AMD Preliminary Information
AMD Sempron
Processor Model 10
Data Sheet
Publication # 31993 Rev. A-1
Issue Date: September 2004
TM
AMD Preliminary Information
Trademarks
AMD, the AMD Arrow logo, AMD Athlon, AMD Duron, AMD Sempron, and combinations thereof, QuantiSpeed,
and 3DNow! are trademarks of Advanced Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
MMX is a trademark of Intel Corporation.
Windows is a registered trademark of Microsoft Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.
©2004 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or war-
ranties with respect to the accuracy or completeness of the contents of this
publication and reserves the right to make changes to specifications and prod-
uct descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is
granted by this publication. Except as set forth in AMDs Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited
to, the implied warranty of merchantability, fitness for a particular purpose,
or infringement of any intellectual property right.
AMD’s products are not designed, intended, authorized or warranted for use
as components in systems intended for surgical implant into the body, or in
other applications intended to support or sustain life, or in any other applica-
tion in which the failure of AMD’s product could create a situation where per-
sonal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any
time without notice.
Table of Contents iii
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Table of Contents
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 QuantiSpeed™ Architecture Summary. . . . . . . . . . . . . . . . . . . 2
2 Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Signaling Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Push-Pull (PP) Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 AMD Athlon™ System Bus Signals . . . . . . . . . . . . . . . . . . . . . . 6
3Logic Symbol Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Power Management States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Working State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Halt State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Stop Grant States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Probe State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Connect and Disconnect Protocol . . . . . . . . . . . . . . . . . . . . . . 12
Connect Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Connect State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 CPUID Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6333 FSB AMD Sempron™ Processor Model 10
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Electrical and Thermal Specifications for the 333 FSB
AMD Sempron™ Processor Model 10 . . . . . . . . . . . . . . . . . . . 21
6.2 333 FSB AMD Sempron Processor Model 10 SYSCLK
and SYSCLK# AC Characteristics . . . . . . . . . . . . . . . . . . . . . . 22
6.3 333 FSB AMD Athlon System Bus AC Characteristics . . . . . 23
6.4 333 FSB AMD Athlon System Bus DC Characteristics . . . . . 24
7Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Interface Signal Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 Voltage Identification (VID[4:0]) . . . . . . . . . . . . . . . . . . . . . . 26
7.4 Frequency Identification (FID[3:0]) . . . . . . . . . . . . . . . . . . . . 27
7.5 VCCA AC and DC Characteristics. . . . . . . . . . . . . . . . . . . . . . 27
7.6 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.7 VCC_CORE Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.8 Absolute Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.9 SYSCLK and SYSCLK# DC Characteristics . . . . . . . . . . . . . . 31
iv Table of Contents
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
7.10 General AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . 32
7.11 Open Drain Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.12 Thermal Diode Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 35
Thermal Diode Electrical Characteristics. . . . . . . . . . . . . 35
Thermal Protection Characterization . . . . . . . . . . . . . . . . 35
7.13 APIC Pins AC and DC Characteristics . . . . . . . . . . . . . . . . . . 37
8 Signal and Power-Up Requirements . . . . . . . . . . . . . . . . . . . . 39
8.1 Power-Up Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Signal Sequence and Timing Description . . . . . . . . . . . . . 39
Clock Multiplier Selection (FID[3:0]) . . . . . . . . . . . . . . . . 42
8.2 Processor Warm Reset Requirements. . . . . . . . . . . . . . . . . . . 42
Northbridge Reset Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9 Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1 Die Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2 AMD Sempron Processor Model 10 Part Number 27488
OPGA Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3 AMD Sempron Processor Model 10 Part Number 27493
OPGA Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.1 Pin Diagram and Pin Name Abbreviations. . . . . . . . . . . . . . . 49
10.2 Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.3 Detailed Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A20M# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
AMD Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
AMD Athlon System Bus Pins . . . . . . . . . . . . . . . . . . . . . . 68
Analog Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
APIC Pins, PICCLK, PICD[1:0]# . . . . . . . . . . . . . . . . . . . . 68
CLKFWDRST Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CLKIN, RSTCLK (SYSCLK) Pins. . . . . . . . . . . . . . . . . . . . 69
CONNECT Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
COREFB and COREFB# Pins . . . . . . . . . . . . . . . . . . . . . . . 69
CPU_PRESENCE# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DBRDY and DBREQ# Pins . . . . . . . . . . . . . . . . . . . . . . . . . 69
FERR Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
FID[3:0] Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
FSB_Sense[1:0] Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
FLUSH# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
IGNNE# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
INIT# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
INTR Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
K7CLKOUT and K7CLKOUT# Pins. . . . . . . . . . . . . . . . . . 72
Key Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
NC Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
NMI Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table of Contents v
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
PGA Orientation Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PLL Bypass and Test Pins . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PWROK Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
SADDIN[1:0]# and SADDOUT[1:0]# Pins . . . . . . . . . . . . . 73
Scan Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
SMI# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
STPCLK# Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
SYSCLK and SYSCLK#. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
THERMDA and THERMDC Pins . . . . . . . . . . . . . . . . . . . . 73
VCCA Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
VID[4:0] Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
VREFSYS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
ZN and ZP Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
11 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Standard AMD Sempron Processor Model 10 Products . . . . . . . . . . 77
Appendix A Thermal Diode Calculations . . . . . . . . . . . . . . . . . . . . . 79
Ideal Diode Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Temperature Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Appendix B Conventions and Abbreviations . . . . . . . . . . . . . . . . . . 83
Signals and Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Data Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Abbreviations and Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Related Publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
vi Table of Contents
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
List of Figures vii
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
List of Figures
Figure 1. Typical AMD Sempron™ Processor Model 10 System Block
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Symbol Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. AMD Sempron Processor Model 10 Power Management
States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. AMD Athlon™ System Bus Disconnect Sequence in the Stop
Grant State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5. Exiting the Stop Grant State and Bus Connect Sequence . . . . . 15
Figure 6. Northbridge Connect State Diagram . . . . . . . . . . . . . . . . . . . . . . 16
Figure 7. Processor Connect State Diagram . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. SYSCLK Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9. VCC_CORE Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 10. SYSCLK and SYSCLK# Differential Clock Signals . . . . . . . . . . 31
Figure 11. General ATE Open-Drain Test Circuit. . . . . . . . . . . . . . . . . . . . . 34
Figure 12. Signal Relationship Requirements During Power-Up
Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 13. AMD Sempron Processor Model 10 Part Number 27488 OPGA
Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 14. AMD Sempron Processor Model 10 Part Number 27493 OPGA
Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 15. AMD Sempron Processor Model 10 Pin Diagram Topside View
50
Figure 16. AMD Sempron Processor Model 10 Pin Diagram Bottomside
View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 17. OPN Example for the AMD Sempron Processor Model 10 . . . . 77
viii List of Figures
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
List of Tables ix
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
List of Tables
Table 1. Electrical and Thermal Specifications for the Advanced
333 FSB AMD Sempron™ Processor Model 10 . . . . . . . . . . . . . 21
Table 2. 333 FSB SYSCLK and SYSCLK# AC Characteristics . . . . . . . . . 22
Table 3. 333 FSB AMD Athlon™ System Bus AC Characteristics . . . . . . 23
Table 4. 333 FSB AMD Athlon System Bus DC Characteristics . . . . . . . . 24
Table 5. Interface Signal Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. VID[4:0] DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 7. FID[3:0] DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 8. VCCA AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. VCC_CORE AC and DC Characteristics . . . . . . . . . . . . . . . . . . . . . 28
Table 10. Absolute Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 11. SYSCLK and SYSCLK# DC Characteristics . . . . . . . . . . . . . . . . 31
Table 12. General AC and DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . 32
Table 13. Thermal Diode Electrical Characteristics . . . . . . . . . . . . . . . . . . 35
Table 14. Guidelines for Platform Thermal Protection of the Processor . 36
Table 15. APIC Pin AC and DC Characteristics. . . . . . . . . . . . . . . . . . . . . . 37
Table 16. Mechanical Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 17. Dimensions for the AMD Sempron Processor Model 10
Part Number 27488 OPGA Package . . . . . . . . . . . . . . . . . . . . . . . 44
Table 18. Dimensions for the AMD Sempron Processor Model 10
Part Number 27493 OPGA Package . . . . . . . . . . . . . . . . . . . . . . . 46
Table 19. Pin Name Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 20. Cross-Reference by Pin Location . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 21. FID[3:0] Clock Multiplier Encodings . . . . . . . . . . . . . . . . . . . . . . 70
Table 22. Front-Side Bus Sense Truth Table . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 23. VID[4:0] Code to Voltage Definition . . . . . . . . . . . . . . . . . . . . . . 74
Table 24. Constants and Variables for the Ideal Diode Equation . . . . . . . 79
Table 25. Constants and Variables Used in Temperature Offset
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 26. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 27. Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
xList of Tables
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Revision History xi
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Revision History
Date Rev Description
September 2004 A-1 Initial release of the AMD Sempron™ processor model 10 data sheet.
xii Revision History
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Chapter 1 Overview 1
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
1 Overview
The AMD Sempron™ processor model 10 with QuantiSpeed™
architecture powers the next generation in computing
platforms, delivering extreme performance for Windows® XP.
The AMD Sempron processor model 10, based on leading-edge
0.13 micron technology and increased on-chip cache, integrates
the innovative design and manufacturing expertise of AMD to
deliver improved performance while maintaining the stable
and compatible Socket A infrastructure of the AMD Sempron
processor.
Delivered in an OPGA package, the AMD Sempron processor
model 10 delivers the integer, floating-point, and 3D
multimedia performance for highly demanding applications
running on x86 system platforms. The AMD Sempron processor
model 10 delivers compelling performance for cutting-edge
software applications that include high-speed Internet
capability, digital content creation, digital photo editing, digital
video, image compression, video encoding for streaming over
the Internet, soft DVD, commercial 3D modeling,
workstation-class computer-aided design (CAD), commercial
desktop publishing, and speech recognition. The AMD Sempron
processor model 10 also offers the scalability and reliability
that IT managers and business users require for enterprise
computing.
The AMD Sempron processor model 10 features a
seventh-generation microarchitecture with an integrated,
exclusive L2 cache, which supports the growing processor and
system bandwidth requirements of emerging software,
graphics, I/O, and memory technologies. The high-speed
execution core of the AMD Sempron processor model 10
includes multiple x86 instruction decoders, a dual-ported
128-Kbyte split level-one (L1) cache, an exclusive 512-Kbyte L2
cache, three independent integer pipelines, three address
calculation pipelines, and a superscalar, fully pipelined,
out-of-order, three-way floating-point engine. The floating-point
engine is capable of delivering outstanding performance on
numerically complex applications.
The features of the AMD Sempron processor model 10 include
QuantiSpeed architecture, 640 Kbytes of total, high-
2Overview Chapter 1
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
performance, full-speed, on-chip cache, an advanced 333 FSB
with a 2.7-Gigabyte per second system bus, and 3DNow!™
Professional technology. The AMD Athlon system bus combines
the latest technological advances, such as point-to-point topology,
source-synchronous packet-based transfers, and low-voltage
signaling to provide an extremely powerful, scalable bus for an
x86 processor.
The AMD Sempron processor model 10 is binary-compatible with
existing x86 software and backwards compatible with
applications optimized for MMX™, SSE, and 3DNow! technology.
Using a data format and single-instruction multiple-data (SIMD)
operations based on the MMX instruction model, the
AMD Sempron processor model 10 can produce as many as four,
32-bit, single-precision floating-point results per clock cycle. The
3DNow! Professional technology implemented in the
AMD Sempron processor model 10 includes new integer
multimedia instructions and software-directed data movement
instructions for optimizing such applications as digital content
creation and streaming video for the internet, as well as new
instructions for digital signal processing (DSP) and
communications applications.
1.1 QuantiSpeed™ Architecture Summary
The following features summarize the AMD Sempron processor
model 10 QuantiSpeed architecture:
An advanced nine-issue, superpipelined, superscalar x86
processor microarchitecture designed for increased
instructions per cycle (IPC) and high clock frequencies
Fully pipelined floating-point unit that executes all x87
(floating-point), MMX, SSE and 3DNow! instructions
Hardware data pre-fetch that increases and optimizes
performance on high-end software applications utilizing
high-bandwidth system capabilities
Advanced two-level translation look-aside buffer (TLB)
structures for both enhanced data and instruction address
translation. The AMD Sempron processor model 10 with
QuantiSpeed architecture incorporates three TLB
optimizations: the L1 DTLB increases from 32 to 40 entries,
the L2 ITLB and L2 DTLB both use exclusive architecture,
and the TLB entries can be speculatively loaded.
Chapter 1 Overview 3
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
The AMD Sempron processor model 10 delivers excellent
system performance in a cost-effective, industry-standard form
factor. The AMD Sempron processor model 10 is compatible
with motherboards based on Socket A.
Figure 1 shows a typical AMD Sempron processor model 10
system block diagram.
Figure 1. Typical AMD Sempron™ Processor Model 10 System Block Diagram
SDRAM or DDR
AGP Bus
Memory Bus
AGP
PCI Bus
LAN SCSI
LPC Bus
USB
Dual EIDE
AMD Sempron™ Proces-
sor Model 10
System Controller
(Northbridge)
Peripheral Bus Con-
troller
(Southbridge)
Modem / Audio
Thermal Monitor
BIOS
AMD Athlon™ System Bus
4Overview Chapter 1
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Chapter 2 Interface Signals 5
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
2 Interface Signals
Chapter 2 discusses the AMD Athlon™ system bus architecture,
design, and signal support that is used in the AMD Sempron™
processor model 10.
2.1 Overview
The AMD Athlon system bus architecture is designed to deliver
excellent data movement bandwidth for next-generation x86
platforms as well as the high-performance required by
enterprise-class application software. The system bus
architecture consists of three high-speed channels (a
unidirectional processor request channel, a unidirectional
probe channel, and a 64-bit bidirectional data channel),
source-synchronous clocking, and a packet-based protocol. In
addition, the system bus supports several control, clock, and
legacy signals. The interface signals use an impedance
controlled push-pull, low-voltage, swing-signaling technology
contained within the Socket A socket.
For more information, seeAMD Athlon™ System Bus Signals”
on page 6, Chapter 10, “Pin Descriptions” on page 49, and the
AMD Athlon™ and AMD Duron™ System Bus Specification,
order# 21902.
2.2 Signaling Technology
The AMD Athlon system bus uses a low-voltage, swing-signaling
technology, that has been enhanced to provide larger noise
margins, reduced ringing, and variable voltage levels. The
signals are push-pull and impedance compensated. The signal
inputs use differential receivers that require a reference
voltage (VREF). The reference signal is used by the receivers to
determine if a signal is asserted or deasserted by the source.
Termination resistors are not needed because the driver is
impedance-matched to the motherboard and a high impedance
reflection is used at the receiver to bring the signal past the
input threshold.
For more information about pins and signals, see Chapter 10,
“Pin Descriptions” on page 49.
6Interface Signals Chapter 2
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
2.3 Push-Pull (PP) Drivers
The AMD Sempron processor model 10 supports push-pull (PP)
drivers. The system logic configures the processor with the
configuration parameter called SysPushPull (1=PP). The
impedance of the PP drivers is set to match the impedance of
the motherboard by two external resistors connected to the ZN
and ZP pins.
See “ZN and ZP Pins” on page 74 for more information.
2.4 AMD Athlon™ System Bus Signals
The AMD Athlon system bus is a clock-forwarded, point-to-
point interface with the following three point-to-point channels:
A 13-bit unidirectional output address/command channel
A 13-bit unidirectional input address/command channel
A 72-bit bidirectional data channel
For more information, see Chapter 6, “333 FSB
AMD Sempron™ Processor Model 10 Specifications” on page
21, Chapter 7, “Electrical Data” on page 25, and the
AMD Athlon™ and AMD Duron™ System Bus Specification,
order# 21902.
Chapter 3 Logic Symbol Diagram 7
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
3 Logic Symbol Diagram
Figure 2 is the logic symbol diagram of the processor. This
diagram shows the logical grouping of the input and output
signals.
