- 1 -
M392B2873GB0
M392B5670GB0
Rev. 1.01, Dec. 2010
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or other-
wise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
2010 Samsung Electronics Co., Ltd. All rights reserved.
datasheet
M392B5673GB0
240pin VLP Registered DIMM
based on 1Gb G-die
78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
- 2 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
Revision History
Revision No. History Draft Date Remark Editor
1.0 - First Release Nov. 2010 - S.H.Kim
1.01 - Corrected typo. Dec. 2010 - S.H.Kim
- 3 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
Table Of Contents
240pin VLP Registered DIMM based on 1Gb G-die
1. DDR3 VLP Registered DIMM Ordering Information ..................................................................................................... 4
2. Key Features................................................................................................................................................................. 4
3. Address Configuration .................................................................................................................................................. 4
4. Registered DIMM Pin Configurations (Front side/Back side)........................................................................................ 5
5. Pin Description ............................................................................................................................................................. 6
6. ON DIMM Thermal Sensor ........................................................................................................................................... 6
7. Input/Output Functional Description.............................................................................................................................. 7
8. Pinout Comparison Based On Module Type................................................................................................................. 8
9. Registering Clock Driver Specification.......................................................................................................................... 9
9.1 Timing & Capacitance values .................................................................................................................................. 9
9.2 Clock driver Characteristics..................................................................................................................................... 9
10. Function Block Diagram:............................................................................................................................................. 10
10.1 1GB, 128Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ................................................................... 10
10.2 2GB, 256Mx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ................................................................. 11
10.3 2GB, 256Mx72 Module (Populated as 1 rank of x4 DDR3 SDRAMs) ................................................................... 12
11. Absolute Maximum Ratings ........................................................................................................................................ 13
11.1 Absolute Maximum DC Ratings............................................................................................................................. 13
11.2 DRAM Component Operating Temperature Range .............................................................................................. 13
12. AC & DC Operating Conditions................................................................................................................................... 13
12.1 Recommended DC Operating Conditions (SSTL-15)............................................................................................ 13
13. AC & DC Input Measurement Levels .......................................................................................................................... 14
13.1 AC & DC Logic Input Levels for Single-ended Signals.......................................................................................... 14
13.2 VREF Tolerances.................................................................................................................................................... 15
13.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 16
13.3.1. Differential Signals Definition ......................................................................................................................... 16
13.3.2. Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................................. 16
13.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 17
13.3.4. Differential Input Cross Point Voltage ............................................................................................................ 18
13.4 Slew Rate Definition for Single Ended Input Signals............................................................................................. 18
13.5 Slew rate definition for Differential Input Signals ................................................................................................... 18
14. AC & DC Output Measurement Levels ....................................................................................................................... 19
14.1 Single Ended AC and DC Output Levels............................................................................................................... 19
14.2 Differential AC and DC Output Levels ................................................................................................................... 19
14.3 Single-ended Output Slew Rate ............................................................................................................................ 19
14.4 Differential Output Slew Rate ................................................................................................................................ 20
15. DIMM IDD specification definition ............................................................................................................................... 21
16. IDD SPEC Table ......................................................................................................................................................... 23
17. Input/Output Capacitance ........................................................................................................................................... 25
18. Electrical Characteristics and AC timing ..................................................................................................................... 26
18.1 Refresh Parameters by Device Density................................................................................................................. 26
18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 26
18.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 26
18.3.1. Speed Bin Table Notes .................................................................................................................................. 30
19. Timing Parameters by Speed Grade .......................................................................................................................... 31
19.1 Jitter Notes ............................................................................................................................................................ 37
19.2 Timing Parameter Notes........................................................................................................................................ 38
20. Physical Dimensions................................................................................................................................................... 39
20.1 128Mbx8 based 128Mx72 Module (1 Rank) - M392B2873GB0 ............................................................................ 39
20.1.1. x72 DIMM, populated as one physical rank of x8 DDR3 SDRAMs ................................................................ 39
20.2 128Mbx8 based 256Mx72 Module (2 Ranks) - M392B5673GB0 .......................................................................... 40
20.2.1. x72 DIMM, populated as two physical ranks of x8 DDR3 SDRAMs .............................................................. 40
20.3 256Mbx4 based 256Mx72 Module (1 Rank) - M392B5670GB0 ............................................................................ 41
20.3.1. x72 DIMM, populated as one physical rank of x4 DDR3 SDRAMs ................................................................ 41
- 4 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
1. DDR3 VLP Registered DIMM Ordering Information
NOTE :
1. "##" - F8/H9/K0/MA
2. F8 - 1066Mbps 7-7-7 / H9 - 1333Mbps 9-9-9 / K0 - 1600Mbps 11-11-11 / MA - 1866Mbps 13-13-13
- DDR3-1866(13-13-13) is backward compatible to DDR3-1600(11-11-11), DDR3-1333(9-9-9), DDR3-1066(7-7-7)
- DDR3-1600(11-11-11) is backward compatible to DDR3-1333(9-9-9), DDR3-1066(7-7-7)
- DDR3-1333(9-9-9) is backward compatible to DDR3-1066(7-7-7)
2. Key Features
JEDEC standard 1.5V ± 0.075V Power Supply
•V
DDQ = 1.5V ± 0.075V
400MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin,
900MHz fCK for 1866Mb/sec/pin
8 independent internal bank
Programmable CAS Latency: 6,7,8,9,10,11,13
Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock
Programmable CAS Write Latency(CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333), 8 (DDR3-1600) and 9 (DDR3-1866)
Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or
write [either On the fly using A12 or MRS]
Bi-directional Differential Data Strobe
On Die Termination using ODT pin
Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE 95°C
Asynchronous Reset
3. Address Configuration
Part Number2Density Organization Component Composition Number of
Rank Height
M392B2873GB0-CF8/H9/K0/MA 1GB 128Mx72 128Mx8(K4B1G0846G-BC##1)*9 1 18.75mm
M392B5673GB0-CF8/H9/K0/MA 2GB 256Mx72 128Mx8(K4B1G0846G-BC##1)*18 2 18.75mm
M392B5670GB0-CF8/H9/K0/MA 2GB 256Mx72 256Mx4(K4B1G0446G-BC##1)*18 1 18.75mm
Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Unit
6-6-6 7-7-7 9-9-9 11-11-11 13-13-13
tCK(min) 2.5 1.875 1.5 1.25 1.07 ns
CAS Latency 67911 13 nCK
tRCD(min) 15 13.125 13.5 13.75 13.91 ns
tRP(min) 15 13.125 13.5 13.75 13.91 ns
tRAS(min) 37.5 37.5 36 35 34 ns
tRC(min) 52.5 50.625 49.5 48.75 47.91 ns
Organization Row Address Column Address Bank Address Auto Precharge
256Mx4(1Gb) based Module A0-A13 A0-A9, A11 BA0-BA2 A10/AP
128Mx8(1Gb) based Module A0-A13 A0-A9 BA0-BA2 A10/AP
- 5 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
4. Registered DIMM Pin Configurations (Front side/Back side)
NOTE : NC = No internal Connection
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back
1VREFDQ 121 VSS 42 DQS8162
NC,DQS17
,TDQS17 82 DQ33 202 VSS
2VSS 122 DQ4 43 DQS8 163 VSS 83 VSS 203 DM4,DQS13
,TDQS13
3DQ0123DQ544
VSS 164 CB6,NC 84 DQS4 204 NC,DQS13
,TDQS13
4DQ1124
VSS 45 CB2,NC 165 CB7,NC 85 DQS4 205 VSS
5VSS 125 DM0,DQS9
,TDQS9 46 CB3,NC 166 VSS 86 VSS 206 DQ38
6DQS
0126
NC,DQS9
,TDQS947 VSS 167 NC(TEST) 87 DQ34 207 DQ39
7DQS0127VSS 48 VTT
, NC 168 RESET 88 DQ35 208 VSS
8VSS 128 DQ6 KEY 89 VSS 209 DQ44
9DQ2129DQ749
VTT
, NC 169 CKE1, NC 90 DQ40 210 DQ45
10 DQ3 130 VSS 50 CKE0 170 VDD 91 DQ41 211 VSS
11 VSS 131 DQ12 51 VDD 171 NC 92 VSS 212 DM5,DQS14
,TDQS14
12 DQ8 132 DQ13 52 BA2 172 NC 93 DQS5 213 NC,DQS14
,TDQS14
13 DQ9 133 VSS 53 Err_Out/NC 173 VDD 94 DQS5 214 VSS
14 VSS 134 DM1,DQS10
,TDQS10 54 VDD 174 A12/BC 95 VSS 215 DQ46
15 DQS1135
NC,DQS10
,TDQS10 55 A11 175 A9 96 DQ42 216 DQ47
16 DQS1 136 VSS 56 A7 176 VDD 97 DQ43 217 VSS
17 VSS 137 DQ14 57 VDD 177 A8 98 VSS 218 DQ52
18 DQ10 138 DQ15 58 A5 178 A6 99 DQ48 219 DQ53
19 DQ11 139 VSS 59 A4 179 VDD 100 DQ49 220 VSS
20 VSS 140 DQ20 60 VDD 180 A3 101 VSS 221 DM6,DQS15
,TDQS15
21 DQ16 141 DQ21 61 A2 181 A1 102 DQS6 222 NC,DQS15
,TDQS15
22 DQ17 142 VSS 62 VDD 182 VDD 103 DQS6 223 VSS
23 VSS 143 DM2,DQS11
,TDQS11 63 NC, CK1 183 VDD 104 VSS 224 DQ54
24 DQS2144
NC,DQS11
,TDQS11 64 NC, CK1 184 CK0 105 DQ50 225 DQ55
25 DQS2 145 VSS 65 VDD 185 CK0 106 DQ51 226 VSS
26 VSS 146 DQ22 66 VDD 186 VDD 107 VSS 227 DQ60
27 DQ18 147 DQ23 67 VREFCA 187 EVENT,NC 108 DQ56 228 DQ61
28 DQ19 148 VSS 68 NC/Par_In 188 A0 109 DQ57 229 VSS
29 VSS 149 DQ28 69 VDD 189 VDD 110 VSS 230 DM7/DQS16
TDQS16
30 DQ24 150 DQ29 70 A10/AP 190 BA1 111 DQS7 231 DM7,DQS16
,TDQS16
31 DQ25 151 VSS 71 BA0 191 VDD 112 DQS7 232 VSS
32 VSS 152 DM3,DQS12
,TDQS12 72 VDD 192 RAS 113 VSS 233 DQ62
33 DQS3153
NC,DQS12
,TDQS12 73 WE 193 S0 114 DQ58 234 DQ63
34 DQS3 154 VSS 74 CAS 194 VDD 115 DQ59 235 VSS
35 VSS 155 DQ30 75 VDD 195 ODT0 116 VSS 236 VDDSPD
36 DQ26 156 DQ31 76 S1,NC 196 A13 117 SA0 237 SA1
37 DQ27 157 VSS 77 ODT1,NC 197 VDD 118 SCL 238 SDA
38 VSS 158 CB4,NC 78 VDD 198 S3,NC 119 SA2 239 VSS
39 CB0,NC 159 CB5,NC 79 S2,NC 199 VSS 120 VTT 240 VTT
40 CB1,NC 160 VSS 80 VSS 200 DQ36
41 VSS 161 DM8,DQS17
TDQS17,NC 81 DQ32 201 DQ37
- 6 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
5. Pin Description
NOTE :
*The VDD and VDDQ pins are tied common to a single power-plane on these designs.
