Cortina Systems® LXT6155 155 Mbps
SDH/SONET/ATM Transceiver
Datasheet
The Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver (LXT6155 Transceiver) is a
high speed fully integrated transceiver designed for 155 Mbps SDH/SONET/ATM transmission system
applications. The LXT6155 Transceiver provides a LVPECL interface for fiber optics modules, and a CMI
interface for coax cable drive. These circuits are implemented using Cortina Systems, Inc.’s proven low
power 3.3V CMOS analog and digital circuits. The transmitter incorporates a parallel-to-serial converter,
a frequency multiplier PLL, CMI line encoders, and line interfaces for both coax cable and optical fiber.
The receiver incorporates an adaptive equalizer, a clock recovery PLL, Loss of Signal (LOS) detector,
CMI and NRZ decoders, a serial-to-parallel converter, and an SDH/SONET frame byte detector/aligner.
At the system interface, the LXT6155 Transceiver offers both parallel 8-bit and serial differential
interfaces. The LXT6155 Transceiver also operates in either Hardware stand-alone mode or Software
mode. Software mode is controlled by a serial microprocessor (µP) to program formats and operating/
test modes.
Product Features
Applications
Complies with:
Bellcore* SONET GR-253
ITU-T G.703/813/958 STM1
Two line interface formats:
Fiber LVPECL NRZ
—Coax CMI
Transmit synthesizer PLL
Receive clock recovery PLL
Adaptive CMI equalizer
Analog circuitry for transformer drive
Programmable LOS function
CMI encoder and decoder
Serial/Parallel and Parallel/Serial conversion
Byte alignment for SDH/SONET frames
Two modes of operation:
Microprocessor controlled; software mode
Stand-alone; hardware mode
No external crystal required. A 19.44 MHz
crystal is optional
Low power consumption (less than 760 mW
typical)
Operates from a single 3.3 V supply
64 pin LQFP package
OC3/STM1 SDH/SONET Cross Connects
OC3/STM1 SDH/SONET Add/Drop Mux
OC3/STM1 Transmission Systems
OC3/STM1 Short Haul Serial Links
OC3/STM1 ATM/WAN Transmission Systems
OC3/STM1 ATM/WAN Access Systems
Page 2Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH CORTINA SYSTEMS® PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN CORTINA'S TERMS AND CONDITIONS OF SALE OF SUCH PRODUCTS, CORTINA ASSUMES
NO LIABILITY WHATSOEVER, AND CORTINA DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE
SALE AND/OR USE OF CORTINA PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.
Cortina products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or
in nuclear facility applications.
CORTINA SYSTEMS®, CORTINA™, and the Cortina Earth Logo are trademarks or registered trademarks of Cortina
Systems, Inc. or its subsidiaries in the US and other countries. Any other product and company names are the
trademarks of their respective owners.
Copyright © 2001-2007 Cortina Systems, Inc. All rights reserved.
Page 3Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
Contents
Contents
1.0 LXT6155 Transceiver Block Diagram...........................................................................................8
2.0 Pin Assignments and Signal Descriptions.................................................................................. 9
3.0 Functional Description................................................................................................................14
3.1 Transmitter..........................................................................................................................14
3.1.1 Transmitted Signal.................................................................................................15
3.1.1.1 Fiber Based G.957/GR-253 Transmission Systems .............................. 15
3.1.2 Coax Based G.703/GR-253 Transmission Systems.............................................. 15
3.1.2.1 CMI Encoding ........................................................................................15
3.1.3 Tx Clock Monitoring ...............................................................................................16
3.2 Receiver.............................................................................................................................. 16
3.2.1 Analog Front End and Timing Recovery ................................................................ 16
3.2.1.1 CMI Mode ..............................................................................................16
3.2.1.2 NRZ Mode..............................................................................................16
3.2.2 Receive Frame Detect and Byte Alignment...........................................................17
3.2.2.1 Loss of Signal (LOS).............................................................................. 18
3.2.2.2 Coax Interface........................................................................................18
3.2.2.3 Fiber Interface ........................................................................................18
3.3 Clocks .................................................................................................................................19
3.3.1 Parallel Mode......................................................................................................... 19
3.3.1.1 Transmit Parallel Input Clock (TPICLK) ................................................. 19
3.3.1.2 Receive Parallel Output Clock (RPOCLK) .............................................19
3.3.2 Serial Mode............................................................................................................19
3.3.2.1 Transmit Serial Input Clock (TSICLKP/TSICLKN) .................................19
3.3.2.2 Receive Serial Output Clock (RSOCLKP/RSOCLKN) ...........................19
3.3.3 Crystal Reference Clock (XTALIN/XTALOUT).......................................................20
3.4 Jitter ....................................................................................................................................20
3.4.1 Jitter Tolerance ......................................................................................................20
3.4.2 Jitter Generation (Intrinsic Jitter)............................................................................ 20
3.4.3 Jitter Transfer......................................................................................................... 20
3.5 Operational Modes .............................................................................................................20
3.5.1 Hardware Mode .....................................................................................................21
3.5.1.1 PLL Clock Reference (CIS pin) ..............................................................21
3.5.1.2 Loopback Test (RLIS and LLIS pins) ..................................................... 22
3.5.1.3 Line Interface Selection (MODE Pin) .....................................................22
3.5.1.4 Parallel/Serial Mode Selection (SP pin) .................................................22
3.5.1.5 Tx Amplitude Trim..................................................................................23
3.5.2 Software Mode.......................................................................................................23
3.5.2.1 Serial Input Clock (SCLK) ...................................................................... 23
3.5.2.2 Chip Select Input (CS) ...........................................................................23
3.5.2.3 Serial Input Word (SDI) ..........................................................................23
3.5.2.4 Serial Output Word (SDO) .....................................................................23
3.6 Serial System Interface.......................................................................................................25
3.7 Parallel System Interface....................................................................................................25
3.8 Loopback Modes ................................................................................................................26
3.8.1 Local Loopback......................................................................................................26
3.8.2 Remote Loopback..................................................................................................26
4.0 Register Definitions.....................................................................................................................27
Page 4Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
Figures
5.0 Application Information ..............................................................................................................34
5.1 Fiber Optic Module Interface .............................................................................................. 34
5.2 Coax Interface ....................................................................................................................35
6.0 Test Specifications ...................................................................................................................... 38
7.0 Mechanical Specifications .......................................................................................................... 50
Figures
1 LXT6155 Transceiver Block Diagram ..............................................................................................8
2 LXT6155 Transceiver Pin Assignments ..........................................................................................9
3 LXT6155 Transceiver System Interface ........................................................................................ 14
4 Example of CMI Encoded Binary Signal........................................................................................15
5 Receive Frame Synchronization and Frame Pulse Position ......................................................... 17
6 Framing State ................................................................................................................................ 18
7 Criteria for LOS Output ..................................................................................................................18
8 Hardware Mode .............................................................................................................................21