Figure 2. Logic Symbol Diagram
SDATA[63:0]#
SDATAINCLK[3:0]#
SDATAOUTCLK[3:0]#
Data
SADDIN[14:2]#
SADDINCLK#
Probe/SysCMD
SADDOUT[14:2]#
SADDOUTCLK#
VID[4:0]
FID[3:0]
A20M#
CLKFWDRST
CONNECT
COREFB
COREFB#
FERR
IGNNE#
INIT#
INTR
NMI
PROCRDY
PWROK
RESET#
SFILLVALID#
SMI#
STPCLK#
SYSCLK#SYSCLK
Clock
Voltage
Control
Frequency
Control
Legacy
Request
AMD Sempron™
Processor Model 10
SDATAINVALID#
SDATAOUTVALID#
Power
and
Management
Thermal
Diode
THERMDA
THERMDC
FLUSH#
PICCLK
PICD[1:0] APIC
FSB_SENSE[1:0]
{
{
{
{
Initialization {
{
{
{
{
Front-Side Bus
Autodetect
8Logic Symbol Diagram Chapter 3
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Chapter 4 Power Management 9
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
4 Power Management
This chapter describes the power management control system
of the AMD Sempron processor model 10. The power
management features of the processor are compliant with the
ACPI 1.0b and ACPI 2.0 specifications.
4.1 Power Management States
The AMD Sempron processor model 10 supports low-power
Halt and Stop Grant states. These states are used by advanced
configuration and power interface (ACPI) enabled operating
systems for processor power management.
Figure 3 shows the power management states of the processor.
The figure includes the ACPI “Cx” naming convention for these
states.
Figure 3. AMD Sempron™ Processor Model 10 Power Management States
C1
Halt
C0
Working4
Execute HLT
SMI#, INTR, NMI, INIT#, RESET#
Incoming Probe
ProbeServiced
STPCLK# asserted
STPCLK#asserted
2
STPCLK#deasserted
3
C2
Stop Grant
Cache Snoopable
Incoming Probe
Probe Serviced
Probe
State1
STPCLK# deasserted
(Read PLVL2 register
or throttling)
S1
Stop Grant
Cache Not Snoopable
Sleep
STPCLK#asserted
STPCLK#deasserted
Note: The AMD Athlon
TM
System Bus is connected during the following states:
1) The Probe state
2) During transitions between the Halt state and the C2 Stop Grant state
3) During transitions between the C2 Stop Grant state and the Halt state
4) C0 Working state
Software transitions
Hardware transitions
Legend
10 Power Management Chapter 4
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
The following sections provide an overview of the power
management states. For more details, refer to the
AMD Athlon™ and AMD Duron™ System Bus Specification,
order# 21902.
Note: In all power management states that the processor is
powered, the system must not stop the system clock
(SYSCLK/SYSCLK#) to the processor.
Working State The Working state is the state in which the processor is
executing instructions.
Halt State When the processor executes the HLT instruction, the processor
enters the Halt state and issues a Halt special cycle to the
AMD Athlon system bus. The processor only enters the low
power state dictated by the CLK_Ctl MSR if the system
controller (Northbridge) disconnects the AMD Athlon system
bus in response to the Halt special cycle.
If STPCLK# is asserted, the processor will exit the Halt state
and enter the Stop Grant state. The processor will initiate a
system bus connect, if it is disconnected, then issue a Stop
Grant special cycle. When STPCLK# is deasserted, the
processor will exit the Stop Grant state and re-enter the Halt
state. The processor will issue a Halt special cycle when
re-entering the Halt state.
The Halt state is exited when the processor detects the
assertion of INIT#, RESET#, SMI#, or an interrupt via the INTR
or NMI pins, or via a local APIC interrupt message. When the
Halt state is exited, the processor will initiate an AMD Athlon
system bus connect if it is disconnected.
Stop Grant States The processor enters the Stop Grant state upon recognition of
assertion of STPCLK# input. After entering the Stop Grant
state, the processor issues a Stop Grant special bus cycle on the
AMD Athlon system bus. The processor is not in a low-power
state at this time, because the AMD Athlon system bus is still
connected. After the Northbridge disconnects the AMD Athlon
system bus in response to the Stop Grant special bus cycle, the
processor enters a low-power state dictated by the CLK_Ctl
MSR. If the Northbridge needs to probe the processor during
the Stop Grant state while the system bus is disconnected, it
Chapter 4 Power Management 11
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
must first connect the system bus. Connecting the system bus
places the processor into the higher power probe state. After
the Northbridge has completed all probes of the processor, the
Northbridge must disconnect the AMD Athlon system bus
again so that the processor can return to the low-power state.
During the Stop Grant states, the processor latches INIT#,
INTR, NMI, SMI#, or a local APIC interrupt message, if they are
asserted.
The Stop Grant state is exited upon the deassertion of
STPCLK# or the assertion of RESET#. When STPCLK# is
deasserted, the processor initiates a connect of the
AMD Athlon system bus if it is disconnected. After the
processor enters the Working state, any pending interrupts are
recognized and serviced and the processor resumes execution
at the instruction boundary where STPCLK# was initially
recognized. If RESET# is sampled asserted during the Stop
Grant state, the processor exits the Stop Grant state and the
reset process begins.
There are two mechanisms for asserting STPCLK#—hardware
and software.
The Southbridge can force STPCLK# assertion for throttling to
protect the processor from exceeding its maximum case
temperature. This is accomplished by asserting the THERM#
input to the Southbridge. Throttling asserts STPCLK# for a
percentage of a predefined throttling period: STPCLK# is
repetitively asserted and deasserted until THERM# is
deasserted.
Software can force the processor into the Stop Grant state by
accessing ACPI-defined registers typically located in the
Southbridge.
The operating system places the processor into the C2 Stop
Grant state by reading the P_LVL2 register in the Southbridge.
If an ACPI Thermal Zone is defined for the processor, the
operating system can initiate throttling with STPCLK# using
the ACPI defined P_CNT register in the Southbridge. The
Northbridge connects the AMD Athlon system bus, and the
processor enters the Probe state to service cache snoops during
Stop Grant for C2 or throttling.
12 Power Management Chapter 4
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
In C2, probes are allowed, as shown in Figure 3 on page 9
The Stop Grant state is also entered for the S1, Powered On
Suspend, system sleep state based on a write to the SLP_TYP
and SLP_EN fields in the ACPI-defined Power Management 1
control register in the Southbridge. During the S1 Sleep state,
system software ensures no bus master or probe activity occurs.
The Southbridge deasserts STPCLK# and brings the processor
out of the S1 Stop Grant state when any enabled resume event
occurs.
Probe State The Probe state is entered when the Northbridge connects the
AMD Athlon system bus to probe the processor (for example, to
snoop the processor caches) when the processor is in the Halt or
Stop Grant state. When in the Probe state, the processor
responds to a probe cycle in the same manner as when it is in
the Working state. When the probe has been serviced, the
processor returns to the same state as when it entered the
Probe state (Halt or Stop Grant state). When probe activity is
completed the processor only returns to a low-power state after
the Northbridge disconnects the AMD Athlon system bus again.
4.2 Connect and Disconnect Protocol
Significant power savings of the processor only occur if the
processor is disconnected from the system bus by the
Northbridge while in the Halt or Stop Grant state. The
Northbridge can optionally initiate a bus disconnect upon the
receipt of a Halt or Stop Grant special cycle. The option of
disconnecting is controlled by an enable bit in the Northbridge.
If the Northbridge requires the processor to service a probe
after the system bus has been disconnected, it must first
initiate a system bus connect.
Connect Protocol In addition to the legacy STPCLK# signal and the Halt and Stop
Grant special cycles, the AMD Athlon system bus connect
protocol includes the CONNECT, PROCRDY, and CLKFWDRST
signals and a Connect special cycle.
AMD Athlon system bus disconnects are initiated by the
Northbridge in response to the receipt of a Halt or Stop Grant.
Reconnect is initiated by the processor in response to an
Chapter 4 Power Management 13
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
interrupt for Halt or STPCLK# deassertion. Reconnect is
initiated by the Northbridge to probe the processor.
The Northbridge contains BIOS programmable registers to
enable the system bus disconnect in response to Halt and Stop
Grant special cycles. When the Northbridge receives the Halt or
Stop Grant special cycle from the processor and, if there are no
outstanding probes or data movements, the Northbridge
deasserts CONNECT a minimum of eight SYSCLK periods after
the last command sent to the processor. The processor detects
the deassertion of CONNECT on a rising edge of SYSCLK and
deasserts PROCRDY to the Northbridge. In return, the
Northbridge asserts CLKFWDRST in anticipation of
reestablishing a connection at some later point.
Note: The Northbridge must disconnect the processor from the
AMD Athlon system bus before issuing the Stop Grant
special cycle to the PCI bus or passing the Stop Grant special
cycle to the Southbridge for systems that connect to the
Southbridge with HyperTransport™ technology.
This note applies to current chipset implementation—
alternate chipset implementations that do not require this
are possible.
Note: In response to Halt special cycles, the Northbridge passes the
Halt special cycle to the PCI bus or Southbridge
immediately.
The processor can receive an interrupt after it sends a Halt
special cycle, or STPCLK# deassertion after it sends a Stop
Grant special cycle to the Northbridge but before the
disconnect actually occurs. In this case, the processor sends the
Connect special cycle to the Northbridge, rather than
continuing with the disconnect sequence. In response to the
Connect special cycle, the Northbridge cancels the disconnect
request.
The system is required to assert the CONNECT signal before
returning the C-bit for the connect special cycle (assuming
CONNECT has been deasserted).
For more information, see the AMD Athlon™ and AMD Duron™
System Bus Specification, order# 21902 for the definition of the
C-bit and the Connect special cycle.
14 Power Management Chapter 4
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Figure 4 shows STPCLK# assertion resulting in the processor in
the Stop Grant state and the AMD Athlon system bus
disconnected.
Figure 4. AMD Athlon™ System Bus Disconnect Sequence in the Stop Grant State
An example of the AMD Athlon system bus disconnect
sequence is as follows:
1. The peripheral controller (Southbridge) asserts STPCLK#
to place the processor in the Stop Grant state.
2. When the processor recognizes STPCLK# asserted, it enters
the Stop Grant state and then issues a Stop Grant special
cycle.
3. When the special cycle is received by the Northbridge, it
deasserts CONNECT, assuming no probes are pending,
initiating a bus disconnect to the processor.
4. The processor responds to the Northbridge by deasserting
PROCRDY.
5. The Northbridge asserts CLKFWDRST to complete the bus
disconnect sequence.
6. After the processor is disconnected from the bus, the
processor enters a low-power state. The Northbridge passes
the Stop Grant special cycle along to the Southbridge.
Stop Grant
Stop Grant
STPCLK#
CONNECT
PROCRDY
CLKFWDRST
PCI Bus
AMD Athlon™
System Bus
Chapter 4 Power Management 15
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Figure 5 shows the signal sequence of events that takes the
processor out of the Stop Grant state, connects the processor to
the AMD Athlon system bus, and puts the processor into the
Working state.
Figure 5. Exiting the Stop Grant State and Bus Connect Sequence
The following sequence of events removes the processor from
the Stop Grant state and connects it to the system bus:
1. The Southbridge deasserts STPCLK#, informing the
processor of a wake event.
2. When the processor recognizes STPCLK# deassertion, it
exits the low-power state and asserts PROCRDY, notifying
the Northbridge to connect to the bus.
3. The Northbridge asserts CONNECT.
4. The Northbridge deasserts CLKFWDRST, synchronizing the
forwarded clocks between the processor and the
Northbridge.
5. The processor issues a Connect special cycle on the system
bus and resumes operating system and application code
execution.
16 Power Management Chapter 4
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Connect State
Diagram
Figure 6 below and Figure 7 on page 17 show the Northbridge
and processor connect state diagrams, respectively.
.
Figure 6. Northbridge Connect State Diagram
Condition
1 A disconnect is requested and probes are still pending.
2 A disconnect is requested and no probes are pending.
3 A Connect special cycle from the processor.
4 No probes are pending.
5 PROCRDY is deasserted.
6 A probe needs service.
7 PROCRDY is asserted.
8
Three SYSCLK periods after CLKFWDRST is deasserted.
Although reconnected to the system interface, the
Northbridge must not issue any non-NOP SysDC
commands for a minimum of four SYSCLK periods after
deasserting CLKFWDRST.
Action
ADeassert CONNECT eight SYSCLK periods
after last SysDC sent.
BAssert CLKFWDRST.
C Assert CONNECT.
D Deassert CLKFWDRST.
Chapter 4 Power Management 17
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Figure 7. Processor Connect State Diagram
Condition
1CONNECT is deasserted by the Northbridge (for a
previously sent Halt or Stop Grant special cycle).
2Processor receives a wake-up event and must cancel
the disconnect request.
3 Deassert PROCRDY and slow down internal clocks.
4Processor wake-up event or CONNECT asserted by
Northbridge.
5 CLKFWDRST is deasserted by the Northbridge.
6Forward clocks start three SYSCLK periods after
CLKFWDRST is deasserted.
Action
A CLKFWDRST is asserted by the Northbridge.
B Issue a Connect special cycle.*
CReturn internal clocks to full speed and assert
PROCRDY.
Note:
* The Connect special cycle is only issued after a
processor wake-up event (interrupt or STPCLK#
deassertion) occurs. If the AMD Athlon™ system
bus is connected so the Northbridge can probe the
processor, a Connect special cycle is not issued at
that time (it is only issued after a subsequent
processor wake-up event).
Connect
Disconnect
Pending
Disconnect
Connect
Pending 1
Connect
Pending 2
1
3/A
4/C
5
6/B
2/B
18 Power Management Chapter 4
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
4.3 Clock Control
The processor implements a Clock Control (CLK_Ctl) MSR
(address C001_001Bh) that determines the internal clock
divisor when the AMD Athlon system bus is disconnected.
Refer to the AMD Athlon™ and AMD Duron™ Processors BIOS,
Software, and Debug Developers Guide, order# 21656, for more
details on the CLK_Ctl register.
Chapter 5 CPUID Support 19
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
5 CPUID Support
AMD Sempron™ processor model 10 version and feature set
recognition can be performed through the use of the CPUID
instruction, that provides complete information about the
processor—vendor, type, name, etc., and its capabilities.
Software can make use of this information to accurately tune
the system for maximum performance and benefit to users.
For information on the use of the CPUID instruction see the
following document:
AMD Processor Recognition Application Note, order# 20734
20 CPUID Support Chapter 5
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Chapter 6 333 FSB AMD Sempron™ Processor Model 10 Specifications 21
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
6 333 FSB AMD Sempron™ Processor Model 10
Specifications
This chapter describes the electrical specifications that are
unique to the advanced 333 front-side bus (FSB)
AMD Sempron™ Processor Model 10.
6.1 Electrical and Thermal Specifications for the 333 FSB
AMD Sempron™ Processor Model 10
Table 1 shows the electrical and thermal specifications in the
C0 working state and the S1 Stop Grant state for this processor.
Table 1. Electrical and Thermal Specifications for the Advanced 333 FSB AMD Sempron™ Processor
Model 10
Frequency in MHz
(Model Number)
VCC_CORE
(Core
Voltage)
ICC (Processor Current)
Thermal Power5Maximum Die
Temperature
Working State C0 Stop Grant S11, 2, 3, 4
Maximum Typical Maximum Typical Maximum Typical
2000 (3000+) 1.60 V 38.75 A 30.9 A 8.10 A 4.94 A 62.0 W 49.4 W 90°C
Notes:
1. See Figure 3, "AMD Sempron™ Processor Model 10 Power Management States" on page 9.
2. The maximum Stop Grant currents are absolute worst case currents for parts that may yield from the worst case corner of the
process and are not representative of the typical Stop Grant current that is currently about one-third of the maximum specified
current.
3. These currents occur when the AMD Athlon™ system bus is disconnected and has a low power ratio of 1/8 for Stop Grant
disconnect and a low power ratio of 1/8 Halt disconnect applied to the core clock grid of the processor as dictated by a value of
2003_1223h programmed into the Clock Control (CLK_Ctl) MSR. For more information, refer to the AMD Athlon™ and
AMD Duron™ Processors BIOS, Software, and Debug Developers Guide, order# 21656.
4. The Stop Grant current consumption is characterized at 50°C and not tested.
5. Thermal design power represents the maximum sustained power dissipated while executing publicly-available software or
instruction sequences under normal system operation at nominal VCC_CORE . Thermal solutions must monitor the temperature of
the processor to prevent the processor from exceeding its maximum die temperature.
22 333 FSB AMD Sempron™ Processor Model 10 Specifications Chapter 6
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
6.2 333 FSB AMD Sempron™ Processor Model 10 SYSCLK and
SYSCLK# AC Characteristics
Table 2 shows the SYSCLK/SYSCLK# differential clock AC
characteristics of this processor.
Figure 8 shows a sample waveform of the SYSCLK signal.