6. ON DIMM Thermal Sensor
NOTE : 1. All Samsung RDIMM support Thermal sensor on DIMM
2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not.
When only the SPD is placed on the module, R2 is placed but R1 is not.
[ Table 1 ] Temperature Sensor Characteristics
Pin Name Description Number Pin Name Description Number
CK0 Clock Input, positive line 1 ODT[1:0] On Die Termination Inputs 2
CK0 Clock Input, negative line 1 DQ[63:0] Data Input/Output 64
CKE[1:0] Clock Enables 2 CB[7:0] Data check bits Input/Output 8
RAS Row Address Strobe 1 DQS[8:0] Data strobes 9
CAS Column Address Strobe 1 DQS[8:0] Data strobes, negative line 9
WE Write Enable 1
DM[8:0]/
DQS[17:9]
TDQS[17:9]
Data Masks/ Data strobes,
Termination data strobes 9
S[3:0] Chip Selects 4 DQS[17:9]
TDQS[17:9]
Data strobes, negative line, Termination data
strobes 9
A[9:0],A11,
A[15:13] Address Inputs 2\14 RFU Reserved for Future Use 2
A10/AP Address Input/Autoprecharge 1 EVENT Reserved for optional hardware temperature
sensing 1
A12/BC Address Input/Burst chop 1 TEST Memory bus test toll (Not Connected and Not
Usable on DIMMs) 1
BA[2:0] SDRAM Bank Addresses 3 RESET Register and SDRAM control pin 1
SCL Serial Presence Detect (SPD) Clock Input 1 VDD Power Supply 22
SDA SPD Data Input/Output 1 VSS Ground 59
SA[2:0] SPD Address Inputs 3 VREFDQ Reference Voltage for DQ 1
Par_In Parity bit for the Address and Control bus 1 VREFCA Reference Voltage for CA 1
Err_Out Parity error found on the Address and Control
bus 1VTT Termination Voltage 4
VDDSPD SPD Power 1
Total 240
Grade Range Temperature Sensor Accuracy Units NOTE
Min. Typ. Max.
B
75 < Ta < 95 - +/- 0.5 +/- 1.0
°C
-
40 < Ta < 125 - +/- 1.0 +/- 2.0 -
-20 < Ta < 125 - +/- 2.0 +/- 3.0 -
Resolution 0.25 °C /LSB -
SCL SDA
WP/EVENT
SA0 SA1 SA2
SA0 SA1 SA2
EVENT
R1
0
R2
0
- 7 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
7. Input/Output Functional Description
Symbol Type Polarity Function
CK0 Input Positive
Edge Positive line of the differential pair of system clock inputs that drives input to the on-DIMM Clock Driver.
CK0 Input Negative
Edge Negative line of the differential pair of system clock inputs that drives the input to the on-DIMM Clock Driver.
CKE[1:0] Input Active High
CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers
and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN
and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank)
S[3:0] Input Active Low
Enables the associated SDRAM command decoder when low and disables decoder when high.
When decoder is disabled, new commands are ignored and previous operations continue.
These input signals also disable all outputs (except CKE and ODT) of the register(s) on the DIMM when both
inputs are high. When both S[1:0] are high, all register outputs (except CKE, ODT and Chip select) remain in
the previous state. For modules supporting 4 ranks, S[3:2] operate similarly to S[1:0] for a second set of reg-
ister outputs.
ODT[1:0] Input Active High On-Die Termination control signals
RAS, CAS, WE Input Active Low When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the operation to be exe-
cuted by the SDRAM.
VREFDQ Supply Reference voltage for DQ0-DQ63 and CB0-CB7
VREFCA Supply Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In, ODT0 and ODT1.
BA[2:0] Input
Selects which SDRAM bank of eight is activated.
BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank
address also determines mode register is to be accessed during an MRS cycle.
A[15:13,
12/BC,11,
10/AP,9:0]
Input
Provided the row address for Active commands and the column address and Auto Precharge bit for Read/
Write commands to select one location out of the memory array in the respective bank. A10 is sampled dur-
ing a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks
(A10 HIGH). If only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL 4/8
identification for "BL on the fly" during CAS command. The address inputs also provide the op-code during
Mode Register Set commands.
DQ[63:0],
CB[7:0] I/O Data and Check Bit Input/Output pins
DM[8:0]
Active High Masks write data when high, issued concurrently with input data.
VDD, VSS Supply Power and ground for the DDR SDRAM input buffers and core logic.
VTT Supply Termination Voltage for Address/Command/Control/Clock nets.
DQS[17:0] I/O Positive Edge Positive line of the differential data strobe for input and output data.
DQS[17:0] I/O Negative Edge Negative line of the differential data strobe for input and output data.
TDQS[17:9],
TDQS[17:9] OUT
TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1, DRAM will
enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When dis-
abled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used.
X4/X16 DRAMs must disable the TDQS function via mode register A11=0 in MR1
SA[2:0] IN These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM
address range.
SDA I/O This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be
connected from the SDA bus line to VDDSPD on the system planar to act as a pull-up.
SCL IN This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected
from the SCL bus time to VDDSPD on the system planar to act as a pull-up.
EVENT
OUT
(open
drain)
Active Low This signal indicates that a thermal event has been detected in the thermal sensing device.The system
should guarantee the electrical level requirement is met for the EVENT pin on TS/SPD part.
VDDSPD Supply Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from
3.0 Volt to 3.6 Volt (nominal 3.3V) operation.
RESET IN
The RESET pin is connected to the RESET pin on the register and to the RESET pin on the DRAM. When
low, all register outputs will be driven low and the Clock Driver clocks to the DRAMs and register(s) will be set
to low level (the Clock Driver will remain synchronized with the input clock)
Par_In IN Parity bit for the Address and Control bus. ("1 " : Odd, "0 ": Even)
Err_Out
OUT
(open
drain)
Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out
bus line to VDD on the system planar to act as a pull up.
TEST Used by memory bus analysis tools (unused (NC) on memory DIMMs)
- 8 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
8. Pinout Comparison Based On Module Type
NOTE : NC = No internal Connection
Pin RDIMM UDIMM
Signal NOTE Signal NOTE
48, 49 VTT Additional connection for Termination Voltage for
Address/Command/Control/Clock nets. NC Not used on UDIMMs
120, 240 VTT Termination Voltage for Address/Command/Con-
trol/Clock nets. VTT Termination Voltage for Address/Command/Con-
trol/Clock nets.
53 Err_Out Connected to the register on all RDIMMs NC Not
used on UDIMMs NC NC Not used on UDIMMs
63 NC Not used on RDIMMs CK1 Used for 2 rank UDIMMs, not used on single-rank
UDIMMs, but terminated
64 NC CK1
68 Par_In Connected to the register on all RDIMMs NC Not used on RDIMMs
76 S1 Connected to the register on all RDIMMs S1 Used for dual-rank UDIMMs, not connected
on single-rank UDIMMs
77 ODT1, NC Connected to the register on dual- and quadrank
RDIMMs; NC on single-rank RDIMMs ODT1,NC Used for dual-rank UDIMMs, not connected
on single-rank UDIMMs
79 S2, NC
Connected to the register on quad-rank
RDIMMs, not connected on single or dual rank
RDIMMs
NC Not used on UDIMMs
167 NC TEST input used only on bus analysis probes NC TEST input used only on bus analysis
probes
169 CKE1
Connected to the register on dual- and quadrank
RDIMMs; NC on single-rank RDIMMs
CKE1,
NC
Used for dual-rank UDIMMs, not connected
on single-rank UDIMMs
171 A15
Connected to the register on all RDIMMs
A15, NC Depending on device density, may not be
connected to SDRAMs on UDIMMs. However,
these signals are terminated on
UDIMMs. A15 not routed on some RCs
172 A14 A14
196 A13 A13
198 S3, NC
Connected to the register on quad-rank
RDIMMs, not connected on single-or dual-rank
RDIMMs
NC Not used on UDIMMs
39, 40, 45, 46,
158, 159, 164,
165
CBn Used on all RDIMMs; (n = 0...7) NC, CBn Used on x72 UDIMMs, (n = 0...7); not
used on x64 UDIMMs
125, 134, 143,
152, 161, 203,
212, 221, 230
DQSn,
TDQSn
Connected to DQS on x4 SDRAMs,
TDQS on x8 SDRAMs on RDIMMs; (n = 9...17) DMn
Connected to DM on x8 DRAMs, UDM or
LDM on x16 DRAMs on UDIMMs;
(n = 0...8)
126, 135, 144,
153, 162, 204,
213, 222, 231
DQSn,
TDQSn
Connected to DQS on x4 DRAMs, TDQS on x8
SDRAMs on RDIMMs; (n=9...17) NC Not used on UDIMMs
187 EVENT
NC
Connected to optional thermal sensing compo-
nent.
NC on Modules without a thermal sensing
component.