9 Software Mode .............................................................................................................................. 24
10 Serial Data Output Word Structure (Read Cycle: R/W=High) ....................................................... 24
11 Serial Data Input Word Structure (Write Cycle: R/W = Low) ......................................................... 24
12 Serial Interface ..............................................................................................................................25
13 Parallel Interface............................................................................................................................25
14 Local Loopback .............................................................................................................................26
15 Remote Loopback .........................................................................................................................26
16 3.3 V LVPECL to 3.3 V LVPECL Interface ....................................................................................35
17 75 Ohm Coax Cable Interface .......................................................................................................36
18 Transmit Parallel Input Data Timing ..............................................................................................39
19 Transmit Serial Input Data Timing .................................................................................................40
20 Receive Serial Output Data Timing ...............................................................................................41
21 Receive Parallel Output Data Timing ............................................................................................42
22 Microprocessor Input Timing Diagram...........................................................................................44
23 Microprocessor Output Timing Diagram........................................................................................ 44
24 CMI Encoded Zero per G.703 and STS-3 ..................................................................................... 45
25 CMI Encoded One per G.703 and STS-3......................................................................................46
26 Jitter Tolerance (template Values from Table 34) .........................................................................47
27 Jitter Generation Measurement Filter Characteristics ................................................................... 48
28 Typical Coax Jitter Transfer...........................................................................................................48
29 Typical Fiber Jitter Transfer ...........................................................................................................49
30 LXT6155 Transceiver LE Package Specification ..........................................................................50
Tables
1 Pin Descriptions.............................................................................................................................10
2 Standards Compliance .................................................................................................................. 15
3 Reference Clock Settings ..............................................................................................................21
4 Loopback Selection ....................................................................................................................... 22
5 MODE Line Interface Settings ....................................................................................................... 22
6 Device Address/Control Byte.........................................................................................................27
7 LXT6155 Transceiver Register Map (A<3:0>)...............................................................................27
Page 5Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
Tables
8 Primary Control Register Settings, Register #0 (Address A<3:0>=0000)...................................... 28
9 Tx Control, Register #1 (Address A<3:0>=0001) ..........................................................................28
10 Transmit PLL1, Register #2 (Address A<3:0>=0010)....................................................................29
11 Transmit PLL2, Register #3 (Address A<3:0>=0011)....................................................................29
12 Equalizer Load, Register #4 (Address A<3:0>=0100) ................................................................... 29
13 Equalizer & AGC, Register #5 (Address A<3:0>=0101)................................................................29
14 Matching Filter 2, Register #6 (Address A<3:0>=0110) ................................................................30
15 Slicer, Register #7 (Address A<3:0>=0111) .................................................................................. 30
16 RxPLL 1, Register #8 (Address A<3:0>=1000) .............................................................................30
17 Rx PLL 2, Register #9 (Address A<3:0>=1001) ............................................................................31
18 Test, Register #10 (Address A<3:0>=1010) ..................................................................................31
19 Register, Bias and Fuse Controls, Register #11 (Address A<3:0>=1011) ....................................31
20 Rx Digital 1, Register #12 (Address A<3:0>=1100)....................................................................... 32
21 Rx Digital 2, Register #13 (Address A<3:0>=11001).....................................................................32
22 Status Control, Register #14 (Address A<3:0>=1110) .................................................................. 33
23 Read-Only Register #15 (Address A<3:0>=1111).........................................................................33
24 Transformer Specifications............................................................................................................36
25 Crystal Specifications .................................................................................................................... 37
26 Absolute Maximum Ratings...........................................................................................................38
27 Recommended Operating Conditions ...........................................................................................38
28 DC Electrical Characteristics (Vcc = 3.0 V to 3.6 V; TA = -40 °C to 85 °C)................................... 38
29 Transmit Timing Characteristics .................................................................................................... 39
30 Transmit Analog Characteristics....................................................................................................40
31 Receive Timing Characteristics .....................................................................................................41
32 Receive Analog Characteristics.....................................................................................................42
33 Serial Control Timing ..................................................................................................................... 43
34 Jitter Tolerance Template (in UIpp) ...............................................................................................46
35 Jitter Generation ............................................................................................................................ 47
36 Jitter Transfer ................................................................................................................................47
37 LXT6155 Transceiver LE Package Specification (64-Pin Low-Profile Quad Flat Pack) ................50
Page 6Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
Revision History
Revision History
Revision 7.0
Revision Date: 14 February 2007
First release of this document from Cortina Systems, Inc.
Revision 006
Revision Date: 01 February 2006
Ta bl e 2, Standards Compliance, on page 15 — changed line rate from 155 Mbps to 155.52 Mbps.
Figure 5, Receive Frame Synchronization and Frame Pulse Position, on page 17 — Added Receive Output Frame Pulse
(ROFP) heading to the drawing
Section 3.2.2.1, Loss of Signal (LOS), on page 18 — New last paragraph in this section
Section 3.5.1.1.2, XTAL, on page 22 — Added mention of RX LOS state machine.
Ta bl e 4, Loopback Selection, on page 22 — Updated pin headings to specify ADDR0 and ADDR1.
Figure 17, 75 Ohm Coax Cable Interface, on page 36 — Figure was incorrect.
Section 5.2, Coax Interface, on page 35 — Added a caution to ensure to decouple the system side center tap of the
transformer.
Ta bl e 27, Recommended Operating Conditions, on page 38 — “Changed Ambient Operating Temperature” to “Case
Operating Temperature”.
Ta bl e 28, DC Electrical Characteristics (Vcc = 3.0 V to 3.6 V; TA = -40 °C to 85 °C), on page 38 — Added “Differential input
voltage (LVPECL)” parameter. Also, added a note to specify that the High and Low Level Input Voltage specs are valid for
XTALIN when using an external clock.
Revision 005
Revision Date: 01 January 2004
Ta bl e 30, Transmit Analog Characteristics, on page 40 — Updated specifications for jitter transfer and jitter tolerance based
on Bench DV data, and corrected figure reference for jitter transfer.
Figure 21, Receive Parallel Output Data Timing, on page 42 — Revised diagram.
Ta bl e 32, Receive Analog Characteristics, on page 42 — Updated specifications for jitter transfer and jitter tolerance based
on Bench DV data.
Ta bl e 35, Jitter Generation, on page 47 — Updated specifications based on Bench DV data.
Ta bl e 36, Jitter Transfer, on page 47 — Updated specifications based on Bench DV data.
Revision 004
Revision Date: 01 January 2003
Updated Figure 18
Revision 003
Revision Date: 01 August 2002
Updated Figure 16, note 1: R3, R4, R7, R8 = 82.5
Page 7Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
Revision History
Revision 002
Revision Date: 01 July 2002
Formatting change
Revision 001
Revision Date: 01 January 2001
Initial version
Page 8Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
1.0 LXT6155 Transceiver Block
Diagram
1.0 LXT6155 Transceiver Block Diagram
Figure 1 shows the block diagram for the LXT6155 Transceiver.