Figure 8. SYSCLK Waveform
Table 2. 333 FSB SYSCLK and SYSCLK# AC Characteristics
Symbol Parameter Description Minimum Maximum Units Notes
Clock Frequency 50 166 MHz 1
Duty Cycle 30% 70%
t1Period 6ns 2, 3
t2High Time 1.0 ns
t3Low Time 1.0 ns
t4Fall Time 2ns
t5Rise Time 2ns
Period Stability ± 300 ps
Notes:
1. The AMD Athlon™ system bus operates at twice this clock frequency.
2. Circuitry driving the AMD Athlon system bus clock inputs must exhibit a suitably low closed-loop jitter bandwidth to allow the PLL
to track the jitter. The –20dB attenuation point, as measured into a 20- or 30-pF load must be less than 500 kHz.
3. Circuitry driving the AMD Athlon system bus clock inputs may purposely alter the AMD Athlon system bus clock frequency (spread
spectrum clock generators). In no cases can the AMD Athlon system bus period violate the minimum specification above.
AMD Athlon system bus clock inputs can vary from 100% of the specified frequency to 99% of the specified frequency at a
maximum rate of 100 kHz.
t5
VCROSS
t2
t3
t4
t1
VThreshold-AC
Chapter 6 333 FSB AMD Sempron™ Processor Model 10 Specifications 23
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
6.3 333 FSB AMD Athlon™ System Bus AC Characteristics
The AC characteristics of the AMD Athlon system bus of this
processor are shown in Table 3. The parameters are grouped
based on the source or destination of the signals involved.
Table 3. 333 FSB AMD Athlon™ System Bus AC Characteristics
Group Symbol Parameter Min Max Units Notes
All Signals TRISE Output Rise Slew Rate 1 3 V/ns 1
TFALL Output Fall Slew Rate 1 3 V/ns 1
Forward
Clocks
TSKEW-DIFFEDGE Output skew with respect to a
different clock edge 770 ps 2
TSU Input Data Setup Time 300 ps 3
THD Input Data Hold Time 300 ps 3
CIN Capacitance on input clocks 425 pF
COUT Capacitance on output clocks 412 pF
Sync
TVAL RSTCLK to Output Valid 800 2000 ps 4, 5
TSU Setup to RSTCLK 500 ps 4, 6
THD Hold from RSTCLK 500 ps 4, 6
Notes:
1. Rise and fall time ranges are guidelines over which the I/O has been characterized.
2. TSKEW-DIFFEDGE is the maximum skew within a clock forwarded group between any two signals or between any signal and its
forward clock, as measured at the package, with respect to different clock edges.
3. Input SU and HD times are with respect to the appropriate Clock Forward Group input clock.
4. The synchronous signals include PROCRDY, CONNECT, and CLKFWDRST.
5. TVAL is RSTCLK rising edge to output valid for PROCRDY. Test Load is 25 pF.
6. TSU is setup of CONNECT/CLKFWDRST to rising edge of RSTCLK. THD is hold of CONNECT/CLKFWDRST from rising edge of
RSTCLK.
24 333 FSB AMD Sempron™ Processor Model 10 Specifications Chapter 6
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
6.4 333 FSB AMD Athlon™ System Bus DC Characteristics
Table 4 shows the DC characteristics of the AMD Athlon
system bus for this processor.
Table 4. 333 FSB AMD Athlon™ System Bus DC Characteristics
Symbol Parameter Condition Min Max Units Notes
VREF DC Input Reference Voltage (0.5 x VCC_CORE)
–50
(0.5 x VCC_CORE)
+50 mV 1
IVREF_LEAK_P VREF Tristate Leakage Pullup VIN = VREF Nominal –100 µA
IVREF_LEAK_N VREF Tristate Leakage Pulldown VIN = VREF Nominal 100 µA
VIH Input High Voltage VREF +200 VCC_CORE +500 mV
VIL Input Low Voltage –500 VREF –200 mV
ILEAK_P Tristate Leakage Pullup VIN = VSS
(Ground) –1 mA
ILEAK_N Tristate Leakage Pulldown VIN = VCC_CORE
Nominal 1mA
CIN Input Pin Capacitance 4 7 pF
RON Output Resistance 0.90 x RsetN,P 1.1 x RsetN,P 2
RsetP Impedance Set Point, P Channel 40 70 2
RsetN Impedance Set Point, N Channel 40 70 2
Notes:
1. VREF is nominally set to 50% of VCC_CORE with actual values that are specific to motherboard design implementation. VREF must be
created with a sufficiently accurate DC source and a sufficiently quiet AC response to adhere to the ± 50 mV specification listed
above.
2. Measured at VCC_CORE / 2.
Chapter 7 Electrical Data 25
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
7 Electrical Data
This chapter describes the electrical characteristics that apply
to all desktop AMD Sempron™ processors model 10.
7.1 Conventions
The conventions used in this chapter are as follows:
Current specified as being sourced by the processor is
negative.
Current specified as being sunk by the processor is positive.
7.2 Interface Signal Groupings
The electrical data in this chapter is presented separately for
each signal group.
Table 5 defines each group and the signals contained in each
group.
Table 5. Interface Signal Groupings
Signal Group Signals Notes
Power VID[4:0], VCCA, VCC_CORE, COREFB,
COREFB#
See “Voltage Identification (VID[4:0])” on page 26,
“VID[4:0] Pins” on page 74, “VCCA AC and DC
Characteristics” on page 27, “VCC_CORE Characteristics”
on page 28, “VCCA Pin” on page 73, and “COREFB and
COREFB# Pins” on page 69.
Frequency FID[3:0] See “Frequency Identification (FID[3:0])” on page 27 and
“FID[3:0] Pins” on page 70.
System Clocks
SYSCLK, SYSCLK# (Tied to CLKIN/CLKIN#
and RSTCLK/RSTCLK#), PLLBYPASSCLK#,
PLLBYPASSCLK
See Table 11, “SYSCLK and SYSCLK# DC Characteristics,”
on page 31, Table 3, “333 FSB AMD Athlon™ System Bus
AC Characteristics,” on page 23, “SYSCLK and SYSCLK#”
on page 73, and “PLL Bypass and Test Pins” on page 72.
AMD Athlon™
System Bus
SADDIN[14:2]#, SADDOUT[14:2]#,
SADDINCLK#, SADDOUTCLK#, SFILLVAL#,
SDATAINVAL#, SDATAOUTVAL#,
SDATA[63:0]#, SDATAINCLK[3:0]#,
SDATAOUTCLK[3:0]#, CLKFWDRST,
PROCRDY, CONNECT
See “333 FSB AMD Sempron™ Processor Model 10
Specifications” on page 21, Table 3, “333 FSB
AMD Athlon™ System Bus AC Characteristics,” on
page 23, Table 4, “333 FSB AMD Athlon™ System Bus DC
Characteristics,” on page 24, and “CLKFWDRST Pin” on
page 68.
26 Electrical Data Chapter 7
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
7.3 Voltage Identification (VID[4:0])
Table 6 shows the VID[4:0] DC Characteristics. For more
information on VID[4:0] DC Characteristics, see “VID[4:0]
Pins” on page 74.
Southbridge RESET#, INTR, NMI, SMI#, INIT#, A20M#,
FERR, IGNNE#, STPCLK#, FLUSH#
See “General AC and DC Characteristics” on page 32,
“INTR Pin” on page 72, “NMI Pin” on page 72, “SMI#
Pin” on page 73, “INIT# Pin” on page 71, A20M# Pin
on page 68, “FERR Pin” on page 69,“IGNNE# Pin” on
page 71, “STPCLK# Pin” on page 73, and “FLUSH# Pin”
on page 71.
JTAG TMS, TCK, TRST#, TDI, TDO See “General AC and DC Characteristics” on page 32.
Test
PLLBYPASS#, PLLTEST#, PLLMON1,
PLLMON2, SCANCLK1, SCANCLK2,
SCANSHIFTEN, SCANINTEVAL, ANALOG
See “General AC and DC Characteristics” on page 32,
“PLL Bypass and Test Pins” on page 72, “Scan Pins” on
page 73, Analog Pin” on page 68.
Miscellaneous DBREQ#, DBRDY, PWROK
See “General AC and DC Characteristics” on page 32,
“DBRDY and DBREQ# Pins” on page 69, “PWROK Pin”
on page 73.
APIC PICD[1:0]#, PICCLK See “APIC Pins AC and DC Characteristics” on page 37,
and APIC Pins, PICCLK, PICD[1:0]#” on page 68.
Thermal THERMDA, THERMDC
See Table 13, “Thermal Diode Electrical Characteristics,”
on page 35, and “THERMDA and THERMDC Pins” on
page 73.
Table 5. Interface Signal Groupings (continued)
Signal Group Signals Notes
Table 6. VID[4:0] DC Characteristics
Parameter Description Min Max
IOL Output Current Low 6 mA
VOH Output High Voltage 5.25 V *
Note:
* The VID pins are either open circuit or pulled to ground. It is recommended that these pins
are not pulled above 5.25 V, which is 5.0 V + 5%.
Chapter 7 Electrical Data 27
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
7.4 Frequency Identification (FID[3:0])
Table 7 shows the FID[3:0] DC characteristics. For more
information, see “FID[3:0] Pins” on page 70.
7.5 VCCA AC and DC Characteristics
Table 8 shows the AC and DC characteristics for VCCA. For
more information, see “VCCA Pin” on page 73.
7.6 Decoupling
See the AMD Athlon™ Processor-Based Motherboard Design
Guide, order# 24363, or contact your local AMD office for
information about the decoupling required on the motherboard
for use with the AMD Sempron processor model 10.
Table 7. FID[3:0] DC Characteristics
Parameter Description Min Max
IOL Output Current Low 6 mA
VOH Output High Voltage 2.625 V 1
| VOH – VCC_CORE | 1.60 V 2
Note:
1. The FID pins must not be pulled above 2.625 V, which is equal to 2.5 V plus a maximum of five percent.
2. Refer to “VCC_2.5V Generation Circuit” found in the section, “Motherboard Required Circuits,” of the AMD Athlon™ Processor-
Based Motherboard Design Guide, order# 24363.
Table 8. VCCA AC and DC Characteristics
Symbol Parameter Min Nominal Max Units Notes
VVCCA VCCA Pin Voltage 2.25 2.5 2.75 V 1
| VVCCA – VCC_CORE | 1.60 V 2
IVCCA VCCA Pin Current 050 mA/GHz 3
Notes:
1. Minimum and Maximum voltages are absolute. No transients below minimum nor above maximum voltages are permitted.
2. For more information, refer to the AMD Athlon™ Processor-Based Motherboard Design Guide, order# 24363.
3. Measured at 2.5 V.
28 Electrical Data Chapter 7
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
7.7 VCC_CORE Characteristics
Table 9 shows the AC and DC characteristics for VCC_CORE. See
Figure 9 on page 29 for a graphical representation of the
VCC_CORE waveform.
Table 9. VCC_CORE AC and DC Characteristics
Symbol Parameter Limit in Working State Units
VCC_CORE_DC_MAX Maximum static voltage above VCC_CORE_NOM*50 mV
VCC_CORE_DC_MIN Maximum static voltage below VCC_CORE_NOM*–50 mV
VCC_CORE_AC_MAX Maximum excursion above VCC_CORE_NOM*150 mV
VCC_CORE_AC_MIN Maximum excursion below VCC_CORE_NOM*–100 mV
tMAX_AC Maximum excursion time for AC transients 10 µs
tMIN_AC Negative excursion time for AC transients 5µs
Note:
* All voltage measurements are taken differentially at the COREFB/COREFB# pins.
Chapter 7 Electrical Data 29
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Figure 9 shows the processor core voltage (VCC_CORE)
waveform response to perturbation. The tMIN_AC (negative AC
transient excursion time) and tMAX_AC (positive AC transient
excursion time) represent the maximum allowable time below
or above the DC tolerance thresholds.
Figure 9. VCC_CORE Voltage Waveform
tmin_AC
VCC_CORE_AC_MAX
tmax_AC
VCC_CORE_DC_MAX
VCC_CORE_NOM
VCC_CORE_DC_MIN
VCC_CORE_AC_MIN
ICORE_MIN
ICORE_MAX
dI /dt
30 Electrical Data Chapter 7
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
7.8 Absolute Ratings
The AMD Sempron processor model 10 should not be subjected
to conditions exceeding the absolute ratings, as such conditions
can adversely affect long-term reliability or result in functional
damage.
Table 10 lists the maximum absolute ratings of operation for the
AMD Sempron processor model 10.
Table 10. Absolute Ratings
Parameter Description Min Max
VCC_CORE Processor core voltage supply –0.5 V VCC_CORE Max + 0.5 V
VCCA Processor PLL voltage supply –0.5 V VCCA Max + 0.5 V
VPIN Voltage on any signal pin –0.5 V VCC_CORE Max + 0.5 V
TSTORAGE Storage temperature of processor –40ºC 100ºC
Chapter 7 Electrical Data 31
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
7.9 SYSCLK and SYSCLK# DC Characteristics
Table 11 shows the DC characteristics of the SYSCLK and
SYSCLK# differential clocks. The SYSCLK signal represents
CLKIN and RSTCLK tied together while the SYSCLK# signal
represents CLKIN# and RSTCLK# tied together. For more
information about SYSCLK and SYSCLK#, see “SYSCLK and
SYSCLK#” on page 73 and Table 19, “Pin Name
Abbreviations,” on page 52.
Figure 10 shows the DC characteristics of the SYSCLK and
SYSCLK# signals.
Figure 10. SYSCLK and SYSCLK# Differential Clock Signals
Table 11. SYSCLK and SYSCLK# DC Characteristics
Symbol Description Min Max Units
VThreshold-DC Crossing before transition is detected (DC) 400 mV
VThreshold-AC Crossing before transition is detected (AC) 450 mV
ILEAK_P Leakage current through P-channel pullup to VCC_CORE –1 mA
ILEAK_N Leakage current through N-channel pulldown to VSS (Ground) 1mA
VCROSS Differential signal crossover mV
CPIN Capacitance * 425 * pF
Note:
* The following processor inputs have twice the listed capacitance because they connect to two input pads—SYSCLK and SYSCLK#.
SYSCLK connects to CLKIN/RSTCLK. SYSCLK# connects to CLKIN#/RSTCLK#.
VCC_CORE
2
------------------------ 1 0 0±
VCROSS VThreshold-DC = 400 mV VThreshold-AC = 450 mV
32 Electrical Data Chapter 7
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
7.10 General AC and DC Characteristics
Table 12 shows the AMD Sempron processor model 10 AC and
DC characteristics of the Southbridge, JTAG, test, and
miscellaneous pins.
Table 12. General AC and DC Characteristics
Symbol Parameter Description Condition Min Max Units Notes
VIH Input High Voltage (VCC_CORE / 2) +
200 mV
VCC_CORE +
300 mV V1, 2
VIL Input Low Voltage –300 350 mV 1, 2
VOH Output High Voltage VCC_CORE
400
VCC_CORE +
300 mV
VOL Output Low Voltage –300 400 mV
ILEAK_P Tristate Leakage Pullup VIN = VSS
(Ground) –1 mA
ILEAK_N Tristate Leakage Pulldown VIN = VCC_CORE
Nominal 600 µA
IOH Output High Current –6 mA 3
IOL Output Low Current 6mA 3
TSU Sync Input Setup Time 2.0 ns 4, 5
THD Sync Input Hold Time 0.0 ps 4, 5
Notes:
1. Characterized across DC supply voltage range.
2. Values specified at nominal VCC_CORE . Scale parameters between VCC_CORE. minimum and VCC_CORE. maximum.
3. IOL and IOH are measured at VOL maximum and VOH minimum, respectively.
4. Synchronous inputs/outputs are specified with respect to RSTCLK and RSTCK# at the pins.
5. These are aggregate numbers.
6. Edge rates indicate the range over which inputs were characterized.
7. In asynchronous operation, the signal must persist for this time to enable capture.
8. This value assumes RSTCLK period is 10 ns ==> TBIT = 2*fRST.
9. The approximate value for standard case in normal mode operation.
10. This value is dependent on RSTCLK frequency, divisors, Low Power mode, and core frequency.
11. Reassertions of the signal within this time are not guaranteed to be seen by the core.
12. This value assumes that the skew between RSTCLK and K7CLKOUT is much less than one phase.
13. This value assumes RSTCLK and K7CLKOUT are running at the same frequency, though the processor is capable of other
configurations.
14. Time to valid is for any open-drain pins. See requirements 7 and 8 in the “Power-Up Timing Requirements“ chapter for more
information.