NC Not used on UDIMMs
- 9 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
9. Registering Clock Driver Specification
9.1 Timing & Capacitance values
9.2 Clock driver Characteristics
Symbol Parameter Conditions
TC = TBD
VDD = 1.5 ± 0.075V Units Notes
Min Max
fclock Input Clock Frequency application frequency 300 670 MHz
tCH/tCL Pulse duration, CK, CK HIGH or LOW 0.4 - tCK
tACT Inputs active time4 before RESET is taken HIGH DCKE0/1 = LOW and
DCS0/1 = HIGH 8-
tCK
tSU Setup time Input valid before CK/CK 100 - ps
tHHold time Input to remain Valid after CK/
CK 175 -
tPDM Propagation delay, single-bit switching CK/CK to output 0.65 1.0 ns
tDIS
output disable time(1/2-Clock pre-launch) CK/CK to output float 0.5 - tCK
output disable time(3/4-Clock pre-launch) 0.25 -
tEN
output enable time(1/2-Clock pre-launch) CK/CK to output driving -0.5
tCK
output enable time(3/4-Clock pre-launch) - 0.25
CIN(DATA) Data Input Capacitance 1.5 2.5
pF
CIN(CLOCK) Data Input Capacitance 2 3
CIN(RST) Reset Input Capacitance - 3
Symbol Parameter Conditions
TC = TBD
VDD = 1.5 ± 0.075V Units Notes
Min Max
tjit (cc) Cycle-to-cycle period jitter 0 40 ps
tSTAB Stabilization time -6us
tfdyn Dynamic phase offset -50 50 ps
tCKsk Clock Output skew 50 ps
tjit(per) Yn Clock Period jitter -40 40 ps
tjit(hper) Half period jitter -50 50 ps
tQsk1 Qn Output to clock tolerance (Standard 1/2 -Clock
Pre-Launch)
Output Inversion enabled -100 200 ps
OUtput Inversion disabled -100 300
tQsk1 Output clock tolerance (3/4 Clock Pre-Launch) Output Inversion enabled -100 200 ps
OUtput Inversion disabled -100 300
tdynoff Maximum re-driven dynamic clock off-set -80 80 ps
- 10 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
10. Function Block Diagram:
10.1 1GB, 128Mx72 Module (Populated as 1 rank of x8 DDR3 SDRAMs)
A0
Thermal sensor with SPD
A1 A2
SA0 SA1 SA2
SCL
SDA
DQS8
DQS8
DM8/DQS17
DQS17
CB[7:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D8
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
RS0A
RRASA
RCASA
RWEA
PCK0A
PCK0A
RCLE0A
RODT0A
A[N:0]A
/BA[N:0]A
DQS3
DQS3
DM3/DQS12
DQS12
DQ[31:24]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D3
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS2
DQS2
DM2/DQS11
DQS11
DQ[23:16]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D2
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS1
DQS1
DM1/DQS10
DQS10
DQ[15:8]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D1
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS0
DQS0
DM0/DQS9
DQS9
DQ[7:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D0
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
Vtt
DQS4
DQS4
DM4/DQS13
DQS13
DQ[39:32]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D4
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
RS0B
RRASB
RCASB
RWEB
PCK0B
PCK0B
RCLE0B
RODT0B
A[N:0]B
/BA[N:0]B
DQS5
DQS5
DM5/DQS14
DQS14
DQ[47:40]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D5
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS6
DQS6
DM6/DQS15
DQS15
DQ[55:48]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D6
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS7
DQS7
DM7/DQS16
DQS16
DQ[63:56]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D7
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
Vtt
VSS
VDD D0 - D8
VREFCA
VDDSPD Serial PD
1:2
R
E
G
I
S
T
E
R
S1*
BA[N:0]
A[N:0]
RAS
CAS
WE
CKE0
CK0
RESET**
RST** : SDRAMs D[8:0]
RS0B-> CS0 : SDRAMs D[7:4]
RBA[N:0]A -> BA[N:0] : SDRAMs D[3:0], D8
RA[N:0]A -> A[N:0] : SDRAMs D[3:0], D8
RRASA -> RAS : SDRAMs D[3:0], D8
RCASA -> CAS : SDRAMs D[3:0], D8
RCKE0A -> CKE0 : SDRAMs D[3:0], D8
ODT0
PAR_IN
RODT0A -> ODT0 : SDRAMs D[3:0], D8
S0*RS0A-> CS0 : SDRAMs D[3:0], D8
EVENT EVENT
VTT
VREFDQ
D0 - D8
D0 - D8
D0 - D8
NOTE :
1. ZQ resistors are 240 ± 1% For all other resistor values refer to the appropriate
wiring diagram.
RBA[N:0]B -> BA[N:0] : SDRAMs D[7:4]
RA[N:0]B -> A[N:0] : SDRAMs D[7:4]
RRASB -> RAS : SDRAMs D[7:4]
RCASB -> CAS : SDRAMs D[7:4]
RWEA -> WE : SDRAMs D[3:0], D8
RWEB -> WE : SDRAMs D[7:4]
RCKE0B -> CKE0 : SDRAMs D[7:4]
RODT0B -> ODT0 : SDRAMs D[7:4]
PCK0A -> CK : SDRAMs D[3:0], D8
PCK0A -> CK : SDRAMs D[7:4]
PCK0A -> CK : SDRAMs D[3:0], D8
PCK0A -> CK : SDRAMs D[7:4]
Err_out
QERR
RST
CK0
*S[3:2], CKE1, ODT1, CK1 and CK1 are NC
(Unused register inputs ODT1 and CKE1 have a 330 ohm resistor to ground)
- 11 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
10.2 2GB, 256Mx72 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
A0
Thermal sensor with SPD
A1 A2
SA0 SA1 SA2
SCL
SDA
DQS8
DQS8
DM8/DQS17
DQS17
CB[7:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D8
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
RS0A
RRASA
RCASA
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[N:0]A
/BA[N:0]A
Vtt
VSS
VDD D0 - D17
VREFCA
VDDSPD Serial PD
EVENT EVENT
VTT
VREFDQ
D0 - D17
D0 - D17
D0 - D17
NOTE :
1. Unless otherwise noted, resistor values are 15 ± 5%.
2. RS0 and RS1 alternate between the back and front sides of the DIMM.
3. ZQ resistors are 240 ± 1% . For all other resistor values refer to the appropriate
wiring diagram.
4. See the wiring diagrams for all resistors associated with the command, address
and control bus.
DQS
DQS
TDQS
TDQS
DQ[7:0]
D17
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
RS1A
PCK1A
PCK1A
RCKE1A
RODT1A
DQS3
DQS3
DM3/DQS12
DQS12
DQ[31:24]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D3
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
D12
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS2
DQS2
DM2/DQS11
DQS11
DQ[23:16]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D2
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
D11
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS1
DQS1
DM1/DQS10
DQS10
DQ[15:8]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D1
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
D10
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS0
DQS0
DM0/DQS9
DQS9
DQ[7:0]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D0
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
D9
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS4
DQS4
DM4/DQS13
DQS13
DQ[39:32]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D4
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
RS0B
RRASB
RCASB
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:0]B
/BA[N:0]B
Vtt
DQS
DQS
TDQS
TDQS
DQ[7:0]
D13
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
RS1B
PCK1B
PCK1B
RCKE1B
RODT1B
DQS5
DQS5
DM5/DQS14
DQS14
DQ[47:40]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D5
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
D14
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS6
DQS6
DM6/DQS15
DQS15
DQ[55:48]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D6
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
D15
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS7
DQS7
DM7/DQS16
DQS16
DQ[63:56]
DQS
DQS
TDQS
TDQS
DQ[7:0]
D7
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
DQS
DQS
TDQS
TDQS
DQ[7:0]
D16
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
1:2
R
E
G
I
S
T
E
R
S1*
BA[N:0]
A[N:0]
RAS
CAS
WE
CKE0
RESET**
RST** : SDRAMs D[8:0]
RS1B-> CS1 : SDRAMs D[16:13]
RBA[N:0]A -> BA[N:0] : SDRAMs D[3:0], D[12:8], D17
RA[N:0]A -> A[N:0] : SDRAMs D[3:0], D[12:8], D17
RRASA -> RAS : SDRAMs D[3:0], D[12:8], D17
RCASA -> CAS : SDRAMs D[3:0], D[12:8], D17
RCKE0A -> CKE0 : SDRAMs D[3:0], D8
PAR_IN
S0*RS0A-> CS0 : SDRAMs D[3:0], D8
RBA[N:0]B -> BA[N:0] : SDRAMs D[7:4], D[16:13]
RA[N:0]B -> A[N:0] : SDRAMs D[7:4, D[16:13]]
RRASB -> RAS : SDRAMs D[7:4], D[16:13]
RCASB -> CAS : SDRAMs D[7:4], D[16:13]
RWEA -> WE : SDRAMs D[3:0], D[12:8], D17
RWEB -> WE : SDRAMs D[7:4], D[16:13]
RCKE0B -> CKE0 : SDRAMs D[7:4]
PCK1A -> CK : SDRAMs D[12:9], D17
PCK1B -> CK : SDRAMs D[16:13]
PCK0A -> CK : SDRAMs D[3:0], D8
PCK0B -> CK : SDRAMs D[7:4]
Err_out
QERR
RST
CK0
*S[3:2], CKE1, ODT1, CK1 and CK1 are NC
CKE1 RCKE1A -> CKE1 : SDRAMs D[12:9], D17
RCKE1B -> CKE1 : SDRAMs D[16:13]
ODT0 RODT0A -> ODT0 : SDRAMs D[3:0], D8
RODT0B -> ODT0 : SDRAMs D[7:4]
ODT1 RODT1A -> ODT1 : SDRAMs D[12:9], D17
RODT1A -> ODT1 : SDRAMs D[16:13]
CK0 PCK0A -> CK : SDRAMs D[3:0], D8
PCK0B -> CK : SDRAMs D[7:4]
PCK1A -> CK : SDRAMs D[12:9], D17
PCK1B -> CK : SDRAMs D[16:13]
RS0B-> CS0 : SDRAMs D[7:4]
RS1A-> CS1 : SDRAMs D[12:9], D17
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
- 12 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
10.3 2GB, 256Mx72 Module (Populated as 1 rank of x4 DDR3 SDRAMs)
DQ[27:24]
DQ[19:16]
DQS8
DQS8
CB[3:0]
DQS
DQS
DQ[3:0]
D8
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
RS0A
RRASA
RCASA
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[N:0]A
/BA[N:0]A
VSS
VSS
DQS17
DQS17
CB[7:4]
DQS
DQS
D17
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
DQS3
DQS3
DQ[27:24]
DQS
DQS
DQ[3:0]
D3
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DQS17
DQS17
DQ[31:28]
DQS
DQS
D12
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
DQS8
DQS8
DQ[19:16]
DQS
DQS
DQ[3:0]
D2
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DQS17
DQS17
DQ[23:20]
DQS
DQS
D11
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
DQS8
DQS8
DQ[11:8]
DQS
DQS
DQ[3:0]
D1
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DQS17
DQS17
DQ[15:12]
DQS
DQS
D10
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
DQS8
DQS8
DQ[3:0]
DQS
DQS
DQ[3:0]
D0
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DQS17
DQS17
DQ[7:4]
DQS
DQS
D9
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
DQS8
DQS8
DQ[35:32]
DQS
DQS
DQ[3:0]
D4
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
RS0B
RRASB
RCASB
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:0]B
/BA[N:0]B
VSS
VSS
DQS17
DQS17
DQ[39:36]
DQS
DQS
D13
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
DQS8
DQS8
DQ[43:40]
DQS
DQS
DQ[3:0]
D5
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DQS17
DQS17
DQ[47:44]
DQS
DQS
D14
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
DQS8
DQS8
DQ[51:48]
DQS
DQS
DQ[3:0]
D6
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DQS17
DQS17
DQ[55:52]
DQS
DQS
D15
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
DQS8
DQS8
DQ[59:56]
DQS
DQS
DQ[3:0]
D7
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DQS17
DQS17
DQ[63:60]
DQS
DQS
D16
CS
RAS
CAS
WE
CK
CK
CKE
ODT
A[N:0]/BA[N:0]
ZQ
VSS
VSS
DM
DQ[3:0]
DM
Vtt
Vtt
V
SS
V
DD
D0 - D17
V
REFCA
V
DDSPD
Serial PD
V
TT
V
REFDQ
D0 - D17
D0 - D17
D0 - D17
NOTE :