Figure 1 LXT6155 Transceiver Block Diagram
Data
Recovery
Clock
Recovery
PLL
Serial/
Parallel
Divide
8
RTIP
RRING
P Control (CS, SCLK, SDI, SDO),
Hardware (MODE0, SP, CIS, RIFE)
Frame Detect &
Byte Aligner
Adaptive
Equalizer
TTIP0
TRING0
CMI
Encode
TTIP1
TRING1
x 8 Synthesizer
PLL
Parallel/
Serial
RSOCLKP, RSOCLKN
RPOCLK
RPOD<7:0>
RPOS, RNEG
LOS
ROFP/CMIERR
TPOS, TNEG
TPID<7:0>
TSICLKP, TSICLKN
TPICLK
Local
Loopback
8
2
2
Loss of Signal
(LOS)
Frequency
Doubler
2
2
8
Remote
Loopback
Control
Logic
Control
Registers
4
HWSEL
RLIS,
LLIS
2
XTALIN XTALOUT
Optional
19.4MHz crystal
Equalizer
Control
CMI/NRZ
Decode
LOCK
RXISH
TXISH
Page 9Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
2.0 Pin Assignments and Signal
Descriptions
2.0 Pin Assignments and Signal Descriptions
Figure 2 LXT6155 Transceiver Pin Assignments
VBIAS
RAVCC
LOS
LOCK
ROFP/CMIERR
RDGND
RDVCC
ATST
RPOS
RNEG
PVCC
RSOCLKN
RSOCLKP
GND
RPOD0
RPOD1
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
LXT6155LE
TVCC
TRING1
TTIP0
TRING0
TGND
WELL
SUB
TTIP1
HWSEL
ADDR1/LLIS
ADDR0/RLIS
RAGND
RTIP
RRING
RAGND
RXISH
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
XTALIN
TAGND
TXISH
TAVCC
TDVCC
TSICLKP
TSICLKN
XTALOUT
TPOS
TNEG
TDGND
CS/MODE
SCLK/SP
SDI/CIS
SDO/RIFE
TPID7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
RPOD2
RPOD4
RPOD5
RPOD6
RPOD7
RPOCLK
VCC
RPOD3
TPICLK
TPID0
TPID1
TPID2
TPID3
TPID4
TPID5
TPID6
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
(top view)
Page 10Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
2.0 Pin Assignments and Signal
Descriptions
Table 1 Pin Descriptions (Sheet 1 of 4)
Pin # Pin Name I/O1Type2Description
1XTALIN
AI/O
Crystal Input/Output. These pins are connected to an external
19.44 MHz crystal. Alternately, a stable external clock signal may
be connected to XTALIN with XTALOUT left open. XTALIN
should be connected to TAGND and XTALOUT should be left
open if the transmit input clock is used as a clock reference
2XTALOUT
3 TAGND S Transmit Analog Ground.
4 TXISH AI/O
Transmit PLL Loop Filter Pin. Connecting a capacitor to
TAGND from this pin controls the Tx PLL transfer function. This
pin requires a 68 nF cap to TAGND.
5 TAVCC S Transmit Analog Power Supply.
6 TDVCC S Transmit Digital Power Supply.
7 TSICLKP
DI LVPECL
Transmit Serial Input Clock, positive and negative.
Differential Transmit clocks at 155.52 MHz. These pins are
disabled when parallel mode is selected.
8 TSICLKN
9TPOS
DI LVPECL
Transmit Serial Input Data, positive and negative. Differential
input data from an overhead terminator at 155.52 Mbps, clocked
in by TSICLK. These pins are disabled when parallel mode is
selected.
10 TNEG
11 TDGND S Transmit Digital Ground.
12 CS/MODE DI TTL
Chip Select Input, software mode (HWSEL = High). Register
transactions through the P interface are initiated by the falling
edge of this signal.
Line Interface Mode, hardware mode (HWSEL = Low). Sets
line interface mode to LVPECL (MODE = Low) or CMI (MODE =
High).
13 SCLK/SP DI TTL
Serial Clock Input, software mode (HWSEL = High). Serial
Microprocessor uses this pin to clock in/out data. SCLK can be
from 0 to 4.096 MHz.
Serial/Parallel Select, hardware mode (HWSEL = Low). When
SP = Low, serial systems interface is used. When SP = High, 8-
bit parallel system interface is used.
14 SDI/CIS DI TTL
Serial Input Data, software mode (HWSEL = High). The serial
data is applied to this pin when the LXT6155 Transceiver
operates in software mode. SDI is sampled on the rising edge of
SCLK.
Clock Input Select, hardware mode (HWSEL = Low). CIS sets
the reference clock for centering the Rx PLL. If CIS = Low, then
the LXT6155 Transceiver uses the transmit input clock as the
reference. If CIS = High, then the LXT6155 Transceiver uses the
crystal clock input (XTALIN) as the reference.
1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog
Input/Output; S=Supply.
2. TTL = Transistor-to-Transistor Logic (5 V tolerant); LVPECL = Low-Voltage positive ECL.
Page 11Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
2.0 Pin Assignments and Signal
Descriptions
15 SDO/RIFE DI/O TTL
Serial Output Data, software mode (HWSEL = High). The serial
data from the on-chip register is output on this pin in software
mode. Data output is valid on the rising edge of SCLK. This pin
goes to a high impedance state when the serial port is being
written to or when CS is High.
Receive Input Frame Enabler, hardware mode (HWSEL =
Low). The frame detection option is available only in parallel
mode. If RIFE = Low, then the LXT6155 Transceiver disables the
frame detection, and byte alignment. If RIFE = High, then the
LXT6155 Transceiver enables the frame detection, and outputs
RPOD bytes aligned to the SONET/SDH framer. This feature, if
used, must be enabled prior to applying data to Rtip/Rring.
16
17
18
19
TPID7/TXTRIM3
TPID6/TXTRIM2
TPID5/TXTRIM1
TPID4/TXTRIM0
DI TTL
Transmit Parallel Input Data. Transmit data from an Overhead
Terminator at parallel speed 19.44 MHz, clocked in by TPICLK.
TPID7 is the most significant bit, and is the first bit to be sent.
These pins should be grounded or not connected when the
LXT6155 Transceiver is used in serial mode.
Transmit Trim Controls, in serial, hardware, coax mode only.
These pins trim the amplitude of the line driver output from (nom -
21%) to (nom +24%) in 3% steps. This feature is only enabled
when pin #20 (TXTRIMENA) is High.
20 TPID3/TXTRIMENA DI TTL
Transmit Parallel Input Data. Transmit data from an Overhead
Terminator at parallel speed 19.44 MHz, clocked in by TPICLK.
TPID7 is the most significant bit, and is the first bit to be sent.
These pins should be grounded or not connected when the
LXT6155 Transceiver is used in serial mode.
Transmit Trim Enable, in serial, hardware, coax mode only. This
pin enables the trimming of the line driver output by pins 16-19
when high.
21
22
23
TPID2
TPID1
TPID0
DI TTL
Transmit Parallel Input Data. Transmit data from an Overhead
Terminator at parallel speed 19.44 MHz, clocked in by TPICLK.
TPID7 is the most significant bit, and is the first bit to be sent.
These pins should be grounded or not connected when the
LXT6155 Transceiver is used in serial mode.
24 TPICLK DI TTL
Transmit Parallel Input Clock. Parallel transmit clock at
19.44 MHz. This pin is disabled when serial mode is selected and
should be grounded or not connected.
25 VCC S Power Supply.
26 RPOCLK DO TTL
Receive Parallel Output Clock. Parallel receive clock as
recovered from received data. The clock is nominally 19.44 MHz,
synchronized with RPOD<7:0>.
27
28
29
30
31
32
33
34
RPOD7
RPOD6
RPOD5
RPOD4
RPOD3
RPOD2
RPOD1
RPOD0
DO TTL
Receive Parallel Output Data. RPOD<7:0> output aligned 8-bit
bytes at RPOCLK clock rate. These pins are to be left open when
serial mode is selected. RPOD7 is the most significant bit, and is
the first to arrive.
