn_pullup
dn_pulldown
id_gnd
dp_pullup
dp_pulldown
USBVP
USBVM
USBOEn
USBRCV
cr_int
Interrupt
Control
Register
vbus_vld
sess_vld
id_float
cr_int
USB_INTn
USBSCL
USBSDA
suspend
vbus_drv
ENDED
IT_WAKE_UP
Plug detect
Management sess_vld
RID_PU
R
4.7 R
R
SCL
SDA
DP < [0.4 to 0.6] V
5.7 R
R
OR
0.85*ID
0.15*ID
100 mA
usb_i2c_ctrl
SW_RESETn
usb_en
VBAT_DIG
VBAT_USB
STw4810 Functional description
41/78
VBUS monitoring
These comparators monitor the VBUS voltage. The y detect the current status of the VBUS
line:
VBUS > 4.4 V means VBUS_VALID
2 V<VBUS<4.4 V means SESSION_VALID
VBUS<0.8 V means SESSION_END
These three bits generate an interrupt when active (see USB interrupt registers).
VUSB LDO: Internal regulator which provides power supply for the bus driver and receiver.
ID detector: This block detects the status of the ID line. It is capable of detecting three
different states of line: ball is floating ID_FLOAT high, ball is tied to ground ID_GND high and
ball ID is grounded via resistor. This detection generates interrupts (see USB interrupt
registers).
Transceiver: The driver can operate in sev eral different modes. It can act as a classical low-
speed and full-speed differential driver, as two independent single-ended drivers or as a
single-ended driver in UART mode. This block contains one differential receiver for the USB
mode of operation and two single-ended receivers for USB signaling and UART mode.
DP monitor: This block is used to detect car kit peripheral (0.6 V on DP).
Pull up and pull down resistor: Configurable integrated pull-up and pull-down resistor of
data line and VBUS.
4.4.2 Modes and operations
Power modes
The transc eiver power modes are:
Active power mode
Suspended power mode
Power down mode
In suspended power mode the differential transmitter and receiver are turned off to save
power but the USB interface is still active (pull-up and pull-down on, VBUS on). In power
down mode, only the serial interface is active and the transceiver is able to detect SRP. In
power down mode, ID ball sensing can be turned on/off via a control bit in the control
registers.
USB modes
The two transceiver modes are:
DAT_SEO mode (dat_se0 = 1 in USB control register 1 -
Table 11
)
VP_VM mode (dat_se0 = 0 in USB control register 1 -
Table 11
)
Functional description STw4810
42/78
Data transmission The transceiver transmits USB data in the following conditions for USB
control register 1 (
Table 31
,
Table 32
):
uart_en=0; oe_int_en=0
If oe_int_en = 1 and suspend=1 (USB control register 1 -
Table 11
), the USBOEn ball
becomes an output used to generate an IT to multimedia processor.
Table 31. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0
USB mode
(DAT_SE0)
Inputs Outputs
Comments
USBVP USBVM DP DN USBRCV
1 (DAT_SE0 mode) 0 0 0 1 Not used Single ended data (zero sent)
1 (DAT_SE0 mode) 1 0 1 0 Not used Single ended data (1 sent)
1 (DAT_SE0 mode) x 1 0 0 Not used Force single ended zero
0 (VP_VM mode) 0 0 0 0 DIFF_RX
DAT_VP drives the level of DP
SE0_VM drives the level of DN
0 (VP_VM mode) 1 0 1 0 DIFF_RX
0 (VP_VM mode) 0 1 0 1 DIFF_RX
0 (VP_VM mode) 1 1 1 1 DIFF_RX
Table 32. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1
USB mode (dat_se0)
Inputs Outputs
Comments
USBVP USBVM DP DN USBRCV
1 (DAT_SE0 mode) 0 0 0 1 not used Single ended data (zero sent)
1 (DAT_SE 0 mode) 1 0 1 0 not used Single ended data (1 sent)
1 (DAT_SE0 mode) x 1 0 0 not used Force single ended zero
0 (VP_VM mode) 0 0 0 0 0 (off)
Driver are suspended
0 (VP_VM mode) 1 0 1 0 0 (off)
0 (VP_VM mode) 0 1 0 1 0 (off)
0 (VP_VM mode) 1 1 1 1 0 (off)
STw4810 Functional description
43/78
The transceiver receives USB data in the following conditions:
uart_en = 0 (USB control register 1); oe_int_en = 1
UART mode
UART mode is entered by setting the ‘uart_en’ bit to 1 (USB control register 1 -
Table 11
).
The transceiver contains two digital logic level translators between the following balls:
TXD signal: from USBVM to DN
RXD signal: from DP to USBVP
When not in UART mode the level translators are disabled.
Table 33. Data receiver via USB control register 1
USB mode (dat_se0) Suspend
Inputs Outputs
DP DN USBVP USBVM USBRCV
1 (DAT_S E0 mo de) 0 0 0 Diff rcv 1 1 not used
1 (DAT_S E0 mo de) 0 1 0 1 0 not us ed
1 (DAT_S E0 mo de) 0 0 1 0 0 not us ed
1 (DAT_S E0 mo de) 0 1 1 Diff rcv 1 0 not used
1 (DAT_S E0 mo de) 1 0 0 0 1 not us ed
1 (DAT_S E0 mo de) 1 1 0 1 0 not us ed
1 (DAT_S E0 mo de) 1 0 1 0 0 not us ed
1 (DAT_S E0 mo de) 1 1 1 1 0 not us ed
0 (VP_VM mode) 0 0 0 0 0 diff rcv 1
0 (VP_VM mode) 0 1 0 1 0 1
0 (VP_VM mode) 0 0 1 0 1 0
0 (VP_VM mode) 0 1 1 1 1 diff rcv 1
0 (VP_VM mode) 1 0 0 0 0 not used
0 (VP_VM mode) 1 1 0 1 0 not used
0 (VP_VM mode) 1 0 1 0 1 not used
0 (VP_VM mode) 1 1 1 1 1 not used
Functional description STw4810
44/78
VBUS monitoring and control
The monitoring is made of three comparators that determine if the VBUS voltage is at a valid
level for operation:
VBUS valid: It corresponds to the minimum le vel on VBUS. Any v oltage on VBUS below
the threshold is considered to be a fault. During power-up, it is expected that this
comparator output is ignored.
VBUS session valid: This threshold is necessary for session request protocol to detect
the VBUS pulsing.