1. Unless otherwise noted, resistor values are 15 ± 5%.
2. See the wiring diagrams for all resistors associated with the command, address
and control bus.
3. ZQ resistors are 240 ± 1% . For all other resistor values refer to the appropriate
wiring diagram.
1:2
R
E
G
I
S
T
E
R
S1*
BA[N:0]
A[N:0]
RAS
CAS
WE
CKE0
RESET**
RST** : SDRAMs D[17:0]
RBA[N:0]A -> BA[N:0] : SDRAMs D[3:0], D[12:8], D17
RA[N:0]A -> A[N:0] : SDRAMs D[3:0], D[12:8], D17
RRASA -> RAS : SDRAMs D[3:0], D[12:8], D17
RCASA -> CAS : SDRAMs D[3:0], D[12:8], D17
RCKE0A -> CKE0 : SDRAMs D[3:0], D[12:8], D17
PAR_IN
S0*RS0A-> CS0 : SDRAMs D[3:0], D[12:8], D17
RBA[N:0]B -> BA[N:0] : SDRAMs D[7:4], D[16:13]
RA[N:0]B -> A[N:0] : SDRAMs D[7:4], D[16:13]
RRASB -> RAS : SDRAMs D[7:4], D[16:13]
RCASB -> CAS : SDRAMs D[7:4], D[16:13]
RWEA -> WE : SDRAMs D[3:0], D[12:8], D17
RWEB -> WE : SDRAMs D[7:4], D[16:13]
RCKE0B -> CKE0 : SDRAMs D[7:4], D[16:13]
PCK0A -> CK : SDRAMs D[3:0], D[12:8], D17
PCK0B -> CK : SDRAMs D[7:4], D[16:13]
Err_out
QERR
RST
CK0
*S[3:2], CKE1, ODT1, CK1 and CK1 are NC
ODT0 RODT0A -> ODT0 : SDRAMs D[3:0], D[12:8], D17
RODT0B -> ODT0 : SDRAMs D[7:4], D[16:13]
CK0 PCK0A -> CK : SDRAMs D[3:0], D[12:8], D17
PCK0B -> CK : SDRAMs D[7:4], D[16:13]
RS0B-> CS0 : SDRAMs D[7:4], D[16:13]]
(Unused register inputs ODT1 and CKE1 have a 330
resistor to ground)
A0
Thermal sensor with SPD
A1 A2
SA0 SA1 SA2
SCL
SDA
EVENT EVENT
- 17 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
11. Absolute Maximum Ratings
11.1 Absolute Maximum DC Ratings
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be
equal to or less than 300mV.
11.2 DRAM Component Operating Temperature Range
NOTE :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document
JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main-
tained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the
following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature
Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.
12. AC & DC Operating Conditions
12.1 Recommended DC Operating Conditions (SSTL-15)
NOTE:
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
Symbol Parameter Rating Units NOTE
VDD Voltage on VDD pin relative to VSS -0.4 V ~ 1.975 V V 1,3
VDDQ Voltage on VDDQ pin relative to VSS -0.4 V ~ 1.975 V V 1,3
VIN, VOUT Voltage on any pin relative to VSS -0.4 V ~ 1.975 V V 1
TSTG Storage Temperature -55 to +100 °C 1, 2
Symbol Parameter rating Unit NOTE
TOPER Operating Temperature Range 0 to 95 °C 1, 2, 3
Symbol Parameter Rating Units NOTE
Min. Typ. Max.
VDD Supply Voltage 1.425 1.5 1.575 V 1,2
VDDQ Supply Voltage for Output 1.425 1.5 1.575 V 1,2
- 18 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
13. AC & DC Input Measurement Levels
13.1 AC & DC Logic Input Levels for Single-ended Signals
[ Table 2 ] Single-ended AC & DC input levels for Command and Address
NOTE :
1. For input only pins except RESET
, VREF = VREFCA(DC)
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135) and VIH.CA(AC125); VIH.CA(AC175) value is used when VREF + 175mV is referenced
, VIH.CA(AC150) value is used when VREF + 150mV is referenced, VIH.CA(AC135) value is used when VREF + 135mV is referenced and VIH.CA(AC125) value is used when
VREF + 125mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when VREF - 175mV is refer-
enced, VIL.CA(AC150) value is used when VREF - 150mV is referenced, VIL.CA(AC135) value is used when VREF - 135mV is referenced and VIL.CA(AC125) value is used
when VREF - 125mV is referenced.
[ Table 3 ] Single-ended AC & DC input levels for DQ and DM
NOTE :
1. For input only pins except RESET
, VREF = VREFDQ(DC)
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) and VIH.DQ(AC135) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced,
VIH.DQ(AC150) value is used when VREF + 150mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when
VREF - 150mV is referenced.
Symbol Parameter DDR3-800/1066/1333/1600 DDR3-1866 Unit NOTE
Min. Max. Min. Max.
VIH.CA(DC100) DC input logic high VREF + 100 VDD VREF + 100 VDD mV 1,5
VIL.CA(DC100) DC input logic low VSS VREF - 100 VSS VREF - 100 mV 1,6
VIH.CA(AC175) AC input logic high VREF + 175 Note 2 - - mV 1,2,7
VIL.CA(AC175) AC input logic low Note 2 VREF - 175 --mV1,2,8
VIH.CA(AC150) AC input logic high VREF+150 Note 2 - - mV 1,2,7
VIL.CA(AC150) AC input logic low Note 2 VREF-150 --mV1,2,8
VIH.CA(AC135) AC input logic high - - VREF + 135 Note 2 mV 1,2,7
VIL.CA(AC135) AC input logic low - - Note 2 VREF - 135 mV 1,2,8
VIH.CA(AC125) AC input logic high - - VREF+125 Note 2 mV 1,2,7
VIL.CA(AC125) AC input logic low - - Note 2 VREF-125 mV 1,2,8
VREFCA(DC) Reference Voltage for ADD,
CMD inputs 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V3,4
Symbol Parameter DDR3-800/1066 DDR3-1333/1600 DDR3-1866 Unit NOTE
Min. Max. Min. Max. Min. Max.
VIH.DQ(DC100) DC input logic high VREF + 100 VDD VREF + 100 VDD VREF + 100 VDD mV 1,5
VIL.DQ(DC100) DC input logic low VSS VREF - 100 VSS VREF - 100 VSS VREF - 100 mV 1,6
VIH.DQ(AC175) AC input logic high VREF + 175 NOTE 2 - - - - mV 1,2,7
VIL.DQ(AC175) AC input logic low NOTE 2 VREF - 175 - - - - mV 1,2,8
VIH.DQ(AC150) AC input logic high VREF + 150 NOTE 2 VREF + 150 NOTE 2 - - mV 1,2,7
VIL.DQ(AC150) AC input logic low NOTE 2 VREF - 150 NOTE 2 VREF - 150 - - mV 1,2,8
VIH.DQ(AC135) AC input logic high ----
VREF + 135 NOTE 2 mV 1,2,7
VIL.DQ(AC135) AC input logic low ----NOTE 2
VREF - 135 mV 1,2,8
VREFDQ(DC) Reference Voltage for DQ,
DM inputs 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V3,4
- 19 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
13.2 VREF Tolerances.
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage
VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF
. Fur-
thermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF
.
"VREF" shall be understood as VREF(DC), as defined in Figure 1.
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise.
Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
voltage
VDD
VSS
time
- 20 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
13.3 AC and DC Logic Input Levels for Differential Signals
13.3.1 Differential Signals Definition
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC
13.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group,
then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-
ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"
[ Table 4 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS.