35 GND S Ground.
Table 1 Pin Descriptions (Sheet 2 of 4)
Pin # Pin Name I/O1Type2Description
1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog
Input/Output; S=Supply.
2. TTL = Transistor-to-Transistor Logic (5 V tolerant); LVPECL = Low-Voltage positive ECL.
Page 12Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
2.0 Pin Assignments and Signal
Descriptions
36 RSOCLKP
DO LVPECL
Receive Serial Output Clock. Serial receive clock as recovered
from received data. The clock is nominally 155.52 MHz,
synchronized with output serial data RPOS and RNEG.
37 RSOCLKN
38 PVCC S PECL Buffers Power Supply.
39 RNEG
DO LVPECL
Receive Serial Output Data, positive and negative. These two
pins provide recovered data synchronized to receive serial output
clocks RSOCLKP and RSOCLKN. These pins are tristated and
should be left open when parallel mode is selected.
40 RPOS
41 RDVCC S Receive Digital Power Supply.
42 RDGND S Receive Digital Ground.
43 ROFP/
CMIERR DO TTL
Receive Output Frame Pulse. In hardware mode (HWSEL =
Low), this pin is asserted (High) on the last A2 byte in the
(A1.....A1, A2.....A2) sequence in the RPOD<7:0> traffic.
A1=1111,0110 and A2=0010,1000 in binary. In software mode
(HWSEL = High), this position is programmable. During coax
operation, when frame detection is disabled (RIFE = 0 in HW/Reg
#12, bit3 = 0), or in serial mode, this pin indicates CMI line code
errors. These pulses are 50 ns wide (active high). One or more
errors in 16 consecutive bits will causes a single pulse.
44 LOCK DO TTL
Receive Output PLL Lock. A High indicates receive PLL has
locked to incoming data. A Low indicates receive PLL is not
locked.
45 LOS DO TTL
Loss of Signal. An alarm output signal (high) indicating incoming
signal voltage is weak or incoming data does not contain enough
transitions. In software mode (HWSEL = 1) this pin can be
configured to combine LOS and LOCK alarms.
46 RAVCC S Receive Analog Power Supply.
47 ATST - Analog Test. For factory test purposes only; do not connect.
48 VBIAS AI Analog Bias Input Voltage. This pin requires a 15 K (1%) pull-down
resistor to RAGND.
49 RXISH A0 Analog
Rx PLL External Cap. Connecting a capacitor to RAGND from
this pin controls the Rx PLL transfer function. This pin requires a
330 nF cap to RAGND.
50 RAGND S Receive Analog Ground.
51 RRING
AI Analog
Receive Input Data, positive (RTIP) and negative (RRING).
Accepts incoming signals (LVPECL or CMI) from the line
interface.
52 RTIP
53 RAGND S Receive Analog Ground.
54 ADDR0/RLIS DI TTL
Address 0, software mode (HWSEL = High). This pin together
with ADDR1 sets the chip select address. Up to 4 LXT6155
Transceiver chips can be addressed by the P interface.
Remote Loopback Input Select, hardware mode (HWSEL =
Low). Together with LLIS sets the LXT6155 Transceiver in a
loopback test mode. See Ta b l e 4
Table 1 Pin Descriptions (Sheet 3 of 4)
Pin # Pin Name I/O1Type2Description
1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog
Input/Output; S=Supply.
2. TTL = Transistor-to-Transistor Logic (5 V tolerant); LVPECL = Low-Voltage positive ECL.
Page 13Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
2.0 Pin Assignments and Signal
Descriptions
55 ADDR1/LLIS DI TTL
Address 1, software mode (HWSEL = High). This pin together
with ADDR0 sets the chip select address. Up to 4 LXT6155
Transceiver chips can be addressed by the P interface.
Local Loopback Input Select, hardware mode (HWSEL =
Low). Together with RLIS sets the LXT6155 Transceiver in
remote loopback mode. See Table 4
56 HWSEL DI TTL
Hardware/Software Mode Select. When HWSEL = High, the
LXT6155 Transceiver enters software (host) mode, and is ready
to communicate with a serial microprocessor. When HWSEL =
Low, the LXT6155 Transceiver operates in hardware standalone
mode (without a serial P).
57 SUB S Reserved. Must be connected to GND.
58 WELL S Reserved. Must be connected to VCC.
59 TAGND S Transmit Analog Ground.
60 TRING0
AO Transmit Output Data, positive (TTIP0) and negative
(TRING0). Differential CMI driver outputs for coax interface.
61 TTIP0
62 TRING1
DO
Transmit Output Data, positive (TTIP1) and negative
(TRING1). Differential LVPECL NRZ driver outputs for a fiber
optic transceiver.
63 TTIP1
64 TAVCC S Transmit Analog Power Supply.
Table 1 Pin Descriptions (Sheet 4 of 4)
Pin # Pin Name I/O1Type2Description
1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog
Input/Output; S=Supply.
2. TTL = Transistor-to-Transistor Logic (5 V tolerant); LVPECL = Low-Voltage positive ECL.
Page 14Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.0 Functional Description
3.0 Functional Description
The LXT6155 Transceiver is a front-end transceiver designed for 155 Mbps OC3/STM1/
ATM transmission applications. Table 2 lists the standards with which the LXT6155
Transceiver is compliant.
The LXT6155 Transceiver interfaces to either a fiber transceiver or a coax cable on the
line side, and on the system side, to an SDH/SONET Overhead Terminator or an ATM
UNI. As shown in Figure 3, the LXT6155 Transceiver can function in Hardware stand-
alone mode, or in Software mode controlled through an industry standard Motorola
compatible 4-wire serial microprocessor interface.
The LXT6155 Transceiver can be set to operate in either CMI mode for the 75 coax
interface or NRZ mode for the optical transceiver interface. The operating mode can be
set in either hardware mode by using the MODE pin, or software mode by using Primary
Control Register, bit 0.
3.1 Transmitter
In serial mode, the LXT6155 Transceiver accepts both data (TPOS, TNEG) and clock
signals (TSICLKP, TSICLKN). Serial clock signals are required for the LXT6155
Transceiver to run internal logic, reshape the line transmit pulses and generate the low-
jitter clocks for Tx data generation.
In parallel mode, the LXT6155 Transceiver accepts data TPID<7:0> and clock TPICLK.
TPICLK is internally multiplied by 8 to yield the 155.52 MHz clock for Tx data generation.
Both serial and parallel clocks (TSICLKP/TSICLKN and TPICLK) must conform to the
SONET/SDH standard frequency accuracy requirements.
Depending on whether the selected media interface is coax or fiber, the data is CMI or
NRZ encoded respectively, and passed to the appropriate line drivers. The LXT6155
Transceiver line drivers are high-speed buffers that meet the CMI templates and industry
standard LVPECL signal requirements. The CMI output pins are TTIP0 and TRING0, and
the NRZ LVPECL pins, TTIP1 and TRING1.
Figure 3 LXT6155 Transceiver System Interface
Tx
Rx
Processor
(optional)
LXT6155
4
Fiber Optic Modules
or Coax Transformers
2
2
SONET/SDH
Overhead
Terminator
ATM UNI
1
2
1
2
Data/Clock (8-bit parallel or serial mode)
Data/Clock (8-bit parallel or serial mode)
Receive Output Frame Pulse (ROFP)
Receive Ouput PLL Lock (LOCK)
Loss of Signal (LOS)
System Interface
Line Interface
Page 15Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.1 Transmitter
3.1.1 Transmitted Signal
Transmitted signals conform to the standard templates listed in Table 2.