Chapter 7 Electrical Data 33
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
TDELAY Output Delay with respect to RSTCLK 0.0 6.1 ns 5
TBIT Input Time to Acquire 20.0 ns 7, 8
TRPT Input Time to Reacquire 40.0 ns 9–13
TRISE Signal Rise Time 1.0 3.0 V/ns 6
TFALL Signal Fall Time 1.0 3.0 V/ns 6
CPIN Pin Capacitance 412 pF
TVALID Time to data valid 100 ns 14
Table 12. General AC and DC Characteristics (continued)
Symbol Parameter Description Condition Min Max Units Notes
Notes:
1. Characterized across DC supply voltage range.
2. Values specified at nominal VCC_CORE . Scale parameters between VCC_CORE. minimum and VCC_CORE. maximum.
3. IOL and IOH are measured at VOL maximum and VOH minimum, respectively.
4. Synchronous inputs/outputs are specified with respect to RSTCLK and RSTCK# at the pins.
5. These are aggregate numbers.
6. Edge rates indicate the range over which inputs were characterized.
7. In asynchronous operation, the signal must persist for this time to enable capture.
8. This value assumes RSTCLK period is 10 ns ==> TBIT = 2*fRST.
9. The approximate value for standard case in normal mode operation.
10. This value is dependent on RSTCLK frequency, divisors, Low Power mode, and core frequency.
11. Reassertions of the signal within this time are not guaranteed to be seen by the core.
12. This value assumes that the skew between RSTCLK and K7CLKOUT is much less than one phase.
13. This value assumes RSTCLK and K7CLKOUT are running at the same frequency, though the processor is capable of other
configurations.
14. Time to valid is for any open-drain pins. See requirements 7 and 8 in the “Power-Up Timing Requirements“ chapter for more
information.
34 Electrical Data Chapter 7
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
7.11 Open Drain Test Circuit
Figure 11 is a test circuit that may be used on automated test
equipment (ATE) to test for validity on open-drain pins.
Refer to Table 12, “General AC and DC Characteristics,” on
page 32 for timing requirements.
Figure 11. General ATE Open-Drain Test Circuit
Open-Drain Pin
VTermination1
50 ±3%
IOL = Output Current2
Notes:
1. VTermination = 1.2 V for VID and FID pins
VTermination = 1.0 V for APIC pins
2. IOL = –6 mA for VID and FID pins
IOL = –9 mA for APIC pins
Chapter 7 Electrical Data 35
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
7.12 Thermal Diode Characteristics
The AMD Sempron processor model 10 provides a diode that
can be used in conjunction with an external temperature sensor
to determine the die temperature of the processor. The diode
anode (THERMDA) and cathode (THERMDC) are available as
pins on the processor, as described in “THERMDA and
THERMDC Pins” on page 73.
For information about thermal design for the AMD Sempron
processor model 10, including layout and airflow
considerations, see the AMD Processor Thermal, Mechanical, and
Chassis Cooling Design Guide, order# 23794, and the cooling
guidelines on http://www.amd.com.
Thermal Diode
Electrical
Characteristics
Table 13 shows the AMD Sempron processor model 10 charac-
teristics of the on-die thermal diode. For information about cal-
culations for the ideal diode equation and temperature offset
correction, see Appendix A, "Thermal Diode Calculations," on
page 77.
Thermal Protection
Characterization
The following section describes parameters relating to thermal
protection. The implementation of thermal control circuitry to
control processor temperature is left to the manufacturer to
determine how to implement.
Table 13. Thermal Diode Electrical Characteristics
Symbol Parameter
Description Min Nom Max Units Notes
ISourcing current 5300µA1
nf, lumped Lumped ideality
factor 1.00000 1.00374 1.00900 2, 3, 4
nf, actual Actual ideality factor 1.00261 3, 4
RTSeries Resistance 0.93 3, 4
Notes:
1. The sourcing current should always be used in forward bias only.
2. Characterized at 95°C with a forward bias current pair of 10 µA and 100 µA. AMD
recommends using a minimum of two sourcing currents to accurately measure the
temperature of the thermal diode.
3. Not 100% tested. Specified by design and limited characterization.
4. The lumped ideality factor adds the effect of the series resistance term to the actual ideality
factor. The series resistance term indicates the resistance from the pins of the processor to the
on-die thermal diode. The value of the lumped ideality factor depends on the sourcing current
pair used.
36 Electrical Data Chapter 7
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Thermal limits in motherboard design are necessary to protect
the processor from thermal damage. TSHUTDOWN is the
temperature for thermal protection circuitry to initiate
shutdown of the processor. TSD_DELAY is the maximum time
allowed from the detection of the over-temperature condition to
processor shutdown to prevent thermal damage to the
processor.
Systems that do not implement thermal protection circuitry or
that do not react within the time specified by TSD_DELAY can
cause thermal damage to the processor during the unlikely
events of fan failure or powering up the processor without a
heat-sink. The processor relies on thermal circuitry on the
motherboard to turn off the regulated core voltage to the
processor in response to a thermal shutdown event.
Thermal protection circuitry reference designs and thermal
solution guidelines are found in the following documents:
AMD Athlon™ Processor-Based Motherboard Design Guide,
order# 24363
AMD Thermal, Mechanical, and Chassis Cooling Design Guide,
order# 23794
See http://www.amd.com for more information about thermal
solutions.
Table 14 shows the TSHUTDOWN and TSD_DELAY specifications
for circuitry in motherboard design necessary for thermal
protection of the processor.
Table 14. Guidelines for Platform Thermal Protection of the Processor
Symbol Parameter Description Max Units Notes
TSHUTDOWN Thermal diode shutdown temperature for processor protection 125 °C1, 2, 3
TSD_DELAY Maximum allowed time from TSHUTDOWN detection to processor shutdown 500 ms 1, 3
Notes:
1. The thermal diode is not 100% tested, it is specified by design and limited characterization.
2. The thermal diode is capable of responding to thermal events of 40°C/s or faster.
3. The AMD Sempron™ processor model 10 provides a thermal diode for measuring die temperature of the processor. The
processor relies on thermal circuitry on the motherboard to turn off the regulated core voltage to the processor in response to a
thermal shutdown event. Refer to AMD Athlon™ Processor-Based Motherboard Design Guide, order# 24363, for thermal
protection circuitry designs.
Chapter 7 Electrical Data 37
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
7.13 APIC Pins AC and DC Characteristics
Table 15 shows the AMD Sempron processor model 10 AC and
DC characteristics of the APIC pins.
Table 15. APIC Pin AC and DC Characteristics
Symbol Parameter Description Condition Min Max Units Notes
VIH Input High Voltage 1.7 2.625 V1, 2
VCC_CORE < VCC_CORE_MAX | VIH – VCC_CORE | 1.60 V V 3
VIL Input Low Voltage –300 700 mV 1
VOH Output High Voltage 2.625 V 2
VCC_CORE < VCC_CORE_MAX | VOH – VCC_CORE | 1.60 V V 3
VOL Output Low Voltage –300 400 mV
ILEAK_P Tristate Leakage Pullup VIN = VSS (Ground) –1 mA
ILEAK_N Tristate Leakage
Pulldown VIN = 2.5 V 1mA
IOL Output Low Current VOL Max 9mA
TRISE Signal Rise Time 1.0 3.0 V/ns 3
TFALL Signal Fall Time 1.0 3.0 V/ns 3
TSU Setup Time 1ns
THD Hold Time 1ns
CPIN Pin Capacitance 412 pF
Notes:
1. Characterized across DC supply voltage range.
2. The 2.625-V value is equal to 2.5 V plus a maximum of five percent.
3. Refer to “VCC_2.5V Generation Circuit” found in the section, “Motherboard Required Circuits,” of the AMD Athlon™ Processor-
Based Motherboard Design Guide, order# 24363.
4. Edge rates indicate the range for characterizing the inputs.
38 Electrical Data Chapter 7
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Chapter 8 Signal and Power-Up Requirements 39
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
8 Signal and Power-Up Requirements
The AMD Sempron™ processor model 10 is designed to provide
functional operation if the voltage and temperature parameters
are within the limits of normal operating ranges.
8.1 Power-Up Requirements
Signal Sequence and
Timing Description
Figure 12 shows the relationship between key signals in the
system during a power-up sequence. This figure details the
requirements of the processor.
Figure 12. Signal Relationship Requirements During Power-Up Sequence
Notes: 1. Figure 12 represents several signals generically by using names not necessarily consistent
with any pin lists or schematics.
2.
Requirements 1–8 in Figure 12 are described in “Power-Up Timing Requirements” on page 40.
3.3 V Supply
VCCA (2.5 V)
(for PLL)
RESET#
VCC_CORE
(Processor Core)
NB_RESET#
PWROK
System Clock
2
1
3
4
5
6
FID[3:0]
78
Warm reset
condition
40 Signal and Power-Up Requirements Chapter 8
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Power-Up Timing Requirements.
The signal timing requirements are
as follows:
1. RESET# must be asserted before PWROK is asserted.
The AMD Sempron processor model 10 does not set the
correct clock multiplier if PWROK is asserted prior to a
RESET# assertion. It is recommended that RESET# be
asserted at least 10 nanoseconds prior to the assertion of
PWROK.
In practice, a Southbridge asserts RESET# milliseconds
before PWROK is asserted.
2. All motherboard voltage planes must be within
specification before PWROK is asserted.
PWROK is an output of the voltage regulation circuit on the
motherboard. PWROK indicates that VCC_CORE and all
other voltage planes in the system are within specification.
The motherboard is required to delay PWROK assertion for
a minimum of three milliseconds from the 3.3 V supply
being within specification. This delay ensures that the
system clock (SYSCLK/SYSCLK#) is operating within
specification when PWROK is asserted.
The processor core voltage, VCC_CORE, must be within
specification as dictated by the VID[4:0] pins driven by the
processor before PWROK is asserted. Before PWROK
assertion, the AMD Sempron processor is clocked by a ring
oscillator.
The processor PLL is powered by VCCA. The processor PLL
does not lock if VCCA is not high enough for the processor
logic to switch for some period before PWROK is asserted.
VCCA must be within specification at least five
microseconds before PWROK is asserted.
In practice VCCA, VCC_CORE, and all other voltage planes
must be within specification for several milliseconds before
PWROK is asserted.
After PWROK is asserted, the processor PLL locks to its
operational frequency.
3. The system clock (SYSCLK/SYSCLK#) must be running
before PWROK is asserted.
When PWROK is asserted, the processor switches from
driving the internal processor clock grid from the ring
oscillator to driving from the PLL. The reference system
Chapter 8 Signal and Power-Up Requirements 41
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
clock must be valid at this time. The system clocks are
designed to be running after 3.3 V has been within
specification for three milliseconds.
4. PWROK assertion to deassertion of RESET#
The duration of RESET# assertion during cold boots is
intended to satisfy the time it takes for the PLL to lock with
a less than 1 ns phase error. The processor PLL begins to
run after PWROK is asserted and the internal clock grid is
switched from the ring oscillator to the PLL. The PLL lock
time may take from hundreds of nanoseconds to tens of
microseconds. It is recommended that the minimum time
between PWROK assertion to the deassertion of RESET# be
at least 1.0 milliseconds. Southbridges enforce a delay of
1.5 to 2.0 milliseconds between PWRGD (Southbridge
version of PWROK) assertion and NB_RESET# deassertion.
5. PWROK must be monotonic and meet the timing
requirements as defined in Table 12, “General AC and DC
Characteristics,” on page 32. The processor should not
switch between the ring oscillator and the PLL after the
initial assertion of PWROK.
6. NB_RESET# must be asserted (causing CONNECT to also
assert) before RESET# is deasserted. In practice all
Southbridges enforce this requirement.
If NB_RESET# does not assert until after RESET# has
deasserted, the processor misinterprets the CONNECT
assertion (due to NB_RESET# being asserted) as the
beginning of the SIP transfer. There must be sufficient
overlap in the resets to ensure that CONNECT is sampled
asserted by the processor before RESET# is deasserted.
7. The FID[3:0] signals are valid within 100 ns after PWROK is
asserted. The chipset must not sample the FID[3:0] signals
until they become valid. Refer to the AMD Athlon™
Processor-Based Motherboard Design Guide, order# 24363, for
the specific implementation and additional circuitry
required.
8. The FID[3:0] signals become valid within 100 ns after
RESET# is asserted. Refer to the AMD Athlon™ Processor-
Based Motherboard Design Guide, order# 24363, for the
specific implementation and additional circuitry required.
42 Signal and Power-Up Requirements Chapter 8
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Clock Multiplier
Selection (FID[3:0])
The chipset samples the FID[3:0] signals in a chipset-specific
manner from the processor and uses this information to
determine the correct serial initialization packet (SIP). The
chipset then sends the SIP information to the processor for
configuration of the AMD Athlon system bus for the clock
multiplier that determines the processor frequency indicated
by the FID[3:0] code. The SIP is sent to the processor using the
SIP protocol. This protocol uses the PROCRDY, CONNECT, and
CLKFWDRST signals, that are synchronous to SYSCLK.
For more information about FID[3:0], see “FID[3:0] Pins” on
page 70.
Serial Initialization Packet (SIP) Protocol. Refer to AMD Athlon™ and
AMD Duron™ System Bus Specification, order# 21902 for details
of the SIP protocol.
8.2 Processor Warm Reset Requirements
Northbridge Reset
Pins
RESET# cannot be asserted to the processor without also being
asserted to the Northbridge. RESET# to the Northbridge is the
same as PCI RESET#. The minimum assertion for PCI RESET#
is one millisecond. Southbridges enforce a minimum assertion
of RESET# for the processor, Northbridge, and PCI of 1.5 to 2.0
milliseconds.
Chapter 9 Mechanical Data 43
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
9 Mechanical Data
The AMD Sempron™ processor model 10 connects to
themotherboard through a Pin Grid Array (PGA) socket named
Socket A. This processor utilizes the Organic Pin Grid Array
(OPGA) package type described in this chapter. For more
information, see the AMD Athlon™ Processor-Based Motherboard
Design Guide, order# 24363.
9.1 Die Loading
The processor die on the OPGA package is exposed at the top of
the package. This feature facilitates heat transfer from the die
to an approved heat sink. Any heat sink design should avoid
loads on corners and edges of die. The OPGA package has
compliant pads that serve to bring surfaces in planar contact.
Tool-assisted zero insertion force sockets should be designed so
that no load is placed on the ceramic substrate of the package.
Table 16 shows the mechanical loading specifications for the
processor die. It is critical that the mechanical loading of the
heat sink does not exceed the limits shown in Table 16.
Table 16. Mechanical Loading
Location Dynamic (MAX) Static (MAX) Units Note
Die Surface 100 30 lbf 1
Die Edge 10 10 lbf 2
Notes:
1. Load specified for coplanar contact to die surface.
2. Load defined for a surface at no more than a two-degree angle of inclination to die surface.
44 Mechanical Data Chapter 9
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
9.2 AMD Sempron™ Processor Model 10 Part Number 27488 OPGA
Package Dimensions
Table 17 shows the part number 27488 OPGA package
dimensions in millimeters assigned to the letters and symbols
used in the 27488 package diagram, Figure 13 on page 45.
Table 17. Dimensions for the AMD Sempron™ Processor Model 10 Part
Number 27488 OPGA Package
Letter or
Symbol
Minimum
Dimension1
Maximum
Dimension1
Letter or
Symbol
Minimum
Dimension1
Maximum
Dimension1
D/E 49.27 49.78 E9 1.66 1.96
D1/E1 45.72 BSC G/H 4.50
D2 7.42 REF A1.942 REF
D3 3.30 3.60 A1 1.00 1.20
D4 10.78 11.33 A2 0.80 0.88
D5 10.78 11.33 A3 0.116
D6 8.13 8.68 A4 1.90
D7 12.33 12.88 φP 6.60
D8 3.05 3.35 φb0.43 0.50
D9 12.71 13.26 φb1 1.40 REF
E2 13.61 REF S1.435 2.375
E3 2.35 2.65 L3.05 3.31
E4 7.87 8.42 M37
E5 7.87 8.42 N453
E6 11.41 11.96 e1.27 BSC
E7 11.41 11.96 e1 2.54 BSC
E8 13.28 13.83 Mass211.0 g REF
Note:
1. Dimensions are given in millimeters.
2. The mass consists of the completed package, including processor, surface mounted parts and
pins.