Symbol Parameter DDR3-800/1066/1333/1600/1866 unit NOTE
min max
VIHdiff differential input high +0.2 NOTE 3 V 1
VILdiff differential input low NOTE 3 -0.2 V 1
VIHdiff(AC) differential input high ac 2 x (VIH(AC) - VREF)NOTE 3 V 2
VILdiff(AC) differential input low ac NOTE 3 2 x (VIL(AC) - VREF)V2
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 350mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 300mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 270mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 250mV
min max min max min max min max
> 4.0 75 - 175 -TBD-TBD-
4.0 57 - 170 - TBD - TBD -
3.0 50 - 167 - TBD - TBD -
2.0 38 - 163 - TBD - TBD -
1.8 34 - 162 - TBD - TBD -
1.6 29 - 161 - TBD - TBD -
1.4 22 - 159 - TBD - TBD -
1.2 13 - 155 - TBD - TBD -
1.0 0 - 150 - TBD - TBD -
< 1.0 0 - 150 -TBD-TBD-
0.0
tDVAC
VIH.DIFF.MIN
half cycle
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
- 21 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
13.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every
half-cycle.
DQS, DQS have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and follow-
ing a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD
signals, then these ac-levels apply also for the single-ended signals CK and CK .
Figure 3. Single-ended requirement for differential signals
Note that while ADD/CMD and DQ signal requirements are with respect to VREF
, the single-ended components of differential signals have a requirement
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-
ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
[ Table 5 ] Single ended levels for CK, DQS, CK, DQS
NOTE :
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs.
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the
reduced level applies also here
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-
nals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"
Symbol Parameter DDR3-800/1066/1333/1600/1866 Unit NOTE
Min Max
VSEH
Single-ended high-level for strobes (VDD/2)+0.175 NOTE 3 V 1, 2
Single-ended high-level for CK, CK (VDD/2)+0.175 NOTE 3 V 1, 2
VSEL
Single-ended low-level for strobes NOTE 3 (VDD/2)-0.175 V1, 2
Single-ended low-level for CK, CK NOTE 3 (VDD/2)-0.175 V1, 2
VDD or VDDQ
VSEH min
VDD/2 or VDDQ/2
VSEL max
VSEH
VSS or VSSQ
VSEL
CK or DQS
time
- 22 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
13.3.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the mid level between of VDD and VSS.
Figure 4. VIX Definition
[ Table 6 ] Cross point voltage for differential input signals (CK, DQS)
NOTE :
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2
±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns.
2. The relation between VIX Min/Max and VSEL/VSEH should satisfy following.
(VDD/2) + VIX(Min) - VSEL 25mV
VSEH - ((VDD/2) + VIX(Max)) 25mV
13.4 Slew Rate Definition for Single Ended Input Signals
See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.
See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.
13.5 Slew rate definition for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.
[ Table 7 ] Differential input slew rate definition
NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
Figure 5. Differential input slew rate definition for DQS, DQS and CK, CK
Symbol Parameter DDR3-800/1066/1333/1600/1866 Unit NOTE
Min Max
VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK -150 150 mV 2
-175 175 mV 1
VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS -150 150 mV 2
Description Measured Defined by
From To
Differential input slew rate for rising edge (CK-CK and DQS-DQS)VILdiffmax VIHdiffmin
VIHdiffmin - VILdiffmax
Delta TRdiff
Differential input slew rate for falling edge (CK-CK and DQS-DQS)VIHdiffmin VILdiffmax
VIHdiffmin - VILdiffmax
Delta TFdiff
VDD
CK, DQS
VDD/2
CK, DQS
VSS
VIX
VIX
VIX
VIHdiffmin
0
VILdiffmax
delta TRdiff
delta TFdiff
- 23 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
14. AC & DC Output Measurement Levels
14.1 Single Ended AC and DC Output Levels
[ Table 8 ] Single Ended AC and DC output levels
NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test
load of 25 to VTT=VDDQ/2.
14.2 Differential AC and DC Output Levels
[ Table 9 ] Differential AC and DC output levels
NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 and an effective test
load of 25 to VTT=VDDQ/2 at each of the differential outputs.
14.3 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in below.
[ Table 10 ] Single ended Output slew rate definition
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 11 ] Single ended output slew rate
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
se : Single-ended Signals
For Ron = RZQ/7 setting
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ
signals in the same byte lane are static (i.e they stay at either high or low).
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the
remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.
Figure 6. Single-ended Output Slew Rate Definition
Symbol Parameter DDR3-800/1066/1333/1600/1866 Units NOTE
VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V
VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V
VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V
VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V1
VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V1
Symbol Parameter DDR3-800/1066/1333/1600/1866 Units NOTE
VOHdiff(AC) AC differential output high measurement level (for output SR) +0.2 x VDDQ V1
VOLdiff(AC) AC differential output low measurement level (for output SR) -0.2 x VDDQ V1
Description Measured Defined by
From To
Single ended output slew rate for rising edge VOL(AC) VOH(AC) VOH(AC)-VOL(AC)
Delta TRse
Single ended output slew rate for falling edge VOH(AC) VOL(AC) VOH(AC)-VOL(AC)
Delta TFse
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Units
Min Max Min Max Min Max Min Max Min Max
Single ended output slew rate SRQse 2.5 5 2.5 5 2.5 5 2.5 5 2.5 51) V/ns
VOH(AC)
VOL(AC)
delta TRsedelta TFse
VTT
- 24 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
14.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOH-
diff(AC) for differential signals as shown in below.
[ Table 12 ] Differential Output slew rate definition
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 13 ] Differential Output slew rate
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
diff : Differential Signals
For Ron = RZQ/7 setting
Figure 7. Differential output slew rate definition
Description Measured Defined by
From To
Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) VOHdiff(AC)-VOLdiff(AC)
Delta TRdiff
Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) VOHdiff(AC)-VOLdiff(AC)
Delta TFdiff
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Units
Min Max Min Max Min Max Min Max Min Max
Differential output slew rate SRQdiff 5 10 5 10 5 10 5 10 5 12 V/ns
VOHdiff(AC)
VOLdiff(AC)
delta TRdiffdelta TFdiff
VTT
- 25 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
15. DIMM IDD specification definition
Symbol Description
IDD0
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT and PRE;
Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
IDD1
Operating One Bank Active-Read-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT, RD
and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pat-
tern
IDD2N
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD2P0
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit3)
IDD2P1
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3)
IDD2Q
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0
IDD3N
Active Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD3P
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT
Signal: stable at 0
IDD4R
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between RD; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable
at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD4W
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between WR; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank
Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable
at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern
IDD5B
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between REF; Command,
Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and
RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD6
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
IDD6ET
Self-Refresh Current: Extended Temperature Range (optional)6)
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
IDD7
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High
between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and
the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT:
Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD8
RESET Low Current
RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :
FLOATING
- 26 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
NOTE :
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
7) IDD current measure method and detail patterns are described on DDR3 component datasheet
8) VDD and VDDQ are merged on module PCB.
9) DIMM IDD SPEC is measured with Qoff condition
(IDDQ values are not considered)
- 23 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
16. IDD SPEC Table
M392B2873GB0 : 1GB(128Mx72) Module
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
M392B5673GB0 : 2GB(256Mx72) Module
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
Symbol CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13) Unit NOTE
IDD0 955 985 1035 1080 mA 1
IDD1 1000 1048 1152 1170 mA 1
IDD2P0(slow exit) 630 670 720 720 mA
IDD2P1(fast exit) 648 688 738 738 mA
IDD2N 745 785 825 870 mA
IDD2Q 725 765 805 850 mA
IDD3P 675 715 765 765 mA
IDD3N 780 820 860 860 mA
IDD4R 1180 1300 1440 1530 mA 1
IDD4W 1190 1310 1450 1585 mA 1
IDD5B 1365 1450 1490 1625 mA 1
IDD6 120 120 120 120 mA
IDD7 1585 1840 1935 1980 mA 1
IDD8 120 120 120 120 mA
Symbol CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13) Unit NOTE
IDD0 1090 1120 1170 1260 mA 1
IDD1 1135 1183 1287 1305 mA 1
IDD2P0(slow exit) 720 760 810 810 mA
IDD2P1(fast exit) 756 796 846 846 mA
IDD2N 880 920 960 1050 mA
IDD2Q 860 900 940 1030 mA
IDD3P 810 850 900 900 mA
IDD3N 960 1000 1040 1040 mA
IDD4R 1315 1435 1575 1710 mA 1
IDD4W 1325 1445 1585 1765 mA 1
IDD5B 1500 1585 1625 1805 mA 1
IDD6 210 210 210 210 mA
IDD7 1720 1975 2070 2160 mA 1
IDD8 210 210 210 210 mA
- 24 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
M392B5670GB0 : 2GB(256Mx72) Module
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
Symbol CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13) Unit NOTE
IDD0 1270 1300 1350 1440 mA 1
IDD1 1360 1426 1530 1620 mA 1
IDD2P0(slow exit) 720 760 810 810 mA
IDD2P1(fast exit) 756 796 846 846 mA
IDD2N 880 920 960 1050 mA
IDD2Q 860 900 940 1030 mA
IDD3P 810 850 900 900 mA
IDD3N 960 1000 1040 1040 mA
IDD4R 1630 1840 2070 2250 mA 1
IDD4W 1730 1940 2170 2350 mA 1
IDD5B 2130 2260 2300 2570 mA 1
IDD6 210 210 210 210 mA
IDD7 2440 2920 3024 3150 mA 1
IDD8 210 210 210 210 mA
- 25 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
17. Input/Output Capacitance
[ Table 14 ] Input/Output Capacitance
NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance.
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with
VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die
termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))
12. Maximum external load capacitance on ZQ pin: 5pF
Parameter Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Units NOTE
Min Max Min Max Min Max Min Max Min Max
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)CIO 1.5 3.0 1.5 2.7 1.5 2.5 1.5 2.3 1.4 2.2 pF 1,2,3
Input capacitance
(CK and CK) CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 0.8 1.3 pF 2,3
Input capacitance delta
(CK and CK) CDCK 0 0.15 0 0.15 0 0.15 0 0.15 0 0.15 pF 2,3,4
Input capacitance
(All other input-only pins) CI 0.75 1.5 0.75 1.5 0.75 1.3 0.75 1.3 0.75 1.2 pF 2,3,6
Input capacitance delta
(DQS and DQS) CDDQS 0 0.2 0 0.2 0 0.15 0 0.15 0 0.15 pF 2,3,5
Input capacitance delta
(All control input-only pins) CDI_CTRL -0.5 0.3 -0.5 0.3 -0.4 0.2 -0.4 0.2 -0.4 0.2 pF 2,3,7,8
Input capacitance delta
(all ADD and CMD input-only pins) CDI_ADD_CMD -0.5 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 -0.4 0.4 pF 2,3,9,10
Input/output capacitance delta
(DQ, DM, DQS, DQS, TDQS, TDQS)CDIO -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11
Input/output capacitance of ZQ pin CZQ - 3 - 3 - 3 - 3 - 3 pF 2, 3, 12
- 31 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
18. Electrical Characteristics and AC timing
(0 °C<TCASE 95 °C, VDDQ = 1.5V ± 0.075V; VDD = 1.5V ± 0.075V)
18.1 Refresh Parameters by Device Density
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in
this material.