3.1.1.1 Fiber Based G.957/GR-253 Transmission Systems
The LXT6155 Transceiver provides 3.3 V LVPECL compatible signals for interfacing to a
fiber optic transceiver. Please refer to Application Information for interface schematics.
3.1.2 Coax Based G.703/GR-253 Transmission Systems
The LXT6155 Transceiver encodes and decodes CMI signals that are transmitted onto a
75 coax cable compliant with STM1/STS-3 CMI templates. Please refer to the CMI
templates shown in Figure 24 on page 45 and Figure 25 on page 46.
3.1.2.1 CMI Encoding
Coded Mark Inversion (CMI) is an encoding scheme adopted by SONET STS-3 and SDH
STM1 standards. CMI encoding guarantees at least one transition per bit, thereby
enhancing the clock recovery process. CMI encodes a “0” with a midpoint positive
transition, and a “1” as Low or High, in opposite polarity to the previous encoded “1”. Refer
to Figure 4, Figure 24 on page 45 and Figure 25 on page 46 for encoding and pulse
template information.
Table 2 Standards Compliance
Item
SDH/SONET (Fiber) SDH/SONET (Coax)
STM1 OC3 STM1 STS-3
Line Rate (Mbps) 155.52 155.52 155.52 155.52
Line Interface 50 LVPECL 50 LVPECL 75 coax 75 coax
Line Code NRZ NRZ CMI CMI
Signal Templates G.9 57
STM1 Eye
OC3
OC3 Eye
G.703
CMI Template.
CMI Eye
STSX-3
CMI Template.
CMI Eye
Jitter G.95 8
G.8 25 GR-253 G.813
G.825 GR-253
Figure 4 Example of CMI Encoded Binary Signal
00 01111
Binary
CMI
T/2 T/2
T
Page 16Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.2 Receiver
3.1.3 Tx Clock Monitoring
The LXT6155 Transceiver provides transmit clock monitoring for both serial and parallel
operating modes. When using the crystal clock as a reference, the LXT6155 Transceiver
monitors the TSICLKP/TSICLKN or the TPICLK input(s) for transitions. If no transition is
seen within 200 ns, the tx_clk_alarm flag will be set (reg #15) and the transmitter outputs
ttip1/tring1 or ttip0/tring0 will stop sending data to the line. This condition will remain until
the LXT6155 Transceiver detects clock transitions at the transmitter input(s) TSICLKP/
TSICLKN or TPICLK. Transmit clock monitoring can be disabled in software mode only.
In remote loopback, transmit clock monitoring is disabled in SW and HW mode. In SW
mode, when using transmit clocks as the receive PLL reference, the user must disable
transmit clock monitoring by setting reg #1 bit <0> low.
3.2 Receiver
3.2.1 Analog Front End and Timing Recovery
3.2.1.1 CMI Mode
Received data on RTIP/RRING goes through an adaptive equalizer. An adaptive
equalizer and adaptive Automatic Gain Control (AGC) compensate the frequency-and-
cable length dependent loss in data signal, and reshapes the signal to the optimal
waveform. A Phase Locked Loop (PLL) then performs clock recovery operation,
comparing the reshaped data phase against the receive output clock phase. The receive
PLL requires an external reference (e.g. transmit input clock or XTAL clock) to start up the
clock recovery process. This clock can be derived from XTALIN, TPICLK or TSICLK (8).
The recovered clock is used to retime the CMI signals, and to decode CMI to NRZ. Coding
errors are detected and flagged via the CMIERR pin in HW mode with the frame detect
disabled or in serial mode. In software mode (HWSEL = High) CMI coding errors are
indicated via the P interface interrupt register: Reg #15, mode 05.
3.2.1.2 NRZ Mode
The on chip adaptive equalizer is bypassed. Data goes straight to the clock recovery
phase locked loop. The PLL then performs clock recovery operation, comparing the data
phase against the clock phase. This clock can be derived from XTALIN, TPICLK or
TSICLK (8). The receive PLL requires an external reference (for example, a transmit
input clock or XTAL clock) to start up the clock recovery process.
The recovered clock is used to retime the data signals. When the recovered clock is within
488 ppm of the reference clock, the LOCK signal asserts. This alarm is also accessible on
the P interface as a status bit (Reg #15, mode 0) and as an interrupt (Reg #15, mode
05). Once the recovered clock has been obtained and the NRZ data has been recovered,
the LXT6155 Transceiver performs frame-detect-and-byte-alignment, and serial-to-
parallel conversion. The LXT6155 Transceiver optionally provides output data
RPOD<7:0> aligned to the SDH/SONET byte boundary. The user has the option to
enable/disable the frame-alignment function in both hardware and software mode. The
frame detect/byte alignment function generates the receive output frame pulse (ROFP). In
HW mode (HWSEL = Low) ROFP asserts (high) on the third A2 byte. In SW mode
(HWSEL = High) this position is programmable via register #13, bits <6:3>. When byte
alignment is disabled and the LXT6155 Transceiver is in CMI mode, the ROFP pin
indicates CMI coding errors including polarity errors for ones and inversion errors for
zeroes.
f
Page 17Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.2 Receiver
The clock recovery PLL’s center frequency comes from either the local crystal or a stable
transmit input clock (TSICLKP/TSICLKN or TPICLK). If operated in loop-timed mode or
remote loopback mode, an external reference clock must be used to center the internal
PLL clock. In remote loopback, the receive reference remains either XTALIN or TSICLK or
TPICLK, depending on the control selection. If an independent and stable transmit clock is
available, the designer has the option of applying this clock to pin XTALIN to center the
PLL, without the external crystal.
The user can also replace the crystal by connecting the TPICLK (19.44 MHz) signal to the
XTALIN pin. However, a local crystal is recommended for “keep alive” purposes in case
the clock becomes unavailable.
3.2.2 Receive Frame Detect and Byte Alignment
Receive Frame Detection only operates in parallel mode, if Frame Detection is enabled.
The LXT6155 Transceiver provides aligned bytes RPOD<7:0> following the distinct
SONET OC3/STM1 frame marker word, 3 x A1, followed by 3 x A2, where A1=F6h and
A2=28h. The Receive Output Frame Pulse (ROFP) asserts during the third A2 byte, and
de-asserts after one complete RPOCLK clock period. If this feature is used, it can be
enabled in register #12 bit <3> in software mode1, or by setting the RIFE (pin 15) high in
hardware mode prior to applying data to Rtip/Rring. Two consecutive frames with correct
frame words (A1… A1 A2…A2) are required to change from an out-of-frame state (OOF) to
an in-frame state. The OOF alarm is accessible in SW mode (HWSEL = High) as a status
or interrupt signal (Reg #15). To declare an OOF condition, four consecutive frames with
incorrect frame words are required. Byte alignment occurs when entering the in-frame
state. In case of an OOF event, the byte alignment and frame pulse position are frozen.
The ROFP output continues unchanged until re-entering the in-frame state.