Chapter 9 Mechanical Data 45
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Figure 13. AMD Sempron™ Processor Model 10 Part Number 27488 OPGA Package Diagram
46 Mechanical Data Chapter 9
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
9.3 AMD Sempron™ Processor Model 10 Part Number 27493 OPGA
Package Dimensions
Table 18 shows the part number 27493 OPGA package
dimensions in millimeters assigned to the letters and symbols
shown in the 27493 package diagram, Figure 14 on page 47.
Table 18. Dimensions for the AMD Sempron™ Processor Model 10 Part
Number 27493 OPGA Package
Letter or
Symbol
Minimum
Dimension1
Maximum
Dimension1
Letter or
Symbol
Minimum
Dimension1
Maximum
Dimension1
D/E 49.27 49.78 G/H 4.50
D1/E1 45.72 BSC A1.917 REF
D2 7.42 REF A1 0.977 1.177
D3 3.30 3.60 A2 0.80 0.88
D4 10.78 11.33 A3 0.116
D5 10.78 11.33 A4 1.90
D6 8.13 8.68 φP 6.60
D7 12.33 12.88 φb0.43 0.50
D8 3.05 3.35 φb1 1.40 REF
D9 12.71 13.26 S1.435 2.375
E2 13.61 REF L3.05 3.31
E3 2.35 2.65 M37
E4 7.87 8.42 N453
E5 7.87 8.42 e1.27 BSC
E6 11.41 11.96 e1 2.54 BSC
E8 13.28 13.83 Mass211.0 g REF
E9 1.66 1.96
Note:
1. Dimensions are given in millimeters.
2. The mass consists of the completed package, including processor, surface mounted parts and
pins.
Chapter 9 Mechanical Data 47
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Figure 14. AMD Sempron™ Processor Model 10 Part Number 27493 OPGA Package Diagram
48 Mechanical Data Chapter 9
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Chapter 10 Pin Descriptions 49
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
10 Pin Descriptions
This chapter includes pin diagrams of the organic pin grid array
(OPGA) for the AMD Sempron™ processor model 10, a listing
of pin name abbreviations, and a cross-referenced listing of pin
locations to signal names.
10.1 Pin Diagram and Pin Name Abbreviations
Figure 15 on page 50 shows the staggered Pin Grid Array (PGA)
for the AMD Sempron™ processor model 10. Because some of
the pin names are too long to fit in the grid, they are
abbreviated. Figure 16 on page 51 shows the bottomside view of
the array. Table 19 on page 52 lists all the pins in alphabetical
order by pin name, along with the abbreviation where
necessary.
50 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
ASAO#12 SAO#5 SAO#3 SD#55 SD#61 SD#53 SD#63 SD#62 NC SD#57 SD#39 SD#35 SD#34 SD#44 NC SDOC#2 SD#40 SD#30 A
BVSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC B
CSAO#7 SAO#9 SAO#8 SAO#2 SD#54 SDOC#3 NC SD#51 SD#60 SD#59 SD#56 SD#37 SD#47 SD#38 SD#45 SD#43 SD#42 SD#41 SDOC#1 C
DVCC VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VSS D
ESAO#11 SAOC# SAO#4 SAO#6 SD#52 SD#50 SD#49 SDIC#3 SD#48 SD#58 SD#36 SD#46 NC SDIC#2 SD#33 SD#32 NC SD#31 SD#22 E
FVSS VSS VSS NC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC NC VCC VCC VCC F
GSAO#10 SAO#14 SAO#13 KEY KEY NC NC KEY KEY NC NC KEY KEY NC NC NC SD#20 SD#23 SD#21 G
HVCC VCC NC NC NC VCC VSS VCC VSS VCC VSS VCC VSS NC NC NC VSS VSS H
JSAO#0 SAO#1 NC VID[4] NC SD#19 SDIC#1 SD#29 J
KVSS VSS VSS NC NC VCC VCC VCC K
LVID[0] VID[1] VID[2] VID[3] NC SD#26 NC SD#28 L
MVCC VCC VCC VCC VSS VSS VSS VSS M
NPICCLK PICD#0 PICD#1 KEY NC SD#25 SD#27 SD#18 N
PVSS VSS VSS VSS VCC VCC VCC VCC P
QTCK TMS SCNSN KEY NC SD#24 SD#17 SD#16 Q
RVCC VCC VCC VCC VSS VSS VSS VSS R
SSCNCK1 SCNINV SCNCK2 THDA NC SD#7 SD#15 SD#6 S
TVSS VSS VSS VSS VCC VCC VCC VCC T
UTDI TRST# TDO THDC NC SD#5 SD#4 NC U
VVCC VCC VCC VCC VSS VSS VSS VSS V
WFID[0] FID[1] VREF_S NC NC SDIC#0 SD#2 SD#1 W
XVSS VSS VSS VSS VCC VCC VCC VCC X
YFID[2] FID[3] NC KEY NC NC SD#3 SD#12 Y
ZVCC VCC VCC VCC VSS VSS VSS VSS Z
AA DBRDY DBREQ# NC KEY NC SD#8 SD#0 SD#13 AA
AB VSS VSS VSS VSS VCC VCC VCC VCC AB
AC STPC# PLTST# ZN NC NC SD#10 SD#14 SD#11 AC
AD VCC VCC VCC NC NC VSS VSS VSS AD
AE A20M# PWROK ZP NC NC SAI#5 SDOC#0 SD#9 AE
AF VSS VSS NC NC NC VSS VCC VSS VCC VSS VCC VSS VCC NC NC NC VCC VCC AF
AG FERR RESET# NC KEY KEY COREFB COREFB# KEY KEY NC NC NC NC KEY KEY FSB0 SAI#2 SAI#11 SAI#7 AG
AH VCC VCC AMD NC VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS FSB1 VSS VSS VSS AH
AJ IGNNE# INIT# VCC NC NC NC ANLOG NC NC NC CLKFR VCCA PLBYP# NC SAI#0 SFILLV# SAIC# SAI#6 SAI#3 AJ
AK VSS VSS CPR# NC VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VCC AK
AL INTR FLUSH# VCC NC NC NC PLMN2 PLBYC# CLKIN# RCLK# K7CO CNNCT NC NC SAI#1 SDOV# SAI#8 SAI#4 SAI#10 AL
AM VCC VSS VSS NC VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS AM
AN NMI SMI# NC NC NC PLMN1 PLBYC CLKIN RCLK K7CO# PRCRDY NC NC SAI#12 SAI#14 SDINV# SAI#13 SAI#9 AN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
AMD Sempron™ Processor
Model 10
Topside View
Figure 15. AMD Sempron™ Processor Model 10 Pin Diagram Topside View
Chapter 10 Pin Descriptions 51
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
A B C D E F G H J K L M N P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AJ AK AL AM AN
1SAO#7 SAO#11 SAO#10 SAO#0 VID[0] PICCLK TCK SCNCK1 TDI FID[0] FID[2] DBRDY STPC# A20M# FERR IGNNE# INTR 1
2VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC 2
3SAO#12 SAO#9 SAOC# SAO#14 SAO#1 VID[1] PICD#0 TMS SCNINV TRST# FID[1] FID[3] DBREQ# PLTST# PWROK RESET# INIT# FLUSH# NMI 3
4VCC VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VSS 4
5SAO#5 SAO#8 SAO#4 SAO#13 NC VID[2] PICD#1 SCNSN SCNCK2 TDO VREF_S NC NC ZN ZP NC VCC VCC SMI# 5
6VSS VSS VSS NC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC NC AMD CPR# VSS 6
7SAO#3 SAO#2 SAO#6 KEY VID[4] VID[3] KEY KEY THDA THDC NC KEY KEY NC NC KEY NC NC NC 7
8VCC VCC NC NC NC VCC VSS VCC VSS VCC VSS VCC VSS NC NC NC NC NC 8
9SD#55 SD#54 SD#52 KEY KEYNCNCNC
9
10 VSS VSS VSS NC NC VCC VCC VCC 10
11 SD#61 SDOC#3 SD#50 NC COREFB NC NC NC 11
12 VCC VCC VCC VCC VSS VSS VSS VSS 12
13 SD#53 NC SD#49 NC COREFB# ANLOG PLMN2 PLMN1 13
14 VSS VSS VSS VSS VCC VCC VCC VCC 14
15 SD#63 SD#51 SDIC#3 KEY KEY NC PLBYC# PLBYC 15
16 VCC VCC VCC VCC VSS VSS VSS VSS 16
17 SD#62 SD#60 SD#48 KEY KEY NC CLKIN# CLKIN 17
18 VSS VSS VSS VSS VCC VCC VCC VCC 18
19 NC SD#59 SD#58 NC NC NC RCLK# RCLK 19
20 VCC VCC VCC VCC VSS VSS VSS VSS 20
21 SD#57 SD#56 SD#36 NC NC CLKFR K7CO K7CO# 21
22 VSS VSS VSS VSS VCC VCC VCC VCC 22
23 SD#39 SD#37 SD#46 KEY NC VCCA CNNCT PRCRDY 23
24 VCC VCC VCC VCC VSS VSS VSS VSS 24
25 SD#35 SD#47 NC KEY NC PLBYP# NC NC 25
26 VSS VSS VSS VSS VCC VCC VCC VCC 26
27 SD#34 SD#38 SDIC#2 NC KEYNCNCNC
27
28 VCC VCC VCC NC NC VSS VSS VSS 28
29 SD#44 SD#45 SD#33 NC KEY SAI#0 SAI#1 SAI#12 29
30 VSS VSS NC NC NC VSS VCC VSS VCC VSS VCC VSS VCC NC NC FSB1 VCC VCC 30
31 NC SD#43 SD#32 NC NC NC NC NC NC NC NC NC NC NC NC FSB0 SFILLV# SDOV# SAI#14 31
32 VCC VCC VCC NC VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS NC VSS VSS VSS 32
33 SDOC#2 SD#42 NC SD#20 SD#19 SD#26 SD#25 SD#24 SD#7 SD#5 SDIC#0 NC SD#8 SD#10 SAI#5 SAI#2 SAIC# SAI#8 SDINV# 33
34 VSS VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VCC 34
35 SD#40 SD#41 SD#31 SD#23 SDIC#1 NC SD#27 SD#17 SD#15 SD#4 SD#2 SD#3 SD#0 SD#14 SDOC#0 SAI#11 SAI#6 SAI#4 SAI#13 35
36 VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS 36
37 SD#30 SDOC#1 SD#22 SD#21 SD#29 SD#28 SD#18 SD#16 SD#6 NC SD#1 SD#12 SD#13 SD#11 SD#9 SAI#7 SAI#3 SAI#10 SAI#9 37
A B C D E F G H J K L M N P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AJ AK AL AM AN
AMD Sempron™ Processor
Model 10
Bottomside View
Figure 16. AMD Sempron™ Processor Model 10 Pin Diagram Bottomside View
52 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Table 19. Pin Name Abbreviations
Abbreviation Full Name Pin
A20M# AE1
AMD AH6
ANLOG ANALOG AJ13
CLKFR CLKFWDRST AJ21
CLKIN AN17
CLKIN# AL17
CNNCT CONNECT AL23
COREFB AG11
COREFB# AG13
CPR# CPU_PRESENCE# AK6
DBRDY AA1
DBREQ# AA3
FERR AG1
FID[0] W1
FID[1] W3
FID[2] Y1
FID[3] Y3
FLUSH# AL3
FSB0 FSB_Sense[0] AG31
FSB1 FSB_Sense[1] AH30
IGNNE# AJ1
INIT# AJ3
INTR AL1
K7CO K7CLKOUT AL21
K7CO# K7CLKOUT# AN21
KEY G7
KEY G9
KEY G15
KEY G17
KEY G23
KEY G25
KEY N7
KEY Q7
KEY Y7
KEY AA7
KEY AG7
KEY AG9
KEY AG15
KEY AG17
KEY AG27
KEY AG29
NC A19
NC A31
NC C13
NC E25
NC E33
NC F8
NC F30
NC G11
NC G13
NC G19
NC G21
NC G27
NC G29
NC G31
NC H6
NC H8
NC H10
NC H28
NC H30
NC H32
NC J5
NC J31
NC K8
NC K30
NC L31
NC L35
NC N31
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
Chapter 10 Pin Descriptions 53
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
NC Q31
NC S31
NC U31
NC U37
NC W7
NC W31
NC Y5
NC Y31
NC Y33
NC AA5
NC AA31
NC AC7
NC AC31
NC AD8
NC AD30
NC AE7
NC AE31
NC AF6
NC AF8
NC AF10
NC AF28
NC AF30
NC AF32
NC AG5
NC AG19
NC AG21
NC AG23
NC AG25
NC AH8
NC AJ7
NC AJ9
NC AJ11
NC AJ15
NC AJ17
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
NC AJ19
NC AJ27
NC AK8
NC AL7
NC AL9
NC AL11
NC AL25
NC AL27
NC AM8
NC AN7
NC AN9
NC AN11
NC AN25
NC AN27
NMI AN3
PICCLK N1
PICD#0 PICD[0]# N3
PICD#1 PICD[1]# N5
PLBYP# PLLBYPASS# AJ25
PLBYC PLLBYPASSCLK AN15
PLBYC# PLLBYPASSCLK# AL15
PLMN1 PLLMON1 AN13
PLMN2 PLLMON2 AL13
PLTST# PLLTEST# AC3
PRCRDY PROCREADY AN23
PWROK AE3
RESET# AG3
RCLK RSTCLK AN19
RCLK# RSTCLK# AL19
SAI#0 SADDIN[0]# AJ29
SAI#1 SADDIN[1]# AL29
SAI#2 SADDIN[2]# AG33
SAI#3 SADDIN[3]# AJ37
SAI#4 SADDIN[4]# AL35
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
54 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
SAI#5 SADDIN[5]# AE33
SAI#6 SADDIN[6]# AJ35
SAI#7 SADDIN[7]# AG37
SAI#8 SADDIN[8]# AL33
SAI#9 SADDIN[9]# AN37
SAI#10 SADDIN[10]# AL37
SAI#11 SADDIN[11]# AG35
SAI#12 SADDIN[12]# AN29
SAI#13 SADDIN[13]# AN35
SAI#14 SADDIN[14]# AN31
SAIC# SADDINCLK# AJ33
SAO#0 SADDOUT[0]# J1
SAO#1 SADDOUT[1]# J3
SAO#2 SADDOUT[2]# C7
SAO#3 SADDOUT[3]# A7
SAO#4 SADDOUT[4]# E5
SAO#5 SADDOUT[5]# A5
SAO#6 SADDOUT[6]# E7
SAO#7 SADDOUT[7]# C1
SAO#8 SADDOUT[8]# C5
SAO#9 SADDOUT[9]# C3
SAO#10 SADDOUT[10]# G1
SAO#11 SADDOUT[11]# E1
SAO#12 SADDOUT[12]# A3
SAO#13 SADDOUT[13]# G5
SAO#14 SADDOUT[14]# G3
SAOC# SADDOUTCLK# E3
SCNCK1 SCANCLK1 S1
SCNCK2 SCANCLK2 S5
SCNINV SCANINTEVAL S3
SCNSN SCANSHIFTEN Q5
SD#0 SDATA[0]# AA35
SD#1 SDATA[1]# W37
SD#2 SDATA[2]# W35
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
SD#3 SDATA[3]# Y35
SD#4 SDATA[4]# U35
SD#5 SDATA[5]# U33
SD#6 SDATA[6]# S37
SD#7 SDATA[7]# S33
SD#8 SDATA[8]# AA33
SD#9 SDATA[9]# AE37
SD#10 SDATA[10]# AC33
SD#11 SDATA[11]# AC37
SD#12 SDATA[12]# Y37
SD#13 SDATA[13]# AA37
SD#14 SDATA[14]# AC35
SD#15 SDATA[15]# S35
SD#16 SDATA[16]# Q37
SD#17 SDATA[17]# Q35
SD#18 SDATA[18]# N37
SD#19 SDATA[19]# J33
SD#20 SDATA[20]# G33
SD#21 SDATA[21]# G37
SD#22 SDATA[22]# E37
SD#23 SDATA[23]# G35
SD#24 SDATA[24]# Q33
SD#25 SDATA[25]# N33
SD#26 SDATA[26]# L33
SD#27 SDATA[27]# N35
SD#28 SDATA[28]# L37
SD#29 SDATA[29]# J37
SD#30 SDATA[30]# A37
SD#31 SDATA[31]# E35
SD#32 SDATA[32]# E31
SD#33 SDATA[33]# E29
SD#34 SDATA[34]# A27
SD#35 SDATA[35]# A25
SD#36 SDATA[36]# E21
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
Chapter 10 Pin Descriptions 55
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
SD#37 SDATA[37]# C23
SD#38 SDATA[38]# C27
SD#39 SDATA[39]# A23
SD#40 SDATA[40]# A35
SD#41 SDATA[41]# C35
SD#42 SDATA[42]# C33
SD#43 SDATA[43]# C31
SD#44 SDATA[44]# A29
SD#45 SDATA[45]# C29
SD#46 SDATA[46]# E23
SD#47 SDATA[47]# C25
SD#48 SDATA[48]# E17
SD#49 SDATA[49]# E13
SD#50 SDATA[50]# E11
SD#51 SDATA[51]# C15
SD#52 SDATA[52]# E9
SD#53 SDATA[53]# A13
SD#54 SDATA[54]# C9
SD#55 SDATA[55]# A9
SD#56 SDATA[56]# C21
SD#57 SDATA[57]# A21
SD#58 SDATA[58]# E19
SD#59 SDATA[59]# C19
SD#60 SDATA[60]# C17
SD#61 SDATA[61]# A11
SD#62 SDATA[62]# A17
SD#63 SDATA[63]# A15
SDIC#0 SDATAINCLK[0]# W33
SDIC#1 SDATAINCLK[1]# J35
SDIC#2 SDATAINCLK[2]# E27
SDIC#3 SDATAINCLK[3]# E15