18.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin
18.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 15 ] DDR3-800 Speed Bins
Parameter Symbol 1Gb 2Gb 4Gb 8Gb Units NOTE
All Bank Refresh to active/refresh cmd time tRFC 110 160 300 350 ns
Average periodic refresh interval tREFI
0 °CTCASE 85°C7.8 7.8 7.8 7.8 µs
85 °C < TCASE 95°C3.9 3.9 3.9 3.9 µs 1
Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866
Units NOTEBin (CL - tRCD - tRP) 6-6-6 7-7-7 9-9-9 11-11-11 13-13-13
Parameter min min min min min
CL 6791113tCK
tRCD 15 13.13 13.5 13.75 13.91 ns
tRP 15 13.13 13.5 13.75 13.91 ns
tRAS 37.5 37.5 36 35 34 ns
tRC 52.5 50.63 49.5 48.75 47.91 ns
tRRD 10 7.5 6.0 6.0 5.0 ns
tFAW 40 37.5 30 30 27 ns
Speed DDR3-800
Units NOTECL-nRCD-nRP 6 - 6 - 6
Parameter Symbol min max
Internal read command to first data tAA 15 20 ns
ACT to internal read or write delay time tRCD 15 -ns
PRE command period tRP 15 -ns
ACT to ACT or REF command period tRC 52.5 -ns
ACT to PRE command period tRAS 37.5 9*tREFI ns
CL = 6 / CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3
Supported CL Settings 6nCK
Supported CWL Settings 5nCK
- 32 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
[ Table 16 ] DDR3-1066 Speed Bins
[ Table 17 ] DDR3-1333 Speed Bins
Speed DDR3-1066
Units NOTECL-nRCD-nRP 7 - 7 - 7
Parameter Symbol min max
Internal read command to first data tAA 13.125 20 ns
ACT to internal read or write delay time tRCD 13.125 -ns
PRE command period tRP 13.125 -ns
ACT to ACT or REF command period tRC 50.625 -ns
ACT to PRE command period tRAS 37.5 9*tREFI ns
CL = 6 CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,5
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4
CL = 7 CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,9
CL = 8 CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3
Supported CL Settings 6,7,8 nCK
Supported CWL Settings 5,6 nCK
Speed DDR3-1333
Units NOTECL-nRCD-nRP 9 -9 - 9
Parameter Symbol min max
Internal read command to first data tAA 13.5 (13.125)920 ns
ACT to internal read or write delay time tRCD 13.5 (13.125)9-ns
PRE command period tRP 13.5 (13.125)9-ns
ACT to ACT or REF command period tRC 49.5 (49.125)9-ns
ACT to PRE command period tRAS 36 9*tREFI ns
CL = 6
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,6
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,6
CWL = 7 tCK(AVG) Reserved ns 4
CL = 7
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,6
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4
CL = 8
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,6
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4
CL = 9 CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,4,9
CL = 10 CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) Reserved ns 1,2,3
Supported CL Settings 6,7,8,9 nCK
Supported CWL Settings 5,6,7 nCK
- 33 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
[ Table 18 ] DDR3-1600 Speed Bins
Speed DDR3-1600
Units NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
Intermal read command to first data tAA 13.75
(13.125)920 ns
ACT to internal read or write delay time tRCD 13.75
(13.125)9-ns
PRE command period tRP 13.75
(13.125)9-ns
ACT to ACT or REF command period tRC 48.75
(48.125)9-ns
ACT to PRE command period tRAS 35 9*tREFI ns
CL = 6
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,7
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 7, 8 tCK(AVG) Reserved ns 4
CL = 7
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,4,7
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 4
CL = 8
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,7
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CL = 9
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,4,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CL = 10
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,7
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4
CL = 11 CWL = 5,6,7 tCK(AVG) Reserved ns 4
CWL = 8 tCK(AVG) 1.25 <1.5 ns 1,2,3,9
Supported CL Settings 6,7,8,9,10,11 nCK
Supported CWL Settings 5,6,7,8 nCK
- 34 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
[ Table 19 ] DDR3-1866 Speed Bins
Speed DDR3-1866
Units NOTECL-nRCD-nRP 13-13-13
Parameter Symbol min max
Internal read command to first data tAA 13.91
(13.125)10 20 ns
ACT to internal read or write delay time tRCD 13.91
(13.125)10 -ns
PRE command period tRP 13.91
(13.125)10 -ns
ACT to ACT or REF command period tRC 47.91
(47.125)10 -ns
ACT to PRE command period tRAS 34 9*tREFI ns
CL = 6
CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,8
CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,8
CWL = 7,8,9 tCK(AVG) Reserved ns 4
CL = 7
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 2.5 ns 1,2,3,4,8
CWL = 7,8,9 tCK(AVG) Reserved ns 4
CL = 8
CWL = 5 tCK(AVG) Reserved ns 4
CWL = 6 tCK(AVG) 1.875 <2.5 ns 1,2,3,8
CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,8
CWL = 8,9 tCK(AVG) Reserved ns 4
CL = 9
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 1.875 ns 1,2,3,4,8
CWL = 8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) Reserved ns 4
CL = 10
CWL = 5,6 tCK(AVG) Reserved ns 4
CWL = 7 tCK(AVG) 1.5 <1.875 ns 1,2,3,8
CWL = 8 tCK(AVG) Reserved ns 1,2,3,4,8
CL = 11
CWL = 5,6,7 tCK(AVG) Reserved ns 4
CWL = 8 tCK(AVG) 1.25 1.5 ns 1,2,3,4,8
CWL = 9 tCK(AVG) Reserved ns 1,2,3,4
CL = 12 CWL = 5,6,7,8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) Reserved ns 1,2,3,4
CL = 13 CWL = 5,6,7,8 tCK(AVG) Reserved ns 4
CWL = 9 tCK(AVG) 1.07 <1.25 ns 1,2,3,9
Supported CL Settings 6,7,8,9,10,11,13 nCK
Supported CWL Settings 5,6,7,8,9 nCK
- 35 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
18.3.1 Speed Bin Table Notes
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);
NOTE :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements
from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar-
anteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],
rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte
18), and tRPmin (Byte 20). DDR3-1866(CL13) devices supporting downshift to DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in
SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600 devices supporting down binning to DDR3-1333 or DDR3-1066 should program
13.125ns in SPD byte for tAAmin (Byte 16), tRCDmin (Byte 18) and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be
programmed accodingly. For example, 49.125ns, (tRASmin + tRPmin = 36ns + 13.125ns) for DDR3-1333 and 48.125ns (tRASmin + tRPmin = 35ns + 13.125ns) for DDR3-
1600.
10. For devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example,
DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte16), tRCDmin(Byte18) and tRP-
min (byte20). Once tRP (Byte20) is programmed to 13.125ns, tRCmin (Byte21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin =
34ns + 13.125ns)
- 36 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
19. Timing Parameters by Speed Grade
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333
Speed DDR3-800 DDR3-1066 DDR3-1333
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode) tCK(DLL_OFF) 8 - 8 - 8 - ns 6
Average Clock Period tCK(avg) See Speed Bins Table ps
Clock Period tCK(abs) tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max ps
Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg)
Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg)
Clock Period Jitter tJIT(per) -100 100 -90 90 -80 80 ps
Clock Period Jitter during DLL locking period tJIT(per, lck) -90 90 -80 80 -70 70 ps
Cycle to Cycle Period Jitter tJIT(cc) 200 180 160 ps
Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 180 160 140 ps
Cumulative error across 2 cycles tERR(2per) - 147 147 - 132 132 - 118 118 ps
Cumulative error across 3 cycles tERR(3per) - 175 175 - 157 157 - 140 140 ps
Cumulative error across 4 cycles tERR(4per) - 194 194 - 175 175 - 155 155 ps
Cumulative error across 5 cycles tERR(5per) - 209 209 - 188 188 - 168 168 ps
Cumulative error across 6 cycles tERR(6per) - 222 222 - 200 200 - 177 177 ps
Cumulative error across 7 cycles tERR(7per) - 232 232 - 209 209 - 186 186 ps
Cumulative error across 8 cycles tERR(8per) - 241 241 - 217 217 - 193 193 ps
Cumulative error across 9 cycles tERR(9per) - 249 249 - 224 224 - 200 200 ps
Cumulative error across 10 cycles tERR(10per) - 257 257 - 231 231 - 205 205 ps
Cumulative error across 11 cycles tERR(11per) - 263 263 - 237 237 - 210 210 ps
Cumulative error across 12 cycles tERR(12per) - 269 269 - 242 242 - 215 215 ps
Cumulative error across n = 13, 14 ... 49, 50 cycles tERR(nper) tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max ps 24
Absolute clock HIGH pulse width tCH(abs) 0.43 -0.43 -0.43 -tCK(avg) 25
Absolute clock Low pulse width tCL(abs) 0.43 -0.43 -0.43 -tCK(avg) 26
Data Timing
DQS,DQS to DQ skew, per group, per access tDQSQ -200 -150 -125 ps 13
DQ output hold time from DQS, DQS tQH 0.38 -0.38 -0.38 -tCK(avg) 13, g
DQ low-impedance time from CK, CK tLZ(DQ) -800 400 -600 300 -500 250 ps 13,14, f
DQ high-impedance time from CK, CK tHZ(DQ) -400 -300 -250 ps 13,14, f
Data setup time to DQS, DQS referenced
to VIH(AC)VIL(AC) levels
tDS(base)
AC175 75 -25 -- - ps d, 17
tDS(base)
AC150 125 -75 -30 -ps d, 17
Data hold time to DQS, DQS referenced
to VIH(AC)VIL(AC) levels
tDH(base)
DC100 150 -100 -65 -ps d, 17
DQ and DM Input pulse width for each input tDIPW 600 -490 -400 -ps 28
Data Strobe Timing
DQS, DQS differential READ Preamble tRPRE 0.9 NOTE 19 0.9 NOTE 19 0.9 NOTE 19 tCK 13, 19, g
DQS, DQS differential READ Postamble tRPST 0.3 NOTE 11 0.3 NOTE 11 0.3 NOTE 11 tCK 11, 13, b
DQS, DQS differential output high time tQSH 0.38 -0.38 -0.4 -tCK(avg) 13, g
DQS, DQS differential output low time tQSL 0.38 -0.38 -0.4 -tCK(avg) 13, g
DQS, DQS differential WRITE Preamble tWPRE 0.9 -0.9 -0.9 - tCK
DQS, DQS differential WRITE Postamble tWPST 0.3 -0.3 -0.3 - tCK
DQS, DQS rising edge output access time from rising CK, CK tDQSCK -400 400 -300 300 -255 255 ps 13,f
DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -800 400 -600 300 -500 250 ps 13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) -400 -300 -250 ps 12,13,14
DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 tCK 29, 31
DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 tCK 30, 31
DQS, DQS rising edge to CK, CK rising edge tDQSS -0.25 0.25 -0.25 0.25 -0.25 0.25 tCK(avg) c
DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.2 -0.2 -0.2 -tCK(avg) c, 32
DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.2 -0.2 -0.2 -tCK(avg) c, 32
- 37 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.)