Figure 5 Receive Frame Synchronization and Frame Pulse Position
A2 J0 Z0 Z0A1 A2 A2A1 A1
Start of SPE
End of Previous Frame
11001101 10111110 0000
1000
1001 00011010 01000011 01010010 011101101111
-4-5 -3-6 0-1 +1-2 +4+3 +5+2 +7+6-7
ChDh BhEh 0h
8h
9h 1hAh 4h3h 5h2h 7h6hFh
RPOCLK
RPOD <7:0>
Frame Pulse Position
Contents of
REG 13h
Hex
Binary
ROFP
1. For further details see register #12 description for usage.
Page 18Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.2 Receiver
3.2.2.1 Loss of Signal (LOS)
Loss of Signal provides an alarm signal indicating incoming signal voltage is weak or
incoming data does not contain enough transitions. This signal is available in HW mode
on pin #45 and in SW mode as status and interrupt (Reg #15, modes 00 and 05).
During power-up, the LOS state machine may be stuck in an incorrect state until the
LXT6155 Transceiver receives a transmit clock (TPICLK or TSICLKP/TSICLKN). For
correct initialization in serial mode, a clock or local crystal should also be applied on
XTALIN. The LOS alarm should be ignored until the clock(s) is in place.
3.2.2.2 Coax Interface
Loss of Signal provides an alarm output that indicates weak line input signal. The LOS
signal asserts when the incoming signals fall below a specified loss threshold, and de-
asserts when the line signal rises nominally 2 dB above the assert threshold, as shown in
Figure 7 on page 18. The threshold is adjustable in SW mode (HWSEL = High) via the
Processor interface.
3.2.2.3 Fiber Interface
If no transition is detected during any 3112 bit times (20 sec), LOS asserts. LOS is
cleared when two consecutive frame words with no LOS events between then are
received. In SW mode (HWSEL = High) the assertion window is programmable from 128
bits to 4096 bits in four steps. The de-assertion criteria can also be configured to 12.5%
transition density. The 12.5% density is determined by receipt of at least 4 transitions
during a 32-bit sliding window.
Figure 6 Framing State
In Frame
4 consecutive frames
with errored FAS
2 consecutive frames
with correct FAS
Out of Frame
Figure 7 Criteria for LOS Output
Page 19Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.3 Clocks
3.3 Clocks
3.3.1 Parallel Mode
The LXT6155 Transceiver accepts TPICLK synchronized with transmit input parallel data
TPID<7:0>. The data is serialized and transmitted at TTIP0/TRING0 or TTIP1/TRING1
depending on which line encoding mode is selected. The LXT6155 Transceiver in turn
produces the receive output parallel clock RPOCLK, that is recovered from incoming line
data RTIP/RRING, and is synchronized with receive output parallel data RPOD<7:0>.
3.3.1.1 Transmit Parallel Input Clock (TPICLK)
TPICLK is the transmit parallel input clock provided by the systems interface. This clock
must be nominally 19.44 MHz, synchronized with parallel input data TPID<7:0>. This
clock is then internally multiplied by 8 to produce a serial clock, used for parallel-to-serial
conversion, line drivers, and pulse reshaping. In HW mode (HWSEL = Low), TPID data is
sampled on the falling edge of TPICLK. In SW mode (HWSEL = High), the clock polarity
can be inverted (Reg #0, bit #3).
3.3.1.2 Receive Parallel Output Clock (RPOCLK)
RPOCLK is the parallel output clock that is recovered from the line input data RTIP/
RRING. This clock is at 19.44 MHz, synchronized with parallel output data RP0D<7:0>. In
HW mode (HWSEL = Low), the RPOCLK clock rising edge is at the center of eye opening
of RPOD<7:0> as shown in Figure 21. In SW mode (HWSEL = High), the clock polarity
can be inverted (Reg #0, bit #2). Under LOS (LOS=High) or Rx PLL loss of lock
(LOCK=Low) conditions RPOCLK is switched to the reference selected by the CIS control
in HW mode, or Reg #0 bit #5 in SW mode. Also, the parallel output is forced to all zeros.
This feature can be disabled in SW mode (HWSEL = High) via register #10, bit #7.
3.3.2 Serial Mode
At the transmit systems interface, the LXT6155 Transceiver accepts the transmit input
clock TSICLKP/TSICLKN that is synchronized to incoming serial differential data TPOS/
TNEG. At the line interface, the LXT6155 Transceiver accepts RTIP/RRING data and
produces the clocks RSOCLKP/RSOCLKN synchronized to receive output data RPOS/
RNEG. RSOCLKP/RSOCLKN clock edges are at the center of RPOS/RNEG.
3.3.2.1 Transmit Serial Input Clock (TSICLKP/TSICLKN)
TSICLKP/TSICLKN is the serial input clock from the overhead terminator. This
155.52 MHz clock is rising edge centered with input serial data on TPOS and TNEG.
These clock pins should be left open when the LXT6155 Transceiver operates in parallel
mode.
3.3.2.2 Receive Serial Output Clock (RSOCLKP/RSOCLKN)
RSOCLKP/RSOCLKN is the serial clock recovered from the line input data on RTIP/
RRING. This 155.52 MHz clock is falling edge centered with receive serial output data on
RPOS/RNEG. These clock pins should be left open when the LXT6155 Transceiver
operates in parallel mode. Under LOS (LOS=High) or Rx PLL loss of lock (LOCK=Low)
conditions RSOCLK P/N is switched to the Tx serial clock. Also the serial output data is
forced to all zeros. This feature can be disabled in SW mode (HWSEL = High) via register
#10, bit #7.
Page 20Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.4 Jitter
3.3.3 Crystal Reference Clock (XTALIN/XTALOUT)
An optional 19.44 MHz crystal can be connected across the XTALIN and XTALOUT pins.
This crystal reference provides an onchip clock that is independent of the external system
clock (TSICLKP/TSICLKN or TPICLK). The main functions of the crystal reference clock
are threefold: (1) to center the receive PLL at 155 MHz, (2) to keep the PLL centered at
155 MHz when LOS asserts, and (3) In the event incoming data is lost, to provide a
reference clock for other devices which require it. The designer has the option to use this
crystal reference clock or the transmit input clock (TSICLKP/TSICLKN or TPICLK) to
center the receive PLL.
Refer to Section Section 3.2.2.1, Loss of Signal (LOS), on page 18 for clock requirements
relating to the LOS alarm signal.
3.4 Jitter
The Bellcore GR-253 standard defines jitter as the “short-term variations of a digital
signal’s significant instants from their ideal positions in time”. Significant instants are the
optimum data sampling instants. Jitter parameters can be measured at the line interface,
with system interface in loopback mode, yielding jitter accumulated in both transmitter and
receiver. Isolated jitter measurements for transmitter and receiver can also be performed.
Jitter specs are divided into three categories: jitter tolerance, jitter generation, and jitter
transfer. Jitter values, in effect, measure the performance of the receive PLL and the
transmit synthesizer PLL.
3.4.1 Jitter Tolerance
Jitter tolerance is the peak-to-peak amplitude of sinusoidal jitter applied at the line
interface input that causes an equivalent 1 dB SNR loss measured as BER = 10-10. Refer
to Figure 26 on page 47 for the LXT6155 Transceiver performance.