VBUS session end: Session is ended. In this USB block, a B-device session end
threshold is defined within the range [0.2; 0.8] V. The reason for a low 0.2 V limit is that
the leakage current could charge the VBUS up to 0.2 V (maximum).
When the A-device (default master) is power supplied and does not supply VBUS, it
presents an input impedance RA_BUS_IN on VBUS of no more than 100 kΩ. If the A-device
respo nds to the VBUS p ulsing meth od of SRP, t hen the input i mpedance RA_BUS_IN may
not be lower than 40 kΩ.
When the A-device supplies power, the rise time TA_VBUS_RISE on VBUS to go from 0 to
4.4 V is less than 100 ms when driving 100 mA and with an external load capacitance of
10 µF (in addition to VBUS decoupling capacitance). If VBUS does not reach this voltage
within TA_VBUS_RISE maximum time, it indicates that the B-device is drawing more current
that the A-device is capable of providing and an over-current condition exists. In this case,
the A-device turns VBUS off and terminates the session.
VBUS capacitance
A dual-role device must have a VBUS capacitance CDRD_VBUS value comprised between
1 µF and 6.5 µF (see charge pump specification). The limit on the decoupling capacitance
allows a B-device to differentiate between a powered-down dual-role device and a powered-
down standard host. The capacitance on a host is higher than 96 µF.
Data line pull-down resistance
When an A-device is idle or acting as host, it activates the pull-down resistors RPD on both
DP and DN lines.
When an A-device is acting as peripheral, it disables RPD on DP, not DN.
The A-device can disable both pull-down resistors during the interval of a packet
transmission when acting as either host or peripheral.
The two bits of USB control register, dn_pulldown and dp_pulldown (
Table 12
) are used to
connect/disconnect the pull-down resistors.
When the line is not used, the pull-down is activated and the maximum level on this ball
should not exceed 0.342 V.
Data line pull-up resistance
Full-speed and low-speed devices are differentiated by the position of the pull-up resistor
from the peripheral device. A pull-up resistor is connected to DP line for a full-speed device
and a pull-up resistor is connected to DN line for a low-speed device. The pull-up resistor
value is in the range of 900 Ω to 1600 Ω when the bus is idle and 1425 Ω to 3100 Ω when the
upstream device is transmitting.
STw4810 Functional description
45/78
The two bits of USB control register dp_pullup and dn_pullup (
Table 12
) are used to
connect/disconnect pull-up resistors.
Session Request Protocol (SRP)
To save pow er, the O TG supplement allows an A-de vice to lea v e the VBUS turned off when
the bus is not being used. If the B-device wants to use the bus when VBUS is turned off,
then it requires the A-device to supply power on VBUS using the Session Request Protocol
(SRP).
Initial conditions
The B-device does not attempt to start a new session until it has determined if the A-device
has detected the end of the previous session. The B-device must ensure that VBUS is below
VBUS_SESSION_END before requesting a new session.
Additionally, the B-device switches a pull-down resistor (R_VBUS_PD) from VBUS to
ground in order to quicken the discharge process as long as the B-device does not draw
more than 8 mA from VBUS. R_VBUS_PD is activated by bit ‘vbus_dischrg’ of USB control
register 2, (
Table 12
).
When the B-device detects that VBUS is below the VBUS_SESSION_END and that both
DP and DN have been low (SEO) for at least 2 ms, then any previous session on the A-
device is over and a new session can start.
Data-line pulsing
To indicate a request for a new session using the data line pulsing, the B-device turns on the
DP pull-up resistor for 5 ms to 10 ms (only at full speed, no DN pulsing). The DP pull-up
resistor is connected to VUSB (regulator output voltage). Timing is controlled by the USB
digital control.
VBUS pulsi ng
To indicate a request for a new session using the VBUS pulsing method, the B-device waits
for the initial conditions and then drives VBUS. VBUS is driv en for a long enough period for a
capacitance on VBUS that is smaller than 2x6.5 µF to be charged to 2.1 V while a
capacitance on VBUS higher than 97 µF is not charged above 2.0 V. In this USB block, the
VBUS_SESSION_VALID threshold is used to determine if an A-device is DRD (dual role
device) or a standard host.
The B-device VBUS pulsing block is designed so that the maximum dra wn current does not
exceed 8 mA. In this USB block, the pull-up is 600 Ω +/- 30% .
If a B-device is attached to a standard device, the pull-up must be disconnected after the
defined timing to prevent damage of standard hosts not designed to withstand a voltage
externally applied to VBUS.
Session Request Protocol (SRP)
If the B-device is in correct condition to start a new session, it first performs data line
pulsing, followed by VBUS pulsing. When VBUS next crosses the SESSION VALID
threshold, the B- device considers a session to be in progress and asserts the DP or DN
data line within 100 ms. After SRP initialization, the B- device is set up to wait for at least 5
seconds f or the A-device to respond before informing the user that the consumption attempt
has failed.
Functional description STw4810
46/78
Host Negotiation Protocol (HNP)
At the start of a session, the A-device has the role of host as default. During a session, the
host role can be transferred back and forth between the A-device and the B-device any
number of times using the Host Negotiation Protocol (HNP). The process for this exchange
of host role is described in the “On the Go Supplement to the USB 2.0 Specification” (rev
1.0).
ID detector
In either active or suspended power mode, the ID detector detects the condition of the ID
line and differentiates between the following three conditions:
ID ball floating: (e.g. with USB B-device connected)
ID ball shorted to ground: (e.g. with USB A-device connected)
ID ball connected to ground through resistor RACC_ID: (e.g.with an accessory).
The transceiver pulls the ID ball to VID_HI (VBAT) through a resistance of RID_PU when an
accessory is plugged in. In this case, the ID ball is externally connected to ground via
Racc_ID resistor.
Two comparators are used to detect the ID vo ltage: VID_GND and VID_FLOAT.
The ID detector also has a switch that can be used to ground the ID ball. This switch is
controlled by id_gnd bit of USB control register 2 (
Table 12
); This pull-down i s use d for
CEA_KARKIT purposes.
Car kit interrupt detector
The transceiver is able to detect when the DP line is below the Carkit Interrupt threshold
‘cr_int’, (see USB interrupt register) (refer to OTG specifications, Rev 0.92, §2.7, p13).
Charge pump
From VBAT_USB, the char ge pump s upplie s VBUS, ‘vbus_dr v’ bit of USB contr ol regi ster 2
(
Table 12
) is used to enable/disable the charge pump.