SDINV# SDATAINVALID# AN33
SDOC#0 SDATAOUTCLK[0]# AE35
SDOC#1 SDATAOUTCLK[1]# C37
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
SDOC#2 SDATAOUTCLK[2]# A33
SDOC#3 SDATAOUTCLK[3]# C11
SDOV# SDATAOUTVALID# AL31
SFILLV# SFILLVALID# AJ31
SMI# AN5
STPC# STPCLK# AC1
TCK Q1
TDI U1
TDO U5
THDA THERMDA S7
THDC THERMDC U7
TMS Q3
TRST# U3
VCC VCC_CORE B4
VCC VCC_CORE B8
VCC VCC_CORE B12
VCC VCC_CORE B16
VCC VCC_CORE B20
VCC VCC_CORE B24
VCC VCC_CORE B28
VCC VCC_CORE B32
VCC VCC_CORE B36
VCC VCC_CORE D2
VCC VCC_CORE D4
VCC VCC_CORE D8
VCC VCC_CORE D12
VCC VCC_CORE D16
VCC VCC_CORE D20
VCC VCC_CORE D24
VCC VCC_CORE D28
VCC VCC_CORE D32
VCC VCC_CORE F12
VCC VCC_CORE F16
VCC VCC_CORE F20
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
56 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
VCC VCC_CORE F24
VCC VCC_CORE F28
VCC VCC_CORE F32
VCC VCC_CORE F34
VCC VCC_CORE F36
VCC VCC_CORE H2
VCC VCC_CORE H4
VCC VCC_CORE H12
VCC VCC_CORE H16
VCC VCC_CORE H20
VCC VCC_CORE H24
VCC VCC_CORE K32
VCC VCC_CORE K34
VCC VCC_CORE K36
VCC VCC_CORE M2
VCC VCC_CORE M4
VCC VCC_CORE M6
VCC VCC_CORE M8
VCC VCC_CORE P30
VCC VCC_CORE P32
VCC VCC_CORE P34
VCC VCC_CORE P36
VCC VCC_CORE R2
VCC VCC_CORE R4
VCC VCC_CORE R6
VCC VCC_CORE R8
VCC VCC_CORE T30
VCC VCC_CORE T32
VCC VCC_CORE T34
VCC VCC_CORE T36
VCC VCC_CORE V2
VCC VCC_CORE V4
VCC VCC_CORE V6
VCC VCC_CORE V8
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
VCC VCC_CORE X30
VCC VCC_CORE X32
VCC VCC_CORE X34
VCC VCC_CORE X36
VCC VCC_CORE Z2
VCC VCC_CORE Z4
VCC VCC_CORE Z6
VCC VCC_CORE Z8
VCC VCC_CORE AB30
VCC VCC_CORE AB32
VCC VCC_CORE AB34
VCC VCC_CORE AB36
VCC VCC_CORE AD2
VCC VCC_CORE AD4
VCC VCC_CORE AD6
VCC VCC_CORE AF14
VCC VCC_CORE AF18
VCC VCC_CORE AF22
VCC VCC_CORE AF26
VCC VCC_CORE AF34
VCC VCC_CORE AF36
VCC VCC_CORE AH2
VCC VCC_CORE AH4
VCC VCC_CORE AH10
VCC VCC_CORE AH14
VCC VCC_CORE AH18
VCC VCC_CORE AH22
VCC VCC_CORE AH26
VCC VCC_CORE AK10
VCC VCC_CORE AK14
VCC VCC_CORE AK18
VCC VCC_CORE AK22
VCC VCC_CORE AK26
VCC VCC_CORE AK30
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
Chapter 10 Pin Descriptions 57
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
VCC VCC_CORE AK34
VCC VCC_CORE AK36
VCC VCC_CORE AJ5
VCC VCC_CORE AL5
VCC VCC_CORE AM2
VCC VCC_CORE AM10
VCC VCC_CORE AM14
VCC VCC_CORE AM18
VCC VCC_CORE AM22
VCC VCC_CORE AM26
VCC VCC_CORE AM22
VCC VCC_CORE AM26
VCC VCC_CORE AM30
VCC VCC_CORE AM34
VCCA AJ23
VID[0] L1
VID[1] L3
VID[2] L5
VID[3] L7
VID[4] J7
VREF_S VREF_SYS W5
VSS B2
VSS B6
VSS B10
VSS B14
VSS B18
VSS B22
VSS B26
VSS B30
VSS B34
VSS D6
VSS D10
VSS D14
VSS D18
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
VSS D22
VSS D26
VSS D30
VSS D34
VSS D36
VSS F2
VSS F4
VSS F6
VSS F10
VSS F14
VSS F18
VSS F22
VSS F26
VSS H14
VSS H18
VSS H22
VSS H26
VSS H34
VSS H36
VSS K2
VSS K4
VSS K6
VSS M30
VSS M32
VSS M34
VSS M36
VSS P2
VSS P4
VSS P6
VSS P8
VSS R30
VSS R32
VSS R34
VSS R36
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
58 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
VSS T2
VSS T4
VSS T6
VSS T8
VSS V30
VSS V32
VSS V34
VSS V36
VSS X2
VSS X4
VSS X6
VSS X8
VSS Z30
VSS Z32
VSS Z34
VSS Z36
VSS AB2
VSS AB8
VSS AB4
VSS AB6
VSS AD32
VSS AD34
VSS AD36
VSS AF2
VSS AF4
VSS AF12
VSS AF16
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
VSS AH12
VSS AH16
VSS AH20
VSS AH24
VSS AH28
VSS AH32
VSS AH34
VSS AH36
VSS AK2
VSS AK4
VSS AK12
VSS AK16
VSS AK20
VSS AK24
VSS AK28
VSS AK32
VSS AM4
VSS AM6
VSS AM12
VSS AM16
VSS AM20
VSS AM24
VSS AM28
VSS AM32
VSS AM36
ZN AC5
ZP AE5
Table 19. Pin Name Abbreviations (continued)
Abbreviation Full Name Pin
Chapter 10 Pin Descriptions 59
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
10.2 Pin List
Table 20 on page 60 cross-references Socket A pin location to
signal name.
The “L” (Level) column shows the electrical specification for
this pin. “P” indicates a push-pull mode driven by a single
source. “O” indicates open-drain mode that allows devices to
share the pin.
Note: The AMD Sempron processor supports push-pull drivers. For
more information, see “Push-Pull (PP) Drivers” on page 6.
The “P” (Port) column indicates if this signal is an input (I),
output (O), or bidirectional (B) signal. The “R” (Reference)
column indicates if this signal should be referenced to VSS (G)
or VCC_CORE (P) planes for the purpose of signal routing with
respect to the current return paths.
60 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
A1 No Pin page 72 - - -
A3 SADDOUT[12]# P O G
A5 SADDOUT[5]# P O G
A7 SADDOUT[3]# P O G
A9 SDATA[55]# P B P
A11 SDATA[61]# P B P
A13 SDATA[53]# P B G
A15 SDATA[63]# P B G
A17 SDATA[62]# P B G
A19 NC Pin page 72 - - -
A21 SDATA[57]# P B G
A23 SDATA[39]# P B G
A25 SDATA[35]# P B P
A27 SDATA[34]# P B P
A29 SDATA[44]# P B G
A31 NC Pin page 72 - - -
A33 SDATAOUTCLK[2]# P O P
A35 SDATA[40]# P B G
A37 SDATA[30]# P B P
B2 VSS - - -
B4 VCC_CORE - - -
B6 VSS - - -
B8 VCC_CORE - - -
B10 VSS - - -
B12 VCC_CORE - - -
B14 VSS - - -
B16 VCC_CORE - - -
B18 VSS - - -
B20 VCC_CORE - - -
B22 VSS - - -
B24 VCC_CORE ---
B26 VSS ---
B28 VCC_CORE ---
B30 VSS ---
B32 VCC_CORE ---
B34 VSS ---
B36 VCC_CORE ---
C1 SADDOUT[7]# P O G
C3 SADDOUT[9]# P O G
C5 SADDOUT[8]# P O G
C7 SADDOUT[2]# P O G
C9 SDATA[54]# P B P
C11 SDATAOUTCLK[3]# P O G
C13 NC Pin page 72 ---
C15 SDATA[51]# P B P
C17 SDATA[60]# P B G
C19 SDATA[59]# P B G
C21 SDATA[56]# P B G
C23 SDATA[37]# P B P
C25 SDATA[47]# P B G
C27 SDATA[38]# P B G
C29 SDATA[45]# P B G
C31 SDATA[43]# P B G
C33 SDATA[42]# P B G
C35 SDATA[41]# P B G
C37 SDATAOUTCLK[1]# P O G
D2 VCC_CORE ---
D4 VCC_CORE ---
D6 VSS ---
D8 VCC_CORE ---
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
Chapter 10 Pin Descriptions 61
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
D10 VSS - - -
D12 VCC_CORE - - -
D14 VSS - - -
D16 VCC_CORE - - -
D18 VSS - - -
D20 VCC_CORE - - -
D22 VSS - - -
D24 VCC_CORE - - -
D26 VSS - - -
D28 VCC_CORE - - -
D30 VSS - - -
D32 VCC_CORE - - -
D34 VSS - - -
D36 VSS - - -
E1 SADDOUT[11]# P O P
E3 SADDOUTCLK# P O G
E5 SADDOUT[4]# P O P
E7 SADDOUT[6]# P O G
E9 SDATA[52]# P B P
E11 SDATA[50]# P B P
E13 SDATA[49]# P B G
E15 SDATAINCLK[3]# P I G
E17 SDATA[48]# P B P
E19 SDATA[58]# P B G
E21 SDATA[36]# P B P
E23 SDATA[46]# P B P
E25 NC Pin page 72 - - -
E27 SDATAINCLK[2]# P I G
E29 SDATA[33]# P B P
E31 SDATA[32]# P B P
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
E33 NC Pin page 72 ---
E35 SDATA[31]# P B P
E37 SDATA[22]# P B G
F2 VSS ---
F4 VSS ---
F6 VSS ---
F8 NC Pin page 72 ---
F10 VSS ---
F12 VCC_CORE ---
F14 VSS ---
F16 VCC_CORE ---
F18 VSS ---
F20 VCC_CORE ---
F22 VSS ---
F24 VCC_CORE ---
F26 VSS ---
F28 VCC_CORE ---
F30 NC Pin page 72 ---
F32 VCC_CORE ---
F34 VCC_CORE ---
F36 VCC_CORE ---
G1 SADDOUT[10]# P O P
G3 SADDOUT[14]# P O G
G5 SADDOUT[13]# P O G
G7 Key Pin page 72 ---
G9 Key Pin page 72 ---
G11 NC Pin page 72 ---
G13 NC Pin page 72 ---
G15 Key Pin page 72 ---
G17 Key Pin page 72 ---
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
(continued)
62 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
G19 NC Pin page 72 - - -
G21 NC Pin page 72 - - -
G23 Key Pin page 72 - - -
G25 Key Pin page 72 - - -
G27 NC Pin page 72 - - -
G29 NC Pin page 72 - - -
G31 NC Pin page 72 - - -
G33 SDATA[20]# P B G
G35 SDATA[23]# P B G
G37 SDATA[21]# P B G
H2 VCC_CORE - - -
H4 VCC_CORE - - -
H6 NC Pin page 72 - - -
H8 NC Pin page 72 - - -
H10 NC Pin page 72 - - -
H12 VCC_CORE - - -
H14 VSS - - -
H16 VCC_CORE - - -
H18 VSS - - -
H20 VCC_CORE - - -
H22 VSS - - -
H24 VCC_CORE - - -
H26 VSS - - -
H28 NC Pin page 72 - - -
H30 NC Pin page 72 - - -
H32 NC Pin page 72 - - -
H34 VSS - - -
H36 VSS - - -
J1 SADDOUT[0]# page 73 P O -
J3 SADDOUT[1]# page 73 P O -
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
J5 NC Pin page 72 ---
J7 VID[4] page 74 O O -
J31 NC Pin page 72 ---
J33 SDATA[19]# P B G
J35 SDATAINCLK[1]# P I P
J37 SDATA[29]# P B P
K2 VSS ---
K4 VSS ---
K6 VSS ---
K8 NC Pin page 72 ---
K30 NC Pin page 72 ---
K32 VCC_CORE ---
K34 VCC_CORE ---
K36 VCC_CORE ---
L1 VID[0] page 74 O O -
L3 VID[1] page 74 O O -
L5 VID[2] page 74 O O -
L7 VID[3] page 74 O O -
L31 NC Pin page 72 ---
L33 SDATA[26]# P B P
L35 NC Pin page 72 ---
L37 SDATA[28]# P B P
M2 VCC_CORE ---
M4 VCC_CORE ---
M6 VCC_CORE ---
M8 VCC_CORE ---
M30 VSS ---
M32 VSS ---
M34 VSS ---
M36 VSS ---
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
(continued)
Chapter 10 Pin Descriptions 63
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
N1 PICCLK page 68 O I -
N3 PICD#[0] page 68 O B -
N5 PICD#[1] page 68 O B -
N7 Key Pin page 72 - - -
N31 NC Pin page 72 - - -
N33 SDATA[25]# P B P
N35 SDATA[27]# P B P
N37 SDATA[18]# P B G
P2 VSS - - -
P4 VSS - - -
P6 VSS - - -
P8 VSS - - -
P30 VCC_CORE - - -
P32 VCC_CORE - - -
P34 VCC_CORE - - -
P36 VCC_CORE - - -
Q1 TCK page 72 P I -
Q3 TMS page 72 P I -
Q5 SCANSHIFTEN page 73 P I -
Q7 Key Pin page 72 - - -
Q31 NC Pin page 72 - - -
Q33 SDATA[24]# P B P
Q35 SDATA[17]# P B G
Q37 SDATA[16]# P B G
R2 VCC_CORE - - -
R4 VCC_CORE - - -
R6 VCC_CORE - - -
R8 VCC_CORE - - -
R30 VSS - - -
R32 VSS - - -
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
R34 VSS ---
R36 VSS ---
S1 SCANCLK1 page 73 P I -
S3 SCANINTEVAL page 73 P I -
S5 SCANCLK2 page 73 P I -
S7 THERMDA page 73 ---
S31 NC Pin page 72 ---
S33 SDATA[7]# P B G
S35 SDATA[15]# P B P
S37 SDATA[6]# P B G
T2 VSS ---
T4 VSS ---
T6 VSS ---
T8 VSS ---
T30 VCC_CORE ---
T32 VCC_CORE ---
T34 VCC_CORE ---
T36 VCC_CORE ---
U1 TDI page 72 P I -
U3 TRST# page 72 P I -
U5 TDO page 72 P O -
U7 THERMDC page 73 ---
U31 NC Pin page 72 ---
U33 SDATA[5]# P B G
U35 SDATA[4]# P B G
U37 NC Pin page 72 ---
V2 VCC_CORE ---
V4 VCC_CORE ---
V6 VCC_CORE ---
V8 VCC_CORE ---
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
(continued)
64 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
V30 VSS - - -
V32 VSS - - -
V34 VSS - - -
V36 VSS - - -
W1 FID[0] page 70 O O -
W3 FID[1] page 70 O O -
W5 VREFSYS page 74 P - -
W7 NC Pin page 72 - - -
W31 NC Pin page 72 - - -
W33 SDATAINCLK[0]# P I G
W35 SDATA[2]# P B G
W37 SDATA[1]# P B P
X2 VSS - - -
X4 VSS - - -
X6 VSS - - -
X8 VSS - - -
X30 VCC_CORE - - -
X32 VCC_CORE - - -
X34 VCC_CORE - - -
X36 VCC_CORE - - -
Y1 FID[2] page 70 O O -
Y3 FID[3] page 70 O O -
Y5 NC Pin page 72 - - -
Y7 Key Pin page 72 - - -
Y31 NC Pin page 72 - - -
Y33 NC Pin page 72 - - -
Y35 SDATA[3]# P B G
Y37 SDATA[12]# P B P
Z2 VCC_CORE - - -
Z4 VCC_CORE - - -
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
Z6 VCC_CORE ---
Z8 VCC_CORE ---
Z30 VSS ---
Z32 VSS ---
Z34 VSS ---
Z36 VSS ---
AA1 DBRDY page 69 P O -
AA3 DBREQ# page 69 P I -
AA5 NC ---
AA7 Key Pin page 72 ---
AA31 NC Pin page 72 ---
AA33 SDATA[8]# P B P
AA35 SDATA[0]# P B G
AA37 SDATA[13]# P B G
AB2 VSS ---
AB4 VSS ---
AB6 VSS ---
AB8 VSS ---
AB30 VCC_CORE ---
AB32 VCC_CORE ---
AB34 VCC_CORE ---
AB36 VCC_CORE ---
AC1 STPCLK# page 73 P I -
AC3 PLLTEST# page 72 P I -
AC5 ZN page 74 P - -
AC7 NC ---
AC31 NC Pin page 72 ---
AC33 SDATA[10]# P B P
AC35 SDATA[14]# P B G
AC37 SDATA[11]# P B G
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
(continued)
Chapter 10 Pin Descriptions 65
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
AD2 VCC_CORE - - -
AD4 VCC_CORE - - -
AD6 VCC_CORE - - -
AD8 NC Pin page 72 - - -
AD30 NC Pin page 72 - - -
AD32 VSS - - -
AD34 VSS - - -
AD36 VSS - - -
AE1 A20M# P I -
AE3 PWROK P I -
AE5 ZP page 74 P - -
AE7 NC - - -
AE31 NC Pin page 72 - - -
AE33 SADDIN[5]# P I G
AE35 SDATAOUTCLK[0]# P O P
AE37 SDATA[9]# P B G
AF2 VSS - - -
AF4 VSS - - -
AF6 NC Pin page 72 - - -
AF8 NC Pin page 72 - - -
AF10 NC Pin page 72 - - -