3.4.2 Jitter Generation (Intrinsic Jitter)
Jitter generation is the amount of transmit jitter at the output of the equipment with a jitter-
free transmit input data and clock. For SONET/SDH, jitter generation is less than 0.01 UI
rms, measured with a band-pass filter from 12 kHz to 1.3 MHz. Refer to Figure 27 on
page 48 for the LXT6155 Transceiver performance.
3.4.3 Jitter Transfer
Jitter transfer is defined as the ratio of output jitter to input jitter amplitude versus jitter
frequency for a given bit rate. Input jitter amplitude is shown in the Jitter Tolerance curve.
Output jitter is under the Jitter Transfer template. Refer to Figure 27 on page 48 and
Figure 28 on page 48 for the LXT6155 Transceiver performance.
3.5 Operational Modes
The LXT6155 Transceiver functions in both Hardware standalone and Software modes.
The operating mode is set by the state of the HWSEL pin.
Page 21Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.5 Operational Modes
3.5.1 Hardware Mode
By setting HWSEL = Low, the LXT6155 Transceiver operates in standalone hardware
mode, without a serial microprocessor interface. A subset of the functions available in the
Software Mode can be set in Hardware Mode. LXT6155 Transceiver provides a
comprehensive flexibility in configuring system clock preference settings, as well as
providing pins for activating loopback test modes. Ta b le 3, Table 4 and Ta b l e 5 show the
settings that enable the functions available in hardware mode.
3.5.1.1 PLL Clock Reference (CIS pin)
The reference clock plays two roles: it centers the receive PLL, and it provides the receive
output clocks RSOCLKP/RSOCKLN and RPOCLK in case of Loss of Signal. When the
LXT6155 Transceiver powers up, it looks for this reference clock to start-up internal
blocks, including the receive PLL circuitry.
3.5.1.1.1 TICLK
This is the transmit input clock(s): either TSICLKP/TSICLKN in serial mode or TPICLK in
parallel mode.
Figure 8 Hardware Mode
LXT6155
HWSEL
RLIS
CIS
SP
GND
Remote loopback
Serial/Parallel
Clock reference select
Local loopbackLLIS
MODE Line interface encode/decode
RIFE Frame Enable
Table 3 Reference Clock Settings
CIS Clock Reference Note
Low TICLK
Default mode. The LXT6155 Transceiver uses the
transmit input clock as the reference clock for on chip
operations. No crystal is needed.
High XTAL
The LXT6155 Transceiver uses the clock signal at
XTALIN as the reference clock for Rx operation. This
can either be an applied 19.44 MHz clock or a
19.44 MHz crystal can be connected across XTALIN &
XTALOUT. See Table 25 for the crystal specifications.
Page 22Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.5 Operational Modes
3.5.1.1.2 XTAL
XTAL is an optional clock, created using an external crystal, connected across the XTALIN
and XTALOUT pins. The crystal provides an independent and stable clock source. This
clock is also used as the reference for the Tx clock monitoring circuitry and the Rx LOS
state machine.
3.5.1.2 Loopback Test (RLIS and LLIS pins)
The LXT6155 Transceiver allows two types of loopback test: Remote loopback and Local
loopback. In Remote loopback, the received data and clock are looped back to the
transmit line interface. The LXT6155 Transceiver still outputs recovered data and clock at
the system interface. In Local loopback, the transmit data is looped back to the receive
input at the line interface. The LXT6155 Transceiver also transmit data onto the line
interface while looping back. For descriptive diagrams, please refer to Figure 14 on
page 26 and Figure 15 on page 26.
3.5.1.3 Line Interface Selection (MODE Pin)
The MODE pin sets one of the two line interfaces, as described in Ta b l e 5 .
3.5.1.4 Parallel/Serial Mode Selection (SP pin)
In Hardware Mode, HWSEL = Low, the LXT6155 Transceiver can be set to operate in
serial or parallel data mode, depending on how the Serial/Parallel SP pin is set.
Setting the SP pin = High sets the LXT6155 Transceiver to an 8-bit parallel mode. Parallel
pins TPID<7:0>, TPICLK, RPOD<7:0>, ROFP, RPOCLK, LOCK and LOS are be used.
Serial pins TPOS, TNEG, TSICLKP, TSICLKN, RPOS, RNEG, RSOCLKP, RSOCLKN are
unused and should be left open.
Setting the SP pin = Low sets the LXT6155 Transceiver to serial mode. Pins TPOS,
TNEG, TSICLKP, TSICLKN, RPOS, RNEG, RSOCLKP, RSOCLKN, LOCK and LOS are
used. Pins TPID<7:0>, TPICLK, RPOD<7:0> and RPOCLK are unused and should be left
open.
Table 4 Loopback Selection
ADDR0/RLIS ADDR1/LLIS Description
Low Low Normal operation. No loopback testing.
Low High Local loopback test activate.
High Low Remote loopback test activate.
High High Invalid mode. Do not use.
Table 5 MODE Line Interface Settings
MODE Description
Low Sets LVPECL NRZ mode to interface to a fiber optic module. CMI related blocks (e.g. input/output
buffers, equalizer) are disabled.
High Sets CMI mode to interface to a transformer and a 75 coax cable. NRZ related input/output
buffers are disabled.
Page 23Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.5 Operational Modes
3.5.1.5 Tx Amplitude Trim
In Hardware, serial, coax mode, the line driver output amplitude can be controlled via pins
16 to 20. Setting TXTRIMENA (pin #20) high enables the trim capability. The trim range is
-21% to +24% in 3% steps controlled by TXTRIM0-TXTRIM3. The minimum amplitude is
at 0000 and the maximum amplitude is at 1111. This is the same control range as in SW
mode.
3.5.2 Software Mode
When HWSEL = High, the LXT6155 Transceiver operates in Software Mode. Control is
through an external serial P interface. Figure 9 shows the pins used in Software Mode.
The LXT6155 Transceiver uses four pins for the industry standard Serial Control Interface
(SCP) bus: SCLK, CS, SDI and SDO. SCLK is the serial input control clock pin. CS is the
chip select input. SDI is the serial data input pin, and SDO is the serial data output pin.
Figure 10 and Figure 11 show the serial interface data structure. A data transaction is
initiated by a falling edge on the Chip Select pin CS. A High-to-Low transition on CS is
required for each access to the control registers. The first bit is a read/write bit (R/W),
followed by seven address bits (A<6:0>), and eight data bits (D<7:0>). Every data
transaction requires 16 SCLK cycles to complete. If R/W = High (Read), the LXT6155
Transceiver outputs a data byte D<7:0> on the SDO pin. If R/W = Low (Write), the
LXT6155 Transceiver accepts a data byte D<7:0> on the SDI pin, while tristating SDO pin.
It is recommended in SW mode operation, the registers are first initialized by writing a “0”
to register #11 bit #6 (reset).
3.5.2.1 Serial Input Clock (SCLK)
This pin accepts a clock up to 4.096 MHz for data transactions between the LXT6155
Transceiver and the SCP bus. The LXT6155 Transceiver clocks SDO data out on the
falling edge, and clocks SDI data in on the rising edge of SCLK (see Figure 10 and
Figure 11).
3.5.2.2 Chip Select Input (CS)
On the falling edge of CS, the LXT6155 Transceiver starts data transactions. On the rising
edge of CS, the LXT6155 Transceiver stops data transaction. The CS pin must be held
Low for at least 16 SCLK cycles to complete a full Read or Write data transaction. If CS is
held Low less than 16 SCLK cycles, then the data transaction is ignored. At the end of
each Write/Read transaction, CS must return High, between the 16th and 17th clock
edges.