LDO USB
From VBAT_USB, a LDO provides VUSB supply, ‘usb_en’ bit of USB_EN register (
Table 17
)
is used to enable/disable the VUSB LDO.
STw4810 Functional description
47/78
4.4.3 USB enable control
STw4810 OFF
In this state, the ov erall system is able to detect USB connection through IT_W AKE_UP ball
and with VBUS session valid comparator and ID detection ON.
IT_WAKE_UP is activated (low level) in either of the two following cases:
When Mini A connector cable is connected and ID goes low
When activity on VBUS, i.e. a mini B is connected and is able to communicate.
This mode is used to wake-up the modem platform. In this configuration, USBINTn
ball is not enabled.
STw4810 ON, USB driver not enabled
The USBINTn is now enabled.
If the USB cable is already connected while STw4810 is starting, the USB driver will be
enabled when power management is ready.
Wake-up USB driver conditions
A plug-in on a mini A-de vice and active ID detector
B de vice is connected and ready to start data transfer, VBUS is driven high
(session valid high)
Activity on USB registers (00h to 0Fh -
Table 9
to
Table 16
). Multimedia processor
ready to wake-up and set-up USB PHY.
Possibility to force PHY high (enable) when writing usb_en = 1 in USB EN register
(
Table 17
)
Set condition: one among the following possibilities
External it_wake_up =0
usb_en = 1 by writing to I²C USB interface
Access to any other USB register (00h to 0Fh)
Power down USB driver conditions in order to set the USB driver to power down mode:
it_wake_up = 1, and only then
Set usb_en bit of USB EN register (
Table 17
) to “0”
Functional description STw4810
48/78
4.5 SD/MMC/SDIO module
This block provides the power supply (1.8 V, 2.85 V or 3 V) and signal shifting functions
required to connect any of the f ollowing peripherals to the multimedia processor:
–SD card
MMC cards, low and 52 MHz high speed
SDIO cards (except SDIO card version 1.0 / Vsupply range: [3.1; 3.6] V
Cards detection is automatically done by the multimedia processor system. Following a card
detection, the multimedia processor starts the SD/MMC application by writing in the SD
MMC control re gister (
Table 18
) to start LDO VMMC and then starts the protocol
initialization.
The module includes:
1.8 V, 2.85 V or 3 V voltage regulators (150 mA)
Five bidirectional level shifter channels compatible with 1.8 V, 2.85 V or 3 V
Two unidirectional lines f or clock: multimedia processor to card and feedback clock
to multimedia processor for synchronization.
Four control signals for channel direction
Figure 13. SD MMC block diagram
SD/ MMC/SDIO INTERFACE
1.8V,2.85V,3V
VBAT_VMMC
VMMC
DRIVER
Level
Shifter
LATCHCLK
CLKOUT
DATAOUT0
MCCLK
MCFBCLK
MCCMDDIR
MCDATA0DIR
MCDATA31DIR
MCCMD
MCDATA[3:1]
MCDATA0
SD, MMC
SDIO OR
CARDS
CMDOUT
5 * RB
DATAOUT[3:1]
Vsdc2
EMIF
Rs
Dz Dz
RC
MCDATA2DIR
3 * RA
3 * RA
150mA
STw4810 Electrical and timing characteristics
49/78
5 Electrical and timing characteristics
Otherwise specified parameters are defined for T = 25°C. / VBAT = 3.6 V
5.1 Absolute maximum rating
5.2 Package dissipation
5.3 Power supply
Note: STw4810 has different ways to go in sleep mode.
The different possibilities for VCORE, VIO_VMEM and VAUX to be programmed to sleep
mode are given in
Table 30
and
Table 27
.
In all the following tables:
“Normal mode” is defined as “SLEEP = ‘0’”
“Sleep mode” is defined as “SLEEP = ‘1’”
Use
Table 27
to refer to each Vxxx supply (VCORE or VIO_VMEM or VAUX).
Table 34. STw4810 absolute maximum ratings
Symbol Description Values Units
Maximum p ower s upply -0.5 to 7 V
Ta Maximum operating ambient temperature -30 to 85 °C
VESD Electrostatic discharge model Human body model(1)
1. HBM tests have been performed in compliance with JESD22-A114-B and ESD STM 5.1-2001.HBM
-2 to +2 kV
Charge device
model(2)
2. CDM tests have been performed in compliance with CDM ANSI-ESD STM 5.3.1-1999
-450 to +750 V
Table 35. Package dissipation
Symbol Description Min. Typ. Max. Units
TFBGA 84 6x6x1.2mm 0.5mm ball pitch
RTHJ-A Thermal resistance Junction to Ambient 70 °C/W
VFBGA84 4.6x4.6x1.0mm 0.4mm ball pitch
RTHJ-A Thermal resistance Junction to Ambient 76 °C/W
Electrical and timing characteristics STw4810
50/78
5.3.1 Operating conditions
5.3.2 VREF18
Table 36. Operating conditions (Temp range: -30 to +85 °C)
Symbol Description Test conditions Min. Typ. Max. Units
VBAT Power supply 2.7 4.8 V
IQSLEEP Quiescent Current Sleep mode 170 250 µA
IQSTDBY Off mode 4 µA
Table 37. VREF18
Symbol Description Test conditions Min. Typ. Max. Units
VBAT Suppl y vol tag e 2.7 4.8 V
VREF_18 Output v ol tag e 1.78 1.8 1.84 V
PSRR Power supply
rejection ratio Vpp = 0.3 V
f 100 kHz 60 dB