AF12 VSS - - -
AF14 VCC_CORE - - -
AF16 VSS - - -
AF18 VCC_CORE - - -
AF20 VSS - - -
AF22 VCC_CORE - - -
AF24 VSS - - -
AF26 VCC_CORE - - -
AF28 NC Pin page 72 - - -
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
AF30 NC Pin page 72 ---
AF32 NC Pin page 72 ---
AF34 VCC_CORE ---
AF36 VCC_CORE ---
AG1 FERR page 69 P O -
AG3 RESET# - I -
AG5 NC Pin page 72 ---
AG7 Key Pin page 72 ---
AG9 Key Pin page 72 ---
AG11 COREFB page 69 ---
AG13 COREFB# page 69 ---
AG15 Key Pin page 72 ---
AG17 Key Pin page 72 ---
AG19 NC Pin page 72 ---
AG21 NC Pin page 72 ---
AG23 NC Pin page 72 ---
AG25 NC Pin page 72 ---
AG27 Key Pin page 72 ---
AG29 Key Pin page 72 ---
AG31 FSB_Sense[0] page 71 - O G
AG33 SADDIN[2]# P I G
AG35 SADDIN[11]# P I G
AG37 SADDIN[7]# P I P
AH2 VCC_CORE ---
AH4 VCC_CORE ---
AH6 AMD Pin page 68 ---
AH8 NC Pin page 72 ---
AH10 VCC_CORE ---
AH12 VSS ---
AH14 VCC_CORE ---
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
(continued)
66 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
AH16 VSS - - -
AH18 VCC_CORE - - -
AH20 VSS - - -
AH22 VCC_CORE - - -
AH24 VSS - - -
AH26 VCC_CORE - - -
AH28 VSS - - -
AH30 FSB_Sense[1] page 71 - O G
AH32 VSS - - -
AH34 VSS - - -
AH36 VSS - - -
AJ1 IGNNE# page 71 P I -
AJ3 INIT# page 71 P I -
AJ5 VCC_CORE - - -
AJ7 NC Pin page 72 - - -
AJ9 NC Pin page 72 - - -
AJ11 NC Pin page 72 - - -
AJ13 Analog page 68 - - -
AJ15 NC Pin page 72 - - -
AJ17 NC Pin page 72 - - -
AJ19 NC Pin page 72 - - -
AJ21 CLKFWDRST page 68 P I P
AJ23 VCCA page 73 - - -
AJ25 PLLBYPASS# page 72 P I -
AJ27 NC Pin page 72 - - -
AJ29 SADDIN[0]# page 73 P I -
AJ31 SFILLVALID# P I G
AJ33 SADDINCLK# P I G
AJ35 SADDIN[6]# P I P
AJ37 SADDIN[3]# P I G
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
AK2 VSS ---
AK4 VSS ---
AK6 CPU_PRESENCE# page 69 ---
AK8 NC Pin page 72 ---
AK10 VCC_CORE ---
AK12 VSS ---
AK14 VCC_CORE ---
AK16 VSS ---
AK18 VCC_CORE ---
AK20 VSS - - -
AK22 VCC_CORE ---
AK24 VSS ---
AK26 VCC_CORE ---
AK28 VSS ---
AK30 VCC_CORE ---
AK32 VSS ---
AK34 VCC_CORE ---
AK36 VCC_CORE ---
AL1 INTR page 72 P I -
AL3 FLUSH# page 71 P I -
AL5 VCC_CORE ---
AL7 NC Pin page 72 ---
AL9 NC Pin page 72 ---
AL11 NC Pin page 72 ---
AL13 PLLMON2 page 72 O O -
AL15 PLLBYPASSCLK# page 72 P I -
AL17 CLKIN# page 69 P I P
AL19 RSTCLK# page 69 P I P
AL21 K7CLKOUT page 72 P O -
AL23 CONNECT page 69 P I P
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
(continued)
Chapter 10 Pin Descriptions 67
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
AL25 NC Pin page 72 - - -
AL27 NC Pin page 72 - - -
AL29 SADDIN[1]# page 73 P I -
AL31 SDATAOUTVALID# P O P
AL33 SADDIN[8]# P I P
AL35 SADDIN[4]# P I G
AL37 SADDIN[10]# P I G
AM2 VCC_CORE - - -
AM4 VSS - - -
AM6 VSS - - -
AM8 NC Pin page 72 - - -
AM10 VCC_CORE - - -
AM12 VSS - - -
AM14 VCC_CORE - - -
AM16 VSS - - -
AM18 VCC_CORE - - -
AM20 VSS - - -
AM22 VCC_CORE - - -
AM24 VSS - - -
AM26 VCC_CORE - - -
AM28 VSS - - -
AM30 VCC_CORE - - -
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
AM32 VSS ---
AM34 VCC_CORE ---
AM36 VSS ---
AN1 No Pin page 72 ---
AN3 NMI P I -
AN5 SMI# P I -
AN7 NC Pin page 72 ---
AN9 NC Pin page 72 ---
AN11 NC Pin page 72 ---
AN13 PLLMON1 page 72 O B -
AN15 PLLBYPASSCLK page 72 P I -
AN17 CLKIN page 69 P I P
AN19 RSTCLK page 69 P I P
AN21 K7CLKOUT# page 72 P O -
AN23 PROCRDY P O P
AN25 NC Pin page 72 ---
AN27 NC Pin page 72 ---
AN29 SADDIN[12]# P I G
AN31 SADDIN[14]# P I G
AN33 SDATAINVALID# P I P
AN35 SADDIN[13]# P I G
AN37 SADDIN[9]# P I G
Table 20. Cross-Reference by Pin Location
Pin Name Description L P R
(continued)
Chapter 10 Pin Descriptions 68
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
10.3 Detailed Pin Descriptions
The information in this section pertains to Table 20 on page 60.
A20M# Pin A20M# is an input from the system used to simulate address
wrap-around in the 20-bit 8086.
AMD Pin AMD Socket A processors do not implement a pin at location
AH6. All Socket A designs must have a top plate or cover that
blocks this pin location. When the cover plate blocks this
location, a non-AMD part (e.g., PGA370) does not fit into the
socket. However, socket manufacturers are allowed to have a
contact loaded in the AH6 position. Therefore, motherboard
socket design should account for the possibility that a contact
could be loaded in this position.
AMD Athlon™
System Bus Pins
See the AMD Athlon™ and AMD Duron™ System Bus
Specification, order# 21902 for information about the system
bus pins PROCRDY, PWROK, RESET#, SADDIN[14:2]#,
SADDINCLK#, SADDOUT[14:2]#, SADDOUTCLK#,
SDATA[63:0]#, SDATAINCLK[3:0]#, SDATAINVALID#,
SDATAOUTCLK[3:0]#, SDATAOUTVALID#, SFILLVALID#.
Analog Pin Treat this pin as a NC.
APIC Pins, PICCLK,
PICD[1:0]#
The Advanced Programmable Interrupt Controller (APIC) is a
feature that provides a flexible and expandable means of
delivering interrupts in a system using an AMD processor. The
pins, PICD[1:0], are the bidirectional message-passing signals
used for the APIC and are driven to the Southbridge or a
dedicated I/O APIC. The pin, PICCLK, must be driven with a
valid clock input.
Refer to “VCC_2.5V Generation Circuit” found in the section,
“Motherboard Required Circuits, of the AMD Athlon™
Processor Motherboard Design Guide, order# 24363 for the
required supporting circuitry.
For more information, see Table 15, “APIC Pin AC and DC
Characteristics,” on page 37.
CLKFWDRST Pin CLKFWDRST resets clock-forward circuitry for both the system
and processor.
Chapter 10 Pin Descriptions 69
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
CLKIN, RSTCLK
(SYSCLK) Pins
Connect CLKIN with RSTCLK and name it SYSCLK. Connect
CLKIN# with RSTCLK# and name it SYSCLK#. Length match
the clocks from the clock generator to the Northbridge and
processor.
See “SYSCLK and SYSCLK#” on page 73 for more information.
CONNECT Pin CONNECT is an input from the system used for power
management and clock-forward initialization at reset.
COREFB and
COREFB# Pins
COREFB and COREFB# are outputs to the system that provide
processor core voltage feedback to the system.
CPU_PRESENCE# Pin CPU_PRESENCE# is connected to VSS on the processor
package. If pulled-up on the motherboard, CPU_PRESENCE#
may be used to detect the presence or absence of a processor in
the Socket A-style socket.
DBRDY and DBREQ#
Pins
DBRDY and DBREQ# are routed to the debug connector.
DBREQ# is tied to VCC_CORE with a pullup resistor.
FERR Pin FERR is an output to the system that is asserted for any
unmasked numerical exception independent of the NE bit in
CR0. FERR is a push-pull active High signal that must be
inverted and level shifted to an active Low signal. For more
information about FERR and FERR#, see the “Required
Circuits” chapter of the AMD Athlon™ Processor-Based
Motherboard Design Guide, order# 24363.
70 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
FID[3:0] Pins FID[3] (Y3), FID[2] (Y1), FID[1] (W3), and FID[0] (W1) are the
4-bit processor clock-to-SYSCLK ratio.
Table 21 describes the encodings of the clock multipliers on
FID[3:0].
The FID[3:0] signals are open-drain processor outputs that are
pulled High on the motherboard and sampled by the chipset to
determine the SIP (serial initialization packet) that is sent to
the processor. The FID[3:0] signals are valid after PWROK is
asserted. The FID[3:0]signals must not be sampled until they
become valid. See the AMD Athlon™ and AMD Duron™ System
Bus Specification, order# 21902 for more information about
Serialization Initialization Packets and SIP protocol.
The processor FID[3:0] outputs are open-drain and 2.5-V
tolerant. To prevent damage to the processor, do not pull these
Table 21. FID[3:0] Clock Multiplier Encodings
FID[3:0]2Processor Clock to SYSCLK Frequency Ratio
0000 11
0001 11.5
0010 12
0011 12.51
0100 5
0101 5.5
0110 6
0111 6.5
1000 7
1001 7.5
1010 8
1011 8.5
1100 9
1101 9.5
1110 10
1111 10.5
Notes:
1. All ratios greater than or equal to 12.5x have the same FID[3:0] code of 0011b, which causes
the SIP configuration for all ratios of 12.5x or greater to be the same.
2. BIOS initializes the CLK_Ctl MSR during the POST routine. This CLK_Ctl setting is used with all
FID combinations and selects a Halt disconnect divisor and a Stop Grant disconnect divisor.
For more information, refer to the AMD Athlon™ and AMD Duron™ Processors BIOS,
Software, and Debug Developers Guide, order# 21656.
Chapter 10 Pin Descriptions 71
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
signals High above 2.5 V. Do not expose these pins to a
differential voltage greater than 1.60 V, relative to the
processor core voltage.
Refer to “VCC_2.5V Generation Circuit” found in the section,
“Motherboard Required Circuits, of the AMD Athlon™
Processor Motherboard Design Guide, order# 24363 for the
required supporting circuitry.
See “Frequency Identification (FID[3:0])” on page 27 for the
DC characteristics for FID[3:0].
FSB_Sense[1:0] Pins FSB_Sense[1:0] pins are either open circuit (logic level of 1) or
are pulled to ground (logic level of 0) on the processor package
with a 1 k resistor. In conjunction with a circuit on the
motherboard, these pins may be used to automatically detect
the front-side bus (FSB) setting of this processor. Proper
detection of the FSB setting requires the implementation of a
pull-up resistor on the motherboard. Refer to the AMD Athlon™
Processor-Based Motherboard Design Guide, order# 24363 and the
technical note FSB_Sense Auto Detection Circuitry for Desktop
Processors, order# TN26673 for more information.
Table 22 is the truth table to determine the FSB of desktop
processors.
The FSB_Sense[1:0] pins are 3.3-V tolerant.
FLUSH# Pin FLUSH# must be tied to VCC_CORE with a pullup resistor. If a
debug connector is implemented, FLUSH# is routed to the
debug connector.
IGNNE# Pin IGNNE# is an input from the system that tells the processor to
ignore numeric errors.
INIT# Pin INIT# is an input from the system that resets the integer
registers without affecting the floating-point registers or the
internal caches. Execution starts at 0_FFFF_FFF0h.
Table 22. Front-Side Bus Sense Truth Table
FSB_Sense[1] FSB_Sense[0] Bus Frequency
1 0 RESERVED
1 1 133 MHz
0 1 166 MHz
0 0 200 MHz
72 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
INTR Pin INTR is an input from the system that causes the processor to
start an interrupt acknowledge transaction that fetches the
8-bit interrupt vector and starts execution at that location.
JTAG Pins
TCK, TMS, TDI, TRST#, and TDO are the JTAG interface.
Connect these pins directly to the motherboard debug
connector. Pull TDI, TCK, TMS, and TRST# up to VCC_CORE with
pullup resistors.
K7CLKOUT and
K7CLKOUT# Pins
K7CLKOUT and K7CLKOUT# are each run for two to three
inches and then terminated with a resistor pair: 100 ohms to
VCC_CORE and 100 ohms to VSS. The effective termination
resistance and voltage are 50 ohms and VCC_CORE /2.
Key Pins
These 16 locations are for processor type keying for forwards
and backwards compatibility (G7, G9, G15, G17, G23, G25, N7,
Q7, Y7, AA7, AG7, AG9, AG15, AG17, AG27, and AG29).
Motherboard designers should treat key pins like NC (No
Connect) pins. A socket designer has the option of creating a
top mold piece that allows PGA key pins only where designated.
However, sockets that populate all 16 key pins must be allowed,
so the motherboard must always provide for pins at all key pin
locations.
See “NC Pins“ for more information.
NC Pins The motherboard should provide a plated hole for an NC pin.
The pin hole should not be electrically connected to anything.