Speed DDR3-800 DDR3-1066 DDR3-1333
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX
Command and Address Timing
DLL locking time tDLLK 512 -512 -512 -nCK
internal READ Command to PRECHARGE Command delay tRTP max
(4nCK,7.5ns) -max
(4nCK,7.5ns) -max
(4nCK,7.5ns) - e
Delay from start of internal write transaction to internal read com-
mand tWTR max
(4nCK,7.5ns) -max
(4nCK,7.5ns) -max
(4nCK,7.5ns) -e,18
WRITE recovery time tWR 15 -15 -15 -ns e
Mode Register Set command cycle time tMRD 4 - 4 - 4 - nCK
Mode Register Set command update delay tMOD max
(12nCK,15ns) -max
(12nCK,15ns) -max
(12nCK,15ns) -
CAS# to CAS# command delay tCCD 4 - 4 - 4 - nCK
Auto precharge write recovery + precharge time tDAL(min) WR + roundup (tRP / tCK(AVG)) nCK
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - 1 - nCK 22
ACTIVE to PRECHARGE command period tRAS See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42 ns e
ACTIVE to ACTIVE command period for 1KB page size tRRD max
(4nCK,10ns) -max
(4nCK,7.5ns) -max
(4nCK,6ns) - e
ACTIVE to ACTIVE command period for 2KB page size tRRD max
(4nCK,10ns) -max
(4nCK,10ns) -max
(4nCK,7.5ns) - e
Four activate window for 1KB page size tFAW 40 -37.5 -30 -ns e
Four activate window for 2KB page size tFAW 50 -50 -45 -ns e
Command and Address setup time to CK, CK referenced to
VIH(AC) / VIL(AC) levels
tIS(base)
AC175 200 -125 -65 -ps b,16
tIS(base)
AC150 200+150 -125+150 -65+125 -ps b,16,27
Command and Address hold time from CK, CK referenced to
VIH(AC) / VIL(AC) levels
tIH(base)
DC100 275 -200 -140 -ps b,16
Control & Address Input pulse width for each input tIPW 900 -780 -620 -ps 28
Calibration Timing
Power-up and RESET calibration time tZQinitI 512 -512 -512 -nCK
Normal operation Full calibration time tZQoper 256 -256 -256 -nCK
Normal operation short calibration time tZQCS 64 -64 -64 -nCK 23
Reset Timing
Exit Reset from CKE HIGH to a valid command tXPR max(5nCK,
tRFC + 10ns) -max(5nCK,
tRFC + 10ns) -max(5nCK,
tRFC + 10ns) -
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL tXS max(5nCK,tRF
C + 10ns) -max(5nCK,tRF
C + 10ns) -max(5nCK,tRF
C + 10ns) -
Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(min) -tDLLK(min) -tDLLK(min) -nCK
Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) +
1tCK -tCKE(min) +
1tCK -tCKE(min) +
1tCK -
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-
Down Entry (PDE) tCKSRE max(5nCK,
10ns) -max(5nCK,
10ns) -max(5nCK,
10ns) -
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-
Down Exit (PDX) or Reset Exit tCKSRX max(5nCK,
10ns) -max(5nCK,
10ns) -max(5nCK,
10ns) -
- 38 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.)
Speed DDR3-800 DDR3-1066 DDR3-1333
Units NOTE
Parameter Symbol MIN MAX MIN MAX MIN MAX
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Pre-
charge Power Down with DLL
frozen to commands not requiring a locked DLL
tXP
max
(3nCK,
7.5ns)
-
max
(3nCK,
7.5ns)
-max
(3nCK,6ns) -
Exit Precharge Power Down with DLL frozen to commands re-
quiring a locked DLL tXPDLL
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
- 2
CKE minimum pulse width tCKE
max
(3nCK,
7.5ns)
-
max
(3nCK,
5.625ns)
-
max
(3nCK,
5.625ns)
-
Command pass disable delay tCPDED 1 - 1 - 1 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK 15
Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 1 - nCK 20
Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - 1 - nCK 20
Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 -RL + 4 +1 -RL + 4 +1 -
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRPDEN
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-nCK 9
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRAPDEN WL+4+WR +1 -WL+4+WR+1 -WL+4+WR+1 -nCK 10
Timing of WR command to Power Down entry
(BC4MRS) tWRPDEN
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-nCK 9
Timing of WRA command to Power Down entry
(BC4MRS) tWRAPDEN WL +2 +WR
+1 -WL +2 +WR
+1 -WL +2 +WR
+1 -nCK 10
Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 1 - 20,21
Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) -tMOD(min) -tMOD(min) -
ODT Timing
ODT high time without write command or with write command
and BC4 ODTH4 4 - 4 - 4 - nCK
ODT high time with Write command and BL8 ODTH8 6 - 6 - 6 - nCK
Asynchronous RTT turn-on delay (Power-Down with DLL fro-
zen) tAONPD 28.5 28.5 28.5 ns
Asynchronous RTT turn-off delay (Power-Down with DLL fro-
zen) tAOFPD 28.5 28.5 28.5 ns
RTT turn-on tAON -400 400 -300 300 -250 250 ps 7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) 8,f
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) f
Write Leveling Timing
First DQS pulse rising edge after tDQSS margining mode is pro-
grammed tWLMRD 40 -40 -40 - tCK 3
DQS/DQS delay after tDQS margining mode is programmed tWLDQSEN 25 -25 -25 - tCK 3
Write leveling setup time from rising CK, CK crossing to rising
DQS, DQS crossing tWLS 325 -245 -195 -ps
Write leveling hold time from rising DQS, DQS crossing to rising
CK, CK crossing tWLH 325 -245 -195 -ps
Write leveling output delay tWLO 090909ns
Write leveling output error tWLOE 020202ns
- 39 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866
Speed DDR3-1600 DDR3-1866
Units NOTE
Parameter Symbol MIN MAX MIN MAX
Clock Timing
Minimum Clock Cycle Time (DLL off mode) tCK(DLL_OFF) 8 - 8 - ns 6
Average Clock Period tCK(avg) See Speed Bins Table ps
Clock Period tCK(abs) tCK(avg)min + tJIT(per)min tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max ps
Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 tCK(avg)
Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 tCK(avg)
Clock Period Jitter tJIT(per) -70 70 -60 60 ps
Clock Period Jitter during DLL locking period tJIT(per, lck) -60 60 -50 50 ps
Cycle to Cycle Period Jitter tJIT(cc) 140 120 ps
Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 120 100 ps
Cumulative error across 2 cycles tERR(2per) -103 103 -88 88 ps
Cumulative error across 3 cycles tERR(3per) -122 122 -105 105 ps
Cumulative error across 4 cycles tERR(4per) -136 136 -117 117 ps
Cumulative error across 5 cycles tERR(5per) -147 147 -126 126 ps
Cumulative error across 6 cycles tERR(6per) -155 155 -133 133 ps
Cumulative error across 7 cycles tERR(7per) -163 163 -139 139 ps
Cumulative error across 8 cycles tERR(8per) -169 169 -145 145 ps
Cumulative error across 9 cycles tERR(9per) -175 175 -150 150 ps
Cumulative error across 10 cycles tERR(10per) -180 180 -154 154 ps
Cumulative error across 11 cycles tERR(11per) -184 184 -158 158 ps
Cumulative error across 12 cycles tERR(12per) -188 188 -161 161 ps
Cumulative error across n = 13, 14 ... 49, 50 cycles tERR(nper) tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max ps 24
Absolute clock HIGH pulse width tCH(abs) 0.43 -0.43 -tCK(avg) 25
Absolute clock Low pulse width tCL(abs) 0.43 -0.43 -tCK(avg) 26
Data Timing
DQS,DQS to DQ skew, per group, per access tDQSQ -100 -85 ps 13
DQ output hold time from DQS, DQS tQH 0.38 -0.38 -tCK(avg) 13, g
DQ low-impedance time from CK, CK tLZ(DQ) -450 225 -390 195 ps 13,14, f
DQ high-impedance time from CK, CK tHZ(DQ) - 225 -195 ps 13,14, f
Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) lev-
els
tDS(base)
AC150 - - TBD -ps d, 17
tDS(base)
AC125 10 -TBD -ps d, 17
Data hold time to DQS, DQS referenced to VIH(AC)VIL(AC) levels tDH(base)
DC100 45 -TBD -ps d, 17
DQ and DM Input pulse width for each input tDIPW 360 -320 -ps 28
Data Strobe Timing
DQS, DQS differential READ Preamble tRPRE 0.9 NOTE 19 0.9 NOTE 19 tCK 13, 19, g
DQS, DQS differential READ Postamble tRPST 0.3 NOTE 11 0.3 NOTE 11 tCK 11, 13, b
DQS, DQS differential output high time tQSH 0.4 -0.4 -tCK(avg) 13, g
DQS, DQS differential output low time tQSL 0.4 -0.4 -tCK(avg) 13, g
DQS, DQS differential WRITE Preamble tWPRE 0.9 -0.9 - tCK
DQS, DQS differential WRITE Postamble tWPST 0.3 -0.3 - tCK
DQS, DQS rising edge output access time from rising CK, CK tDQSCK -225 225 -195 195 ps 13,f
DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -450 225 -390 195 ps 13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) -225 -195 ps 12,13,14
DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 tCK 29, 31
DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 tCK 30, 31
DQS, DQS rising edge to CK, CK rising edge tDQSS -0.27 0.27 -0.27 0.27 tCK(avg) c
DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.9 NOTE 19 0.18 -tCK(avg) c, 32
DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.3 NOTE 11 0.18 -tCK(avg) c, 32
- 40 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)
Speed DDR3-1600 DDR3-1866
Units NOTE
Parameter Symbol MIN MAX MIN MAX
Command and Address Timing
DLL locking time tDLLK 512 -512 -nCK
internal READ Command to PRECHARGE Command delay tRTP max
(4nCK,7.5ns) -max
(4nCK,7.5ns) - e
Delay from start of internal write transaction to internal read com-
mand tWTR max
(4nCK,7.5ns) -max
(4nCK,7.5ns) -e,18
WRITE recovery time tWR 15 -15 -ns e