Noise 100 Hz f 100 kHz 30 µV
tSSettling time 7.77 9.46 ms
STw4810 Electrical and timing characteristics
51/78
5.3.3 VCORE DC/DC step-down converter
Table 38. VCORE DC/DC step-down converter
Symbol Description Test conditions Min. Typ. Max. Units
VCORE regulator in normal mode (SLEEP = ‘0’) / Otherwise specified; VCORE = 1.2 V
VBAT Input power supply Battery voltage 2.7 3.6 4.8 V
VRIPPLE Output voltage
ripple 10 mVpp
VOUT Programmable
output voltage
VCORE_SEL[3:0]
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100 (default)
0011
0010
0001
0000
-3.7%
-4.25%
-5%
1.50
1.40
1.38
1.36
1.34
1.32
1.30
1.28
1.26
1.24
1.22
1.20
1.15
1.10
1.05
1.00
+3.7%
+4.25%
+5%
V
IOUT Out put cu rrent 600 mA
PEFF Power efficiency VBAT = 3.6 V
IOUT = 200 mA 86 %
LIR Line regulati on VBAT: [2.7; 4.8]V 10 mV
LDR(1) Load regulation IOUT: [0.1; 600] mA 10 mV
ISHORT Sh ort circuit
current limitation(2) 0.9 1.2 1.4 A
IQQuiescent current IOUT = 0 mA 130 250 µA
ILKG Power-down
current ‘en_vcore’ = 0 1 µA
PSRR(1) Power supply
rejection Vpp = 0.3 V
[0; 20] kHz 40 dB
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 7mV
LDRT Transient load
regulation IOUT = [1; 600] mA
tR = tF = 100 ns 70 mV
Electrical and timing characteristics STw4810
52/78
5.3.4 VIO_VMEM DC/DC step-down converter
VCORE regulator in sleep mode (SLEEP= ‘1’)
VBAT Input power supply Battery voltage 2.7 3.6 4.8 V
VRIPPLE VCORE output
voltage ripple 10 mVpp
LIR Line regulati on VBAT: [2.7; 4.8]V 10 mV
LDR Load regulati on IOUT: [0.1; 5] mA 10 mV
IOUT VCORE output
current 5mA
PEFF Power efficiency VBAT= 3.6 V
IOUT: [0.1; 5] mA 85 %
IQQuiescent current IOUT = 0 mA 20 30 µA
LIRT Transient line
regulation
ΔVBAT= 300 mV
tR = tF = 10 µs 7mV
1. Guaranteed by design
2. Guaranteed by design
Table 38. VCORE DC/DC step-down converter (continued)
Symbol Description Test conditions Min. Typ. Max. Units
Table 39. VIO_VMEM DC/DC step-down converter
Symbol Description Test conditions Min. Typ. Max. Units
VIO_VMEM regulator in normal mode (SLEEP = ‘0’)
VBAT Input power supply Battery vol tag e 2.7 3.6 4.8 V
VOUT Out put voltage (1) -3% 1.8 +3% V
VRIPPLE Output ripple 10 mVpp
LIR Line regulati on VBAT: [2.7; 4.8]V 10 mV
LDR(2) Load regulation IOUT: [0.1; 600] mA 10 mV
IOUT Out put cu rrent 600 mA
PEFF Power efficiency VBAT = 3.6 V,
VIO = 1.8 V
IOUT= 100 mA 90 %
ISHORT Sh ort circuit
current limitation(2) 0.9 1.2 1.4 A
IQQuiescent current IOUT = 0 mA 130 250 µA
PSRR(2) Power supply
rejection Vpp = 0.3 V
[0; 20] kHz 40 dB
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 7mV
LDRT Transient load
regulation IOUT= [1; 600] mA
tR = tF = 100 ns 70 mV
STw4810 Electrical and timing characteristics
53/78
VIO_VMEM regulator in sleep mode (SLEEP=’1’)
VBAT Input power supply Battery vol tag e 2.7 3.6 4.8 V
VRIPPLE Output ripple 10 mVpp
LIR Line regulati on VBAT: [2.7; 4.8]V 10 mV
LDR Load regulati on IOUT: [0.1; 5] mA 10 mV
IOUT Out put cu rrent 5mA
PEFF Power efficiency VBAT = 3.6 V
IOUT = [0.1; 5] mA 85 %
IQQuiescent current IOUT = 0 mA 15 µA
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 7mV
1. Including output voltage temperature coefficient, DC line and load regulations, voltage reference accuracy,
industrial manufacturing tolerances and ripple voltage due to switching
2. Guaranteed by design
Table 39. VIO_VMEM DC/DC step-down converter (continued)
Symbol Description Test conditions Min. Typ. Max. Units
Electrical and timing characteristics STw4810
54/78
5.3.5 LDO regulators
VPLL
Table 40. LDO regulators - VPLL
Symbol Description Test conditions Min. Typ. Max. Units
VPLL regulator in normal mode / otherwise specified, VPLL = 1.8 V
VBAT Input power supply Battery vol tag e 2.7 3.6 4.8 V
VOUT Out put voltage
VPLL_SEL[1:0]
11 (default)
10
01
00
-3% 1.8
1.3
1.2
1.05
+3% V
IOUT Out put cu rrent 3.5 10 mA
ISHORT Short-circuit
limitation 95 130 165 mA
IQQuiescent current IOUT = 0 mA 30 40 µA
ILKG Power-down
current EN_VPLL = 0 1µA
PSRR(1)
1. Guaranteed by design
Power supply
rejection
Vpp = 0.3 V
f < 10 kHz
10 kHz < f
<100 kHz
55
45 dB
dB
LIR Line regulati on VBAT: [2.7; 4.8]V 5mV
LDR Load regulati on IOUT: [0.1; 10] mA 10 mV
LIRT Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs 1mV
LDRT Transient load
regulation IOUT = [0.1; 10] mA
tR = tF = 1 µs 1mV
En(1) Noise density at 1 KHz
BW = 100 Hz 250 nVrms
Hz
-------------
STw4810 Electrical and timing characteristics
55/78
VANA
VAUX
Table 41. LDO regulators - VANA
Symbol Description Test conditions Min. Typ. Max. Units
VANA regulator in normal mode
VBAT Input power supply Battery vol tag e 2.7 3.6 4.8 V
VOUT Out put voltage -5% 2.5 +5% V
IOUT Out put cu rrent 10 mA
ISHORT Short-circuit
limitation 39 51 64 mA