NMI Pin
NMI is an input from the system that causes a non-maskable
interrupt.
PGA Orientation Pins
No pin is present at pin locations A1 and AN1. Motherboard
designers should not allow for a PGA socket pin at these
locations.
For more information, see the AMD Athlon™ Processor-Based
Motherboard Design Guide, order# 24363.
PLL Bypass and Test
Pins
PLLTEST#, PLLBYPASS#, PLLMON1, PLLMON2,
PLLBYPASSCLK, and PLLBYPASSCLK# are the PLL bypass
and test interface. This interface is tied disabled on the
motherboard. All six pin signals are routed to the debug
connector. All four processor inputs (PLLTEST#, PLLBYPASS#,
PLLMON1, and PLLMON2) are tied to VCC_CORE with pullup
resistors.
Chapter 10 Pin Descriptions 73
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
PWROK Pin
The PWROK input to the processor must not be asserted until
all voltage planes in the system are within specification and all
system clocks are running within specification.
For more information, Chapter 8, “Signal and Power-Up
Requirements” on page 39.
SADDIN[1:0]# and
SADDOUT[1:0]# Pins
The AMD Sempron processor model 10 does not support
SADDIN[1:0]# or SADDOUT[1:0]#. SADDIN[1]# is tied to VCC
with pullup resistors, if this bit is not supported by the
Northbridge (future models can support SADDIN[1]#).
SADDOUT[1:0]# are tied to VCC with pullup resistors if these
pins are supported by the Northbridge. For more information,
see the AMD Athlon™ and AMD Duron™ System Bus
Specification, order# 21902.
Scan Pins SCANSHIFTEN, SCANCLK1, SCANINTEVAL, and SCANCLK2
are the scan interface. This interface is AMD internal and is
tied disabled with pulldown resistors to ground on the
motherboard.
SMI# Pin SMI# is an input that causes the processor to enter the system
management mode.
STPCLK# Pin STPCLK# is an input that causes the processor to enter a lower
power mode and issue a Stop Grant special cycle.
SYSCLK and SYSCLK# SYSCLK and SYSCLK# are differential input clock signals
provided to the PLL of the processor from a system-clock
generator.
See “CLKIN, RSTCLK (SYSCLK) Pins” on page 69 for more
information.
THERMDA and
THERMDC Pins
Thermal Diode anode and cathode pins are used to monitor the
actual temperature of the processor die, providing more
accurate temperature control to the system.
See Table 13, “Thermal Diode Electrical Characteristics,” on
page 35 for more information.
VCCA Pin VCCA is the processor PLL supply. For information about the
VCCA pin, see Table 5, “VCCA AC and DC Characteristics,” on
page 35 and the AMD Athlon™ Processor-Based Motherboard
Design Guide, order# 24363.
To prevent damage to the processor, do not pull this signal High
above 2.5 V. Do not expose this pin to a differential voltage
greater than 1.60 V, relative to the processor core voltage.
74 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
VID[4:0] Pins The VID[4:0] (Voltage Identification) outputs are used to
dictate the VCC_CORE voltage level. The VID[4:0] pins are
strapped to ground or left unconnected on the processor
package. The VID[4:0] pins are pulled up on the motherboard
and used by the VCC_CORE DC/DC converter.
The VID codes and corresponding voltage levels are shown in
Table 23.
For more information, see the “Required Circuits” chapter of
the AMD Athlon™ Processor-Based Motherboard Design Guide,
order# 24363.
VREFSYS Pin VREFSYS (W5) drives the threshold voltage for the system bus
input receivers. The value of VREFSYS is system specific. In
addition, to minimize VCC_CORE noise rejection from VREFSYS,
include decoupling capacitors. For more information, see the
AMD Athlon™ Processor-Based Motherboard Design Guide, order#
24363.
ZN and ZP Pins ZN (AC5) and ZP (AE5) are the push-pull compensation circuit
pins. In Push-Pull mode (selected by the SIP parameter
Table 23. VID[4:0] Code to Voltage Definition
VID[4:0] VCC_CORE (V) VID[4:0] VCC_CORE (V)
00000 1.850 10000 1.450
00001 1.825 10001 1.425
00010 1.800 10010 1.400
00011 1.775 10011 1.375
00100 1.750 10100 1.350
00101 1.725 10101 1.325
00111 1.675 10111 1.275
01000 1.650 11000 1.250
01001 1.625 11001 1.225
01010 1.600 11010 1.200
01011 1.575 11011 1.175
01100 1.550 11100 1.150
01101 1.525 11101 1.125
01110 1.500 11110 1.100
01111 1.475 11111 No CPU
Chapter 10 Pin Descriptions 75
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
SysPushPull asserted), ZN is tied to VCC_CORE with a resistor
that has a resistance matching the impedance Z0 of the
transmission line. ZP is tied to VSS with a resistor that has a
resistance matching the impedance Z0 of the transmission line.
76 Pin Descriptions Chapter 10
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Chapter 11 Ordering Information 77
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
11 Ordering Information
Standard AMD Sempron™ Processor Model 10 Products
AMD standard products are available in several operating ranges. The ordering part
numbers (OPN) are formed by a combination of the elements, as shown in Figure 17.
Figure 17. OPN Example for the AMD Sempron™ Processor Model 10
D U T 4
OPN1
Advanced Front-Side Bus: D = 333
Size of L2 Cache: 4 = 512 Kbytes
Die Temperature: T = 90°C
Operating Voltage: U = 1.60 V
Package Type: D = OPGA
Model Number: 3000 operates at 2000 MHz2
Maximum Power: A = Desktop Processor
Architecture Segment: SD = AMD Sempron™ Processor Model 10 with
QuantiSpeed™ Architecture for Desktop Products
SD A D3000
Note:
1. Spaces are added to the number shown above for viewing clarity only.
2. This processor is available only with an advanced 333 FSB.
78 Ordering Information Chapter 11
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Confidential—Advance Information
Appendix A - Thermal Diode Calculations 79
AMD Preliminary Information
Appendix A
Thermal Diode Calculations
This section contains information about the calculations for the
on-die thermal diode of the AMD Sempron™ processor model
10. For electrical information about this thermal diode, see
Table 13, “Thermal Diode Electrical Characteristics,” on
page 35.
Ideal Diode Equation
The ideal diode equation uses the variables and constants
defined in Table 24.
Table 24. Constants and Variables for the Ideal Diode Equation
Equation Symbol Variable, Constant Description
nf, lumped Lumped ideality factor
kBoltzmann constant
qElectron charge constant
TDiode temperature (Kelvin)
VBE Voltage from base to emitter
ICCollector current
ISSaturation current
80 Appendix A - Thermal Diode Calculations
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Equation (1) shows the ideal diode calculation.
Sourcing two currents and using Equation (1) derives the
difference in the base-to-emitter voltage that leads to finding
the diode temperature as shown in Equation (2). The use of
dual sourcing currents allows the measurement of the thermal
diode temperature to be more accurate and less susceptible to
die and process revisions. Temperature sensors that utilize
series resistance cancellation can use more than two sourcing
currents and are suitable to be used with the AMD thermal
diode. Equation (2) is the formula for calculating the
temperature of a thermal diode.
Temperature Offset Correction
A temperature offset may be required to correct the value
measured by a temperature sensor. An offset is necessary if a
difference exists between the lumped ideality factor of the
processor and the ideality factor assumed by the temperature
sensor. The lumped ideality factor can be calculated using the
equations in this section to find the temperature offset that
should be used with the temperature sensor.
Table 25 shows the constants and variables used to calculate the
temperature offset correction.
(1)
VBE nf lumped,
k
q
---TIC
IS
----
⎝⎠
⎛⎞
ln⋅⋅⋅=
(2)
TVBE high,VBE low,
nf lumped,
k
q
---Ihigh
Ilow
--------
⎝⎠
⎛⎞
ln⋅⋅
---------------------------------------------------------------
=
Table 25. Constants and Variables Used in Temperature Offset Equations
Equation Symbol Variable, Constant Description
nf, actual Actual ideality factor
nf, lumped Lumped ideality factor
nf, TS Ideality factor assumed by temperature sensor
Ihigh High sourcing current
Ilow Low sourcing current
Tdie, spec Die temperature specification
Toffset Temperature offset
Appendix A - Thermal Diode Calculations 81
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
The formulas in Equation (3) and Equation (4) can be used to
calculate the temperature offset for temperature sensors that
do not employ series resistance cancellation. The result is
added to the value measured by the temperature sensor.
Contact the vendor of the temperature sensor being used for
the value of nf,TS. Refer to the document, On-Die Thermal Diode
Characterization, order# 25443, for further details.
Equation (3) shows the equation for calculating the lumped
ideality factor (nf, lumped) in sensors that do not employ series
resistance cancellation.
Equation (4) shows the equation for calculating temperature
offset (Toffset) in sensors that do not employ series resistance
cancellation.
Equation (5) is the temperature offset for temperature sensors
that utilize series resistance cancellation. Add the result to the
value measured by the temperature sensor. Note that the value
of nf,TS in Equation (5) may not equal the value used in
Equation (4).
(3)
nf lumped,nf actual,
=RTIhigh Ilow
()
k
q
---Tdie spec,273.15+()
Ihigh
Ilow
--------
⎝⎠
⎛⎞
ln
----------------------------------------------------------------------
+
(4)
Toffset Tdie spec,273.15+()=1nf lumped,
nfTS,
---------------
⎝⎠
⎛⎞
(5)
Toffset Tdie spec,273.15+()=1nfactual,
nfTS,
---------------
⎝⎠
⎛⎞
82 Appendix A - Thermal Diode Calculations
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Appendix B - Conventions and Abbreviations 83
Appendix B
Conventions and
Abbreviations
This section contains information about the conventions and
abbreviations used in this document.
Signals and Bits
Active-Low Signals Signal names containing a pound sign,
such as SFILL#, indicate active-Low signals. They are
asserted in their Low-voltage state and negated in their
High-voltage state. When used in this context, High and Low
are written with an initial upper case letter.
Signal Ranges In a range of signals, the highest and lowest
signal numbers are contained in brackets and separated by a
colon (for example, D[63:0]).
Reserved Bits and Signals Signals or bus bits marked
reserved must be driven inactive or left unconnected, as
indicated in the signal descriptions. These bits and signals
are reserved by AMD for future implementations. When
software reads registers with reserved bits, the reserved bits
must be masked. When software writes such registers, it
must first read the register and change only the
non-reserved bits before writing back to the register.
Three-State In timing diagrams, signal ranges that are
high impedance are shown as a straight horizontal line
half-way between the high and low levels.
Invalid and Don’t-Care In timing diagrams, signal ranges
that are invalid or don't-care are filled with a screen pattern.
84 Appendix B - Conventions and Abbreviations
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Data Terminology
The following list defines data terminology:
Quantities
A word is two bytes (16 bits)
A doubleword is four bytes (32 bits)
A quadword is eight bytes (64 bits)
Addressing—Memory is addressed as a series of bytes on
eight-byte (64-bit) boundaries in which each byte can be
separately enabled.
Abbreviations The following notation is used for bits and
bytes:
Kilo (K, as in 4-Kbyte page)
Mega (M, as in 4 Mbits/sec)
Giga (G, as in 4 Gbytes of memory space)
See Table 26 on page 85 for more abbreviations.
Little-Endian Convention The byte with the address
xx...xx00 is in the least-significant byte position (little end).
In byte diagrams, bit positions are numbered from right to
left the little end is on the right and the big end is on the
left. Data structure diagrams in memory show low addresses
at the bottom and high addresses at the top. When data
items are aligned, bit notation on a 64-bit data bus maps
directly to bit notation in 64-bit-wide memory. Because byte
addresses increase from right to left, strings appear in
reverse order when illustrated.
Bit Ranges In text, bit ranges are shown with a dash (for
example, bits 9–1). When accompanied by a signal or bus
name, the highest and lowest bit numbers are contained in
brackets and separated by a colon (for example, AD[31:0]).
Bit Values Bits can either be set to 1 or cleared to 0.
Hexadecimal and Binary Numbers Unless the context
makes interpretation clear, hexadecimal numbers are
followed by an h and binary numbers are followed by a b.
Appendix B - Conventions and Abbreviations 85
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Abbreviations and Acronyms
Table 26 contains the definitions of abbreviations used in this
document.
Table 26. Abbreviations
Abbreviation Meaning
AAmpere
FFarad
GGiga–
Gbit Gigabit
Gbyte Gigabyte
HHenry
hHexadecimal
KKilo–
Kbyte Kilobyte
MMega–
Mbit Megabit
Mbyte Megabyte
MHz Megahertz
mMilli–
ms Millisecond
mW Milliwatt
µMicro–
µAMicroampere
µFMicrofarad
µHMicrohenry
µsMicrosecond
µVMicrovolt
nnano–
nA nanoampere
nF nanofarad
nH nanohenry
ns nanosecond
ohm Ohm
ppico–
pA picoampere
86 Appendix B - Conventions and Abbreviations
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
Table 27 contains the definitions of acronyms used in this
document.
pF picofarad
pH picohenry
ps picosecond
sSecond
VVolt
WWatt
Table 27. Acronyms
Abbreviation Meaning
ACPI Advanced Configuration and Power Interface
AGP Accelerated Graphics Port
APCI AGP Peripheral Component Interconnect
API Application Programming Interface
APIC Advanced Programmable Interrupt Controller
BIOS Basic Input/Output System
BIST Built-In Self-Test
BIU Bus Interface Unit
CPGA Ceramic Pin Grid Array
DDR Double-Data Rate
DIMM Dual Inline Memory Module
DMA Direct Memory Access
DRAM Direct Random Access Memory
EIDE Enhanced Integrated Device Electronics
EISA Extended Industry Standard Architecture
EPROM Enhanced Programmable Read Only Memory
FIFO First In, First Out
GART Graphics Address Remapping Table
HSTL High-Speed Transistor Logic
IDE Integrated Device Electronics
ISA Industry Standard Architecture
JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Action Group
Table 26. Abbreviations (continued)
Abbreviation Meaning
Appendix B - Conventions and Abbreviations 87
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
LAN Large Area Network
LRU Least-Recently Used
LVT TL Low Voltage Transistor Transistor Logic
MSB Most Significant Bit
MTRR Memory Type and Range Registers
MUX Multiplexer
NMI Non-Maskable Interrupt
OD Open-Drain
OPGA Organic Pin Grid Array
PBGA Plastic Ball Grid Array
PA Physical Address
PCI Peripheral Component Interconnect
PDE Page Directory Entry
PDT Page Directory Table
PGA Pin Grid Array
PLL Phase Locked Loop
PMSM Power Management State Machine
POS Power-On Suspend
POST Power-On Self-Test
RAM Random Access Memory
ROM Read Only Memory
RXA Read Acknowledge Queue
SCSI Small Computer System Interface
SDI System DRAM Interface
SDRAM Synchronous Direct Random Access Memory
SIMD Single Instruction Multiple Data
SIP Serial Initialization Packet
SMbus System Management Bus
SPD Serial Presence Detect
SRAM Synchronous Random Access Memory
SROM Serial Read Only Memory
TLB Translation Lookaside Buffer
TOM Top of Memory
TTL Transistor Transistor Logic
Table 27. Acronyms (continued)
Abbreviation Meaning
88 Appendix B - Conventions and Abbreviations
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information
VAS Virtual Address Space
VPA Virtual Page Address
VGA Video Graphics Adapter
USB Universal Serial Bus
ZDB Zero Delay Buffer
Table 27. Acronyms (continued)
Abbreviation Meaning
Appendix B - Conventions and Abbreviations 89
31993A-1 September 2004 AMD Sempron™ Processor Model 10 Data Sheet
AMD Preliminary Information
Related Publications
These documents provide helpful information about the
AMD Sempron™ processor model 10, and can be found with
other related documents at the AMD Web site,
http://www.amd.com.
AMD Athlon™ Processor x86 Code Optimization Guide, order#
22007
AMD Processor Recognition Application Note, order# 20734
Methodologies for Measuring Temperature on AMD Athlon™
and AMD Duron™ Processors, order# 24228
AMD Thermal, Mechanical, and Chassis Cooling Design Guide,
order# 23794
Builders Guide for Desktop/Tower Systems, order# 26003
Other Web sites of interest include the following:
JEDEC home page www.jedec.org
IEEE home page www.computer.org
AGP Forum www.agpforum.or
90 Appendix B - Conventions and Abbreviations
AMD Sempron™ Processor Model 10 Data Sheet 31993A-1 September 2004
AMD Preliminary Information