Mode Register Set command cycle time tMRD 4 - 4 - nCK
Mode Register Set command update delay tMOD max
(12nCK,15ns) -max
(12nCK,15ns) -
CAS# to CAS# command delay tCCD 4 - 4 - nCK
Auto precharge write recovery + precharge time tDAL(min) WR + roundup (tRP /
tCK(AVG)) nCK
Multi-Purpose Register Recovery Time tMPRR 1 - 1 - nCK 22
ACTIVE to PRECHARGE command period tRAS See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42 ns e
ACTIVE to ACTIVE command period for 1KB page size tRRD max
(4nCK,6ns) -max
(4nCK, 5ns) - e
ACTIVE to ACTIVE command period for 2KB page size tRRD max
(4nCK,7.5ns) -max
(4nCK, 6ns) - e
Four activate window for 1KB page size tFAW 30 -27 -ns e
Four activate window for 2KB page size tFAW 40 -35 -ns e
Command and Address setup time to CK, CK referenced to
VIH(AC) / VIL(AC) levels
tIS(base)
AC150 45 -TBD -ps b,16
tIS(base)
AC125 45+125 -TBD -ps b,16,27
Command and Address hold time from CK, CK referenced to
VIH(AC) / VIL(AC) levels
tIH(base)
DC100 120 -TBD -ps b,16
Control & Address Input pulse width for each input tIPW 560 -535 -ps 28
Calibration Timing
Power-up and RESET calibration time tZQinitI 512 -max(512nCK,640ns) -nCK
Normal operation Full calibration time tZQoper 256 -max(256nCK,320ns) -nCK
Normal operation short calibration time tZQCS 64 -max(64nCK,80ns) -nCK 23
Reset Timing
Exit Reset from CKE HIGH to a valid command tXPR max(5nCK, tRFC +
10ns) -max(5nCK, tRFC +
10ns) -
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL tXS max(5nCK,tRFC +
10ns) -max(5nCK,tRFC +
10ns) -
Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(min) -tDLLK(min) -nCK
Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) + 1tCK -tCKE(min) + 1nCK -
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-
Down Entry (PDE) tCKSRE max(5nCK,
10ns) -max(5nCK,
10ns) -
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-
Down Exit (PDX) or Reset Exit tCKSRX max(5nCK,
10ns) -max(5nCK,
10ns) -
- 41 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)
Speed DDR3-1600 DDR3-1866
Units NOTE
Parameter Symbol MIN MAX MIN MAX
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Pre-
charge Power Down with DLL
frozen to commands not requiring a locked DLL
tXP max
(3nCK,6ns) -max(3nCK,6ns) -
Exit Precharge Power Down with DLL frozen to commands re-
quiring a locked DLL tXPDLL
max
(10nCK,
24ns)
-max(10nCK,24ns) - 2
CKE minimum pulse width tCKE max
(3nCK,5ns) -max(3nCK,5ns) -
Command pass disable delay tCPDED 1 - 2 - nCK
Power Down Entry to Exit Timing tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK 15
Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - nCK 20
Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - nCK 20
Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 -RL + 4 +1 -
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRPDEN WL + 4 +(tWR/
tCK(avg)) -WL + 4 +(tWR/
tCK(avg)) -nCK 9
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF) tWRAPDEN WL + 4 +WR +1 -WL + 4 +WR +1 -nCK 10
Timing of WR command to Power Down entry
(BC4MRS) tWRPDEN WL + 2 +(tWR/
tCK(avg)) -WL + 2 +(tWR/
tCK(avg)) -nCK 9
Timing of WRA command to Power Down entry
(BC4MRS) tWRAPDEN WL +2 +WR +1 -WL +2 +WR +1 -nCK 10
Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 20,21
Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) -
ODT Timing
ODT high time without write command or with write command
and BC4 ODTH4 4 - 4 - nCK
ODT high time with Write command and BL8 ODTH8 6 - 6 - nCK
Asynchronous RTT turn-on delay (Power-Down with DLL fro-
zen) tAONPD 28.5 28.5 ns
Asynchronous RTT turn-off delay (Power-Down with DLL fro-
zen) tAOFPD 28.5 28.5 ns
RTT turn-on tAON -225 225 -195 195 ps 7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 tCK(avg) 8,f
RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 tCK(avg) f
Write Leveling Timing
First DQS pulse rising edge after tDQSS margining mode is pro-
grammed tWLMRD 40 -40 - tCK 3
DQS/DQS delay after tDQS margining mode is programmed tWLDQSEN 25 -25 - tCK 3
Write leveling setup time from rising CK, CK crossing to rising
DQS, DQS crossing tWLS 165 -140 -ps
Write leveling hold time from rising DQS, DQS crossing to rising
CK, CK crossing tWLH 165 -140 -ps
Write leveling output delay tWLO 07.5 07.5 ns
Write leveling output error tWLOE 0 2 0 2 ns
- 42 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
19.1 Jitter Notes
Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm,
another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.
tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is,
these parameters should be met whether clock jitter is present or not.
Specific Note c These parameters are measured from a data strobe signal (DQS, DQS) crossing to its respective clock signal (CK, CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal
(DQS, DQS) crossing.
Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)},
which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the
device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge com-
mand at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = +
193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(der-
ated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to
tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the
min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min +
tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) =
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/
max usage!)
- 43 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
19.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing
Diagram Datasheet.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on TOPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
VREF(DC) = VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Address/Command Setup, Hold and Derating" on component datasheet.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Data Setup, Hold and Slew Rate Derating" on component datasheet.
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram
Datasheet"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-
ject to in the application, is illustrated. The interval could be defined by the following formula:
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-
lated as:
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or 100ps for DDR3-
1333/1600 of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to account for the earlier reference point [(175mv - 150
mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
33. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75ps for DDR3-1866 to accommodate for the
lower alternate threshold of 125mV and another 10ps to account for the earlier reference point [(135mv - 125mV) / 1 V/ns].
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
0.5
(1.5 x 1) + (0.15 x 15) = 0.133
~
~
128ms
- 39 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
20. Physical Dimensions
20.1 128Mbx8 based 128Mx72 Module (1 Rank) - M392B2873GB0
133.35 ± 0.15
Units : Millimeters
Register
18.10
12.60
AB
47.00 71.00
128.95
9.76 20.92 32.40 20.93 9.74
C
SPD/TS
1.00
0.2 ± 0.15
2.50 ± 0.20
Detail B
5.00
Detail A
1.50±0.10
0.80 ± 0.05
3.80
2.50
9.9
0.6
R 0.50
Detail C
18.75 ± 0.15
54.675
1.27 ± 0.10
1.0 max
Max 4.0
20.1.1 x72 DIMM, populated as one physical rank of x8 DDR3 SDRAMs
The used device is 128M x8 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B1G0846G-BC**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
NOTE : DRAMs indicated with dotted outline are located on the backside of the module.
Register
Address, Command and Control lines
VTT
VTT
- 40 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
20.2 128Mbx8 based 256Mx72 Module (2 Ranks) - M392B5673GB0
133.35 ± 0.15
Units : Millimeters
Register
18.10
12.60
1.27 ± 0.10
1.0 max
AB
47.00 71.00
128.95
9.76 20.92 32.40 20.93 9.74
C
SPD/TS
1.00
0.2 ± 0.15
2.50 ± 0.20
Detail B
5.00
Detail A
1.50±0.10
0.80 ± 0.05
3.80
2.50
9.9
0.6
R 0.50
Detail C
18.75 ± 0.15
54.675
Max 4.0
20.2.1 x72 DIMM, populated as two physical ranks of x8 DDR3 SDRAMs
The used device is 256M x4 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B1G0446G-BC**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
Register
Address, Command and Control lines
VTT
VTT
VTT
VTT
SPD/TS
- 41 -
datasheet DDR3 SDRAM
Rev. 1.01
VLP Registered DIMM
20.3 256Mbx4 based 256Mx72 Module (1 Rank) - M392B5670GB0
133.35 ± 0.15
Units : Millimeters
Register
18.10
12.60
1.27 ± 0.10
1.0 max
AB
47.00 71.00
128.95
9.76 20.92 32.40 20.93 9.74
C
SPD/TS
1.00
0.2 ± 0.15
2.50 ± 0.20
Detail B
5.00
Detail A
1.50±0.10
0.80 ± 0.05
3.80
2.50
9.9
0.6
R 0.50
Detail C
18.75 ± 0.15
54.675
Max 4.0
20.3.1 x72 DIMM, populated as one physical rank of x4 DDR3 SDRAMs
The used device is 256M x4 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B1G0446G-BC**
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
Register
Address, Command and Control lines
VTT
VTT
VTT
VTT
SPD/TS