IQQuiescent current IOUT = 0 mA 30 µA
ILKG Power-down
current EN_VANA = 0 1µA
PSRR(1)
1. Guaranteed by design
Power supply
rejection Vpp = 0.3 V
f < 10 kHz 45 dB
LIR Line regulati on VBAT: [2.7; 4.8] V 5mV
LDR Load regulati on IOUT: [0.1; 10] mA 5mV
LIRT Transient line
regulation
ΔVBAT = 300 mV
tR = tF = 10 µs 3mV
LDRT Transient load
regulation IOUT = [0.1; 10] mA
tR = tF = 1 µs 15 mV
Table 42. LDO regulators - VAUX
Symbol Description Test conditions Min. Typ. Max. Units
VAUX regulator in normal mode (PDN_VAUX= 1, SLEEP= ‘0’)
VBAT Input power supply
VOUT = 1.5V 1.7 4.8 V
VOUT = 1.8/2.5 V 2.7 3.6 4.8 V
VOUT = 2.8 V 3 3.6 4.8
VOUT Out put voltage
VAUX_SEL[1:0]
00 (default)
01
10
11
-3% 1.5
1.8
2.5
2.8
+3% V
IOUT Out put cu rrent 150 mA
ISHORT Short-circuit
limitation 350 700 900 mA
IQQuiescent current IOUT = 0 mA 30 µA
ILKG Power-down
current PDN_VAUX = 0 1 µA
Electrical and timing characteristics STw4810
56/78
PSRR(1) Power supply
rejection
VOUT=1.5 V
Vpp = 0.3 V
f < 10 kHz 32 dB
LIR Line regulati on VOUT=1.5 V
VBAT: [2.7; 4.8]V 5mV
LDR(1) Load regulation VOUT=1.5 V
IOUT= [0.1; 150] mA 10 mV
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 2mV
LDRT Transient load
regulation
IOUT = [10; 90%]
mA
tR = tF = 1 µs 35 mV
tSSettling time 100 µs
VAUX regulator in sleep mode (PDN_VAUX= 1, SLEEP=’1’)
VBAT Input power supply
VOUT = 1.5V
VIO_VMEM supply 1.7 4.8 V
VOUT = 1.8/2.5 V 2.7 3.6 4.8 V
VOUT = 2.8 V 3 3.6 4.8
VOUT Out put voltage
VAUX_SEL[1:0]
00 (default)
01
10
11
-3% 1.5
1.8
2.5
2.8
+3% V
IOUT Out put cu rrent 500 µA
IQQuiescent current IOUT = 0 mA 15 µA
PSRR(1) Power supply
rejection
VOUT=1.5 V
Vpp = 0.3 V
f < 10 kHz 38 dB
LIR Line regulati on VOUT=1.5 V
VBAT: [2.7; 4.8]V 5mV
LDR Load regulati on VOUT=1.5 V
IOUT= [10; 90%] µA 10 mV
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10 µs 2mV
LDRT Transient load
regulation IOUT = [10; 90%] µA
tR = tF = 1 µs 35 mV
1. Guaranteed by design
Table 42. LDO regulators - VAUX (continued)
Symbol Description Test conditions Min. Typ. Max. Units
STw4810 Electrical and timing characteristics
57/78
5.3.6 Power supply monitoring
This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM
drops below the threshold, the multimedia processor is reset.
5.4 Digital specifications
5.4.1 CMOS input/output static characteristics: I2C interface
Table 43. Power supply monitoring
Symbol Description Test conditions Min. Typ. Max. Units
Threshold
THCORE(1)
1. Guaranteed by design
Threshold VCORE -3% VCORE-
150 +3% mV
THVIO(1) Threshold
VIO_VMEM -3% 1.65 +3% V
Comparators
VBAT Suppl y vol tag e 2.7 3.6 4.8 V
tRES Response time 100 ns
HYFALL Hysteresis (input
voltage falling) 26 mV
HYRIS Hysteresis (input
voltage rising) +4 mV
Table 44. CMOS input/output static characteristics: I²C interface
Symbol Description Test conditions Min. Typ. Max. Units
I²C interface(1)
1. Vio is for VIO_VMEM
VIL Low level input
voltage 0.3*VIO V
VIH High level input
voltage 0.7*VIO V
IIL Low level input
current -1.0 1.0 µA
IIH High level input
current -1.0 1.0 µA
VOL Low level output
voltage
IOL = 3mA
(with open drain or
open colle cto r) 0.2*VIO V
VOH H i gh level output
voltage
IOL = 3mA
(with open drain or
open colle cto r) 0.8*VIO V
Electrical and timing characteristics STw4810
58/78
5.4.2 CMOS input/output dynamic characteristics: I2C interface
Table 45. CMOS input/output dynamic characteristics: I²C interface
Symbol Description Min. Typ. Max. Units
I²C interface (
Figure 8
)
Fscl Clock frequency 400 Khz
thigh Clock pulse width high 600 ns
tlow Clock pulse width low 1300 ns
tr SDA, SCL, USBSDA, USBSCL r ise time 20+0.1*Cb (1)
1. Cb = total capacitance of one bus line in pF
300 ns
tf SDA, SCL, USBSDA, USBSCL fall time 20+0.1*Cb 300 ns
thd_sta Start condition hold time 600 ns
tsu_sta Start condition set up time 600 n s
thd_dat Data inpu t hol d time 0 ns
tsu_dat Data input set up time 250 ns
tsu_sto Stop condition set up time 600 ns
tbuf Bus free time 1300 ns
Cb Capacitive load for each bus line 400 pF
STw4810 Electrical and timing characteristics
59/78
5.4.3 CMOS input/output static characteristics: VIO level
USB and control I/Os
Table 46. VIO level: USB and control I/Os
Symbol Description Test conditions Min. Typ. Max. Units
SW_RESETn, VDDOK, PORN, PWREN, TCXO_EN, REQUEST_MC, CLK32K, CLK32K_IN,
USBOEN, USBVP, USBVM, USBRCV, USBINTn, MASTER_CLK
VIL(1)
1. Vio for VI O_VMEM
Low level input
voltage 0.3*Vio V
VIH High level input
voltage 0.7*Vio V
IIL Low level input
current -1.0 1.5 µA
IIH High level input
current -1.0 1.5 µA
CIN Input capacitance 10 pF
VOL Low level output
voltage IOL = 4 mA 0.2*Vio V
VOH H i gh level output
voltage IOL = 4 mA 0.8*Vio V
tOF Output fall time Capacitance 10pF 10 ns
tOR Output rise time Capacitance 10pF 10 ns
CI/O Driving capability 100 pF
Electrical and timing characteristics STw4810
60/78
MMC Interface
Table 47. VIO level: MMC interface
Symbol Description Test conditions Min. Typ. Max. Units
MMC interface: MCCLK, MCFBCLK, MCCMDDIR, MCCMD, MCDATA2DIR, MCDAT2,
MCDATA0DIR, MCDAT0, MCDAT31DIR, MCDAT3, MCDAT1
VIL(1)
1. Vio for VI O_VMEM
Low level input
voltage 0.3*Vio V
VIH High level input
voltage 0.7*Vio V
IIL Low level input
current -1.0 1.5 µA
IIH High level input
current -1.0 1.5 µA
CIN Input capacitance 10 pF
VOL Low level output
voltage IOL = 15 mA 0.2*Vio V
VOH H i gh level output
voltage IOL =15 mA 0.8*Vio V
CI/O Driving capability
at 52 MHz 30 pF
STw4810 Electrical and timing characteristics
61/78
5.4.4 CMOS input/output static characteristics: VBAT level
Table 48. CMOS input/output static characteristics: VBAT level
Symbol Description Test conditions Min. Typ. Max. Units
IT_WAKE_UP, PON, GPO1, GPO2
VIL Low level input
voltage PON 0.3*Vbat V
VIH High level input
voltage PON 0.7*Vbat V
IIL Low level input
current PON -1.0 1.5 µA
IIH High level input
current PON -1.0 1.5 µA
CIN Input capacitance 10 pF
VOL Low level output
voltage
IT_WAKE_UP,
GPO1, GPO2
IOL = 2mA 0.2*Vbat V
VOH H i gh level output
voltage
IT_WAKE_UP,
GPO1, GPO2
IOL = 2 mA 0.8*Vbat V
tOF Output fall time Capacitance 10pF 5 ns
tOR Output rise time Capacitance 10pF 50 ns
CI/O Driving capability 100 pF
Electrical and timing characteristics STw4810
62/78
5.4.5 CMOS input/output static characteristics: VMMC level
Table 49. CMOS input/output static characteristics VMMC level
Symbol Description Test conditions Min. Typ. Max. Units
DATAOUT0, DATAOUT1, DATAOUT2, DATAOUT3, CMDOUT, LATCHCLK, CLKOUT
VIL Low level input
voltage 0.3*VMMC
VIH High level input
voltage 0.7*VMMC
IIL Low level input
current -1.0 1.5 µA
IIH High level input
current -1.0 1.5 µA
CIN Input capacitance 10 pF
VOL Low level output
voltage IOL = 25 mA 0.2*VMMC
VOH H i gh level output
voltage IOL = 25 mA 0.8*VMMC
CI/O Driving capability 40 pF
STw4810 Electrical and timing characteristics
63/78
5.5 USB OTG transceiver
Table 50. USB OTG transceiver
Symbol Description Test conditions Min. Typ. Max. Units
UART mode
tRRise time CLOAD= [50;100] pF
[10; 90] % of
VOH-VOL
100 ns
tFFall time CLOAD= [50;100] pF
10......90% of
VOH-VOL
100 ns
tPLH Drive propagation
delay low => high CLOAD= [50;100] pF
50% of |VOH-VOL|100 ns
tPHL Drive propagation
delay high => low CLOAD= [50;100] pF
50% of |VOH-VOL|100 ns
USB full speed mode (DP & DN signals)
tRRise time
USBVP & USBVM :
- Trise & Tfall < 1 ns
- Skew < 0.66 ns
420ns
tFFall time 4 20 ns
DRFM Differential rise an fall
time matching 90 111 %
OSCV Output signal
crossover voltage 1.3 2 V
PDEL Propagation delay 18 ns
USB low speed mode (DP & DN signals)
tRRise time 75 300 ns
tFFall time 75 300 ns
DRFM Differential rise an fall
time matching 80 125 %
OSCV Output signal
crossover voltage 1.3 2 V
VBUS comparators
VBAT Input power supply Battery voltage 3.1 3.6 4.8 V
tRR Rising reacting time 1.7 µs
tFR Fall reacting time 2.1 µs
Threshold VBUS monitoring
VBval VBUS valid 4.4 4.5 4.6 V
VBses VBUS se ss ion v a lid 1.8 2 V
Electrical and timing characteristics STw4810
64/78
VBUS
RA_BUS_IN 40 100 kΩ
TA_VBUS_
RISE
VBUS = [0; 4.4] V ILOAD
= 100mA
External cap 10µF 100 ms
Data line pull-down resistance
RPD_DPDN 14 19 25 kΩ
Data line pull-up resistance
RPU_DP Bus idle
Bus driven 900
1425 1200
2300 1600
3100 Ω
RPU_DN Bus idle
Bus driven 900
1425 1200
2300 1600
3100 Ω
Pull-down on VBUS
RVBUS_PD 650 925 1200 Ω
Pull-up on VBUS
RVBUS_SRP 420 600 780 Ω
ID
VID_GND ID_GND comparator
threshold 2.7 V < VBAT < 4.8 V 0.15*VBAT V
VID_HI (VBAT) Battery level 2.7 3.6 4.8 V
VID_FLOAT ID_FLOAT comparator
threshold 0.85*VBAT V
RPU_ID 70 100 130 kΩ
RPD_ID 10 kΩ
Carkit threshold detection
cR_INT Carkit interrupt
threshold 0.4 0.6 V
Transceiver
VOH_TXD_DAT TXD output high on DN ISOURCE = 500 µA 2.4 3.6 V
VOL_TXD_DAT TXD output low on DN ISINK = 2mA 0.4 V
VIH_RXD_DAT RXD input high on DP 2 V
VIL_RXD_DAT RXD input low on DP 0.8 V
Table 50. USB OTG transceiver (continued)
Symbol Description Test conditions Min. Typ. Max. Units
STw4810 Electrical and timing characteristics
65/78
Charge pump
VBAT Input power supply Battery voltage VUSB+0.1 3.6 4.8 V
VBUS Output vol tage Current load up to 100
mA 4.75 5 5.25 V
tSSettling time [0;4.8] V)
Ext. load: 100 mA +
External cap = 10µF 1.2 ms
IQ Qu ies c ent cu rrent No Load 2.7 mA
VRipple Amp litude outp ut rippl e
on VBUS Current load 8 mA
Current load 100mA 25
40 mV
mV
IOUT Output current 100 mA
Eff Efficiency
VBAT = 3.0V
IOUT =100mA
VBAT= 3.6V.
IOUT = 8 mA.
85
60
%
%
VUSB regulator
VBAT(1) Input voltage Battery vol tag e:
VBAT min =
VOUT + 0.1V VUSB+0.1 3.6 5.5 V
VOUT Output voltage VBAT min=
VOUT + 0.1V 3.0 3.1 3.2 V
ISHORT Short circuit current
limitation 320 mA
IQQuies c ent cu rrent No load 70 µA
PSRR(2) Power supply rejection VBAT= VOUT+0.2V
f < 20 kHz 45 dB
NVOUT Output noise voltage VBAT= VOUT+0.2V
10Hz <f< 100kHz 100 µVrms
LIRT Transient line
regulation ΔVBAT = 300 mV
tR = tF = 10µs. 5mV
tSSettling time
OFF->ON IOUT = 0mA 25 µs
tDDischarge time
ON>OFF IOUT = 0mA 400 µs
1. From 4.8 V to 5.5 V, charge pump is “Off” and no OTG feature is provided
2. Guaranteed by design
Table 50. USB OTG transceiver (continued)
Symbol Description Test conditions Min. Typ. Max. Units
Electrical and timing characteristics STw4810
66/78
5.6 SD/MMC card interface
Table 51. SD/MMC card interface
Symbol Description Test conditions Min. Typ. Max. Units
VMMC regulator specifications (PDN_VMMC = 1)
VBAT Input voltage VOUT = 3 V
VOUT = 2.85 V
VOUT = 1.8 V
3.25
3.1
2.7 3.6 4.8 V
VOUT Out put voltage -3% 3
2.85
1.8 +3% V
IOUT Out put cu rrent 150 mA
ISHORT Sh ort circuit
current limitation 280 360 600 mA
IQ Quiescent current IOUT = 0 mA 30 µA
ILKG Power-down
current PDN_VMMC = 0 1 µA
PSRR(1) Power supply
rejection
IOUT = 150 mA
Vpp = 0.3 V
f < 20 kHz 45 dB
LIR(1) Line regulation VOUT=2.85 V
VBAT: [3.1; 4.8]V 5mV
LDR(1) Load regulation VOUT=2.85 V
IOUT= [1; 150] mA 10 mV
LIRT Transient line
regulation
VOUT=2.85 V
VBAT: 3.1 to 3.4V
tR = tF = 10 µs. 2mV
LDRT Transient load
regulation IOUT = [1; 150] mA
tR = tF = 1 µs 25 mV
tSSettling time
OFF->ON IOUT = 0 mA 100 µs
tDDischarge time
ON>OFF IOUT = 0 mA 1 ms
Bus line specifications
RA(2) Pull-up resistor To prevent bus
floating 1.5 MΩ
RB Pull-down resistor To prevent bus
floating 1.5 MΩ
fDT
Clock frequency
data transfert
mode With CL = 30pF 52 MHz
fID Clock frequency
identification mode With CL = 30pF 400 KHz
STw4810 Electrical and timing characteristics
67/78
TPHC Propagati on tim e
from Host to card
Figure 14
7ns
TPCH Propagati on tim e
from card to host
Figure 14
7ns
TSHC
Clock /data skew
time from host to
card
Figure 14
Refere nce is
CLKOUT +/- 0.5 ns
TSCH
Clock /data skew
time from card to
host
Figure 14
Refere nce is
MMCLK +/- 0.5 ns
TRRise time 3 ns
TFFall time 3 ns
C1LINE
Between
multimedia
processor &
STw4810
Bus line
capacitance
f < 52 Mhz 20(3) pF
C2LINE Between STw4810
& MMC card
Bus line
capacitance
f < 52 MHz 20 + 20(4) pF
1. Guaranteed by design
2. MMC interface pull up resistors are in EMIF06-HCM01F2 device (7 KΩ for CMD; 75 KΩ for Data wires)
3. 20 pF for equivalent board parasitic capacitance.
4. 20 pF for EMIF06 protection + 20 pF for board parasitic capacitance.
Table 51. SD/MMC card interface (continued)
Symbol Description Test conditions Min. Typ. Max. Units
Electrical and timing characteristics STw4810
68/78
Figure 14. Propagation and clock/data skew times
MCCLK
MCCMD
MCDATA[3:0]
MCFBCLK t
50%
2 ns
2 ns
10%
90%
10%
90%
t
50%
T
PHC
CLKOUT
CMDOUT
DATAOUT[3:0]
LATCHCLK
T
PHC
MCCLK
MCCMD
MCDATA[3:0]
MCFBCLK
t
50%
2 ns
2 ns
10%
90%
10%
90%
t
50%
T
PCH
CLKOUT
CMDOUT
DATAOUT[3:0]
LATCHCLK
T
PCH
MCDATA[3:0]
2 ns
10%
90%
T
SHC
MCCLK 50% CLKOUT
DATAOUT[3:0]
MCDATA[3:0]
2 ns
10%
90%
T
SCH
MCCLK
50%
CLKOUT
DATAOUT[3:0]
STw4810 Application information
69/78
6 Application information
6.1 Components list
Table 52. Components list
Name Typical
value Comments Function
C1 22µF
In the complete system application,
the sum of the capacitors connected
on each STw4810 ball must never be
less than 30% of the value indicated
in the typical value column of this
table. This includes all capacitor
parameters:
production dispersion
DC bias voltage applied
temperature range of the complete
system application
aging
VIO_VMEM output filter
C4 VCORE output filter
C2
10µF
VBAT_VIOVMEM decoupling
C3 VBAT_ANA decoupling
C5 VBAT_VCORE decoupling
C6
1µF
VPLL output filter
C7 VANA output filter
C8 VREF output filter
C10 VUSB output filter
C13 VAUX output filter
C9 470nF Flying capacitor for charge pump
C11 4.7µF VBUS output filter (tank charge pump capacitor)
C12 2.2µF VSD_MMC output filter
C13, C14,
C15, C16,
C17 1 µF Vbattery input voltage decoupling capacitors
L1 4.7µH See
Table 53
for recommended coils Coil VIOVMEM DC/DC
L2 Coil VCORE DC/DC
Table 53. Recommended coils
Supplier Part Number DCR (Ω)Irms
(1) (A)
1. Irms: 30% decrease of initial value
L x l x h (mm * mm * mm)
TDK
VLF3010AT-4R7MR70 0.28 0.7 2.8 * 2.6 * 1.0
VLF3012AT-4R7MR74 0.16 0.74 2.8 * 2.6 * 1.2
VLF4012AT-4R7M1R1 0.14 1.1 3.7 * 3.5 * 1.2
Coilcraft
DO1605T-472MX 0.15 1.1 5.5 * 4.2 * 1.8
DO3314-472ML 0.32 1.1 3.3 * 3.3 * 1.4
ME3320-472MX 0.19 1.1 3.2 * 2.5 * 2.0
Application information STw4810
70/78
Table 54. Other ST components
Name Order code Function
EMIF02 EMIF02USB05 USB ESD/EMI Protection
EMIF06 EMIF06-HMC01F2 MMC Interface ESD/EMI Protection
STw4810 Application information
71/78
6.2 Application schematics
Figure 15. STw4810 application schematics
VLX_VIOVMEM
USBVP
USBOEn
USBRCV
USBVM
MCCMDDIR
MCCMD
MCDAT0DIR
VUSB
SCL
SDA
PON
MCDAT0
MCCLK
VREF
LATCHCLK
DATOUT[3:1]
MCDAT31DIR
MCFBCLK
CMDOUT
MCDAT[3,1]
Multimedia processor
VCORE
PORn
CLK32K
PWREN
VDDOK
USB
3
VMINUS_VIOVMEM
VBAT_VIOVMEM
VIOVMEM_FB
VBAT_ANA
VMINUS_ANA
VBAT_VCORE
VLX_VCORE
VPLL
VANA
CP
CN
VBUS
DP
DN
ID ESD
EMI
filter
VMMC
SD
MMC
SDIO
CLKOUT
Modem & system clock
3
CLK32Kin
MASTER_CLK
SW_RESETn
IT_WAKE_UP
L1
C1
C2 C3
L2
C5
C6
C7
C8
C10
C11
C12
R1
R1
VBAT_MMC
VBAT_USB
VMINUS_USB
VBAT_VPLL_VANA
VMINUS_DIG
VBAT_DIG
D3
B9
DATAOUT0
VAUX
C9
VBAT_VAUX C13
VMINUS_VCORE
C4
USBINTn
REQUEST_MC
TCXO_EN
EMI
Filter
USBSCL
USBSDA
GPO1
GPO2
EMIF02
EMIF06-HMC01F2
MCDAT2DIR
MCDAT2
STw4810
CARD
C13(*)
C14(*)
C15(*)
C16(*)
C17(*)
(*) The usefulness of these capacitors depend of PCB layout
Package mechanical data STw4810
72/78
7 Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second Level Interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST tradem ark.
ECOPACK specifications are available at: www.st.com.
7.1 TFBGA 84 balls
See
Figure 16: TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing
.
Table 55. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch dimensions(1)
1. These measurements conform to JEDEC standards
Drawing dimensions (mm) Min. Typ. Max.
A1.16
A1 0.20 0.25 0.30
A2 0.82
b 0.250.300.35
D 5.906.006.10
D1 4.50
E 5.906.006.10
E1 4.50
e 0.450.500.55
f 0.650.750.85
ddd 0.08
STw4810 Package mechanical data
73/78
Figure 16. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing
Note: The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
Package mechanical data STw4810
74/78
7.2 VFBGA 84 balls
See
Figure 17: VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch drawing
.
Table 56. VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch(1)
1. These measurements conform to JEDEC standards
Drawing dimensions (mm) Min. Typ. Max.
A0.864
A1 0.15 0.19 0.23
A2 0.615
A3 0.18
A4 0.435
b 0.210.250.29
D 4.554.604.65
D1 3.60
E 4.554.604.65
E1 3.60
e0.40
f0.50
ddd 0.08
eee 0.13
fff 0.04
STw4810 Package mechanical data
75/78
Figure 17. VFBGA 84 balls 4.6x4.6x1.0 mm ball pitch drawing
Note: The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
Ordering information STw4810
76/78
8 Ordering information
Table 57. Order codes
Part number Package Packing
STw4810CHDR/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch Tray
STw4810CHDT/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch Tape and reel
STw4810CRAE/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch Tray
STw4810CRAT/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch Tape and reel
STw4810 Revision history
77/78
9 Revision history
Table 58. Document revision history
Date Revision Changes
24-Jan-2006 1Initial release.
07-Feb-2006 2
Modified document title.
Reviewed list of applications on cover page.
Replaced APE with multimedia processor.
Replaced fuse with analogue function.
Rename d VFUSE as VANA.
Modified figure 6 - Control interface - I2C format
09-Feb-2006 3 Correction of
Figure 13: SD MMC block diagram
.
Correction of
Figure 15: STw4810 application schematics
.
10-Mar-2006 4
Correction in
Section 4.2.3: Sleep mode on page 18
-
Removed formula and some text about sleep mode.
Table 26: Power control register at address 09h on page 31
-
Replaced bit 2 and 1 with “not used” and “reserved”.
25-Jul-2006 5
Update short circuit current limit in
Table 38: VCORE DC/DC step-
down converter
,
Table 39: VIO_VMEM DC/DC step-down converter
.
Updated short circuit minimum value in
Table 42: LDO regulators -
VAUX
and
Table 51: SD/MMC card interface
30-Nov-2006 Updated the ordering information.
15-Mar-2007 6 Co rrected VBAT maximum value in
Ta ble 36: Operating conditions
(Temp range: -30 to +85 °C)
.
23-Apr-2007 7 Updated
Figure 3: Start-up timing
and replaced all TBD references
with val ues in
Table 46
,
Table 47
,
Table 48
,
Table 49
.
Replaced ESD performance with VESD in
Table 34
.
08-Jun-2007 8 Updated the minimum ESD CDM value and removed the maximum
junction tempera ture an d maximu m po wer di ssipatio n temper ature in
Table 34: STw4810 absolute maximum ratings
.
03-Sep-2007 9 Updated
Section 4.3.9: T hermal shut-down
.
STw4810
78/78
Please Read Carefully:
Informa tion in this do cument is prov ided solely in conn ection with ST products. STMic roelect ronics NV and its subsidiari es (“ST”) reser ve the
right to mak e chang es, c or recti ons , modif icat ions or improveme nt s, t o this documen t, and the prod ucts and s ervic es desc rib ed he rein at an y
time, without notice.
All ST produ cts are sold pursuant to ST ’s terms and conditions of sal e.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoev er relating to the choice, selection or us e of the ST products and services described herein.
No license, express or implied, by estopp el or otherwise, to any intellectua l property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST produ cts with prov isions differen t from the state ments and/or technic al features set forth in this document shall i mmediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liabili ty of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Informa tion in this document superse des and replaces all information previously sup plied.
The ST logo is a registered trademark of STMicroele ct ronics. All ot her names are the property of their respective owners .
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Moroc co - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com