3.5.2.3 Serial Input Word (SDI)
Figure 11 shows the serial interface input data word structure. When the first input bit R/W
= Low, a Write operation is performed. The SCLK clocks data in on the SDI pin during the
second 8 bits D<7:0> of the Write operation. Data is clocked in on the rising edge of
SCLK. During the entire 16 bit operation, SDO remains tristated. Refer to Tab l e 6 on
page 27 through Table 23 on page 33 for control register descriptions.
3.5.2.4 Serial Output Word (SDO)
The serial output word structure is shown in Figure 10. When the first input bit R/W =
High, a Read operation is specified. SDO becomes active after A0 has been clocked in.
The first bit out of SDO changes the state of SDO from High-Z to a Low/High. SDO is
clocked out on the falling edge of SCLK.
Page 24Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.5 Operational Modes
Figure 9 Software Mode
Figure 10 Serial Data Output Word Structure (Read Cycle: R/W=High)
Figure 11 Serial Data Input Word Structure (Write Cycle: R/W = Low)
LXT6155
HWSEL
CS
SDI
SCLK
VCC
Chip select in
Serial data in
Serial clock in
SDO Serial data out
ADDR0, ADDR1 Device address settings
DON'T
CARE
A2 A1 A0 Don't Care
SCLK
SDI
CS
SDO High Impedance
Don't Care
A3
DON'T
CARE A6 A5 A4
R/W
=1
D7 D6 D5 D4 D3 D2 D1 D0
A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Don't Care
SCLK
SDI
CS
SDO High Impedance
Don't Care
A3A6 A5 A4
R/W
=0
Page 25Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.6 Serial System Interface
3.6 Serial System Interface
The serial interface permits the LXT6155 Transceiver to communicate with an Overhead
Termination device at 155.52 Mbps. Data and clock lines are differential 3.3 V LVPECL
signals. Refer to Figure 12.
3.7 Parallel System Interface
The parallel interface allows the LXT6155 Transceiver to communicate with the system
chip at 19.44 MHz, 8 bits per clock cycle. Data and clock lines are TTL compatible signals.
Refer to Figure 13.
Figure 12 Serial Interface
Figure 13 Parallel Interface
Nevada
Overhead
Terminator/ATM UNI
DATA_OUT<0:1>
CLK_OUT<0:1>
TPOS, TNEG
TSICLKP,
TSICLKN
4
DATA_IN<0:1>
4
RPOS, RNEG
CLK_IN<0:1>
RSOCLKP,
RSOCLKN
LOSCMIERR, LOS
4
CS
SDI
SDO
SCLK
Processor (optional)
Data I/O
Chip Select
Clock
LXT6155
9
Nevada
Overhead
Terminator/ATM UNI
Chip Select
Data I/O
Clock
CS
SDI
SDO
SCLK
Processor (optional)
DATA_IN<0:7>
BYTE_RCLK
RPOD<0:7>
RPOCLK
DATA_OUT<0:7>
BYTE_TCLK
TPID<0:7>
TPICLK
9
LOS, RIFP
LOS, ROFP/
CMIERR
2
4
Page 26Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
3.8 Loopback Modes
3.8 Loopback Modes
The LXT6155 Transceiver provides two loopback modes that can be executed in either
hardware or software mode: local loopback and remote loopback. In remote loopback
mode, the crystal reference clock is used to center the receive PLL to prevent illegal clock
looping.
3.8.1 Local Loopback
Local loopback routes the transmit line output signals (TTIP and TRING) back to the
receive line inputs (RTIP and RRING). In this mode, the line transmit output signals are
active (see Figure 14).
3.8.2 Remote Loopback
Remote loopback routes the receive system output signals, both data and clock, to the
transmit system input (see Figure 15 on page 26). In this mode, system outputs
(RPOD<7:0> or RPOS/RNEG) are still active.
Figure 14 Local Loopback
Figure 15 Remote Loopback
Line
Buffer
Equalizer
P/S
PLL S/P
TTIP0, TRING0,
TTIP1, TTIP1
RTIP, RRING
TPID <7:0>, TPICLK,
TPOS/TNEG, TSICLKP/N
RPOD <7:0>, RPOCLK,
RPOS/RNEG, RSOCLKP/N
Line
Buffer
Equalizer
P/S
S/PPLL
TPID <7:0>, TPICLK,
TPOS/TNEG, TSICLKP/N
RPOD <7:0>, RPOCLK,
RPOS/RNEG, RSOCLKP/N
TTIP0, TRING0,
TTIP1, TTIP1
RTIP, RRING
Page 27Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
4.0 Register Definitions
4.0 Register Definitions
There are a total of sixteen (16) control registers in the LXT6155 Transceiver addressed
by the lowest four address bits, A<3:0>. See Table 8 through Ta b l e 2 3 for details.
Table 6 Device Address/Control Byte
A<6:0> Description
A<6:5>
LXT6155 Transceiver Device Select. By using pins ADDR1 and ADDR0, up to four LXT6155
Transceiver devices can be addressed. For a successful data transaction to occur, A6 and A5 must
match the polarity settings on ADDR1 and ADDR0, respectively. Using these controls, up to four
LXT6155 Transceiver devices can be independently controlled.
A4 Not Used. Set to 0 during transactions.
A<3:0> LXT6155 Transceiver Register Map (see Table 7).
Table 7 LXT6155 Transceiver Register Map (A<3:0>)
Register # A<3:0> Register Name Type
0 0000 Primary Control R/W
1 0001 Transmit Control R/W
2 0010 Transmit PLL1 R/W
3 0011 Transmit PLL2 R/W
4 0100 Equalizer load R/W
5 0101 Equalizer/AGC R/W
6 0110 Matching filter2 R/W
70111 Slicer R/W
8 1000 Receive PLL 1 R/W
9 1001 Receive PLL 2 R/W
10 1010 Test R/W
11 1011 Reset and Bias R/W
12 1100 Receive Digital 1 R/W
13 1101 Receive Digital 2 R/W
14 1110 Status/Interrupt Control R/W
15 1111 Status/Interrupt Output Read-only
Page 28Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
4.0 Register Definitions
.
Table 8 Primary Control Register Settings, Register #0 (Address A<3:0>=0000)
Bit Default Mnemonic Description
70
lpbk_cntl
Local loopback:
0 = No loopback
1 = Activate local loopback
60
Remote loopback:
0 = No loopback
1 = Activate remote loopback
50 pll_ref
PLL/Equalizer reference clock control:
0 = Use TPICLK clock
1 = Use external crystal (XTALIN)
4 0 Not used
31
clk_inv
TPICLK polarity at system interface:
0 = TPID <7:0> sampled on the rising edge of TPICLK
1 = TPID <7:0> sampled on the falling edge of TPICLK
21
RPOCLK polarity at system interface:
0 = RPOD <7:0> transitions on the rising edge of RPOCLK
1 = RPOD <7:0> transitions on the falling edge of RPOCLK
1 0 sys_int
Systems interface mode selection:
0 = Serial mode
1 = Parallel 8-bit mode
0 0 media_sel
Media and line code selection:
0 = Fiber (NRZ)
1 = Coax (CMI)
Table 9 Tx Control, Register #1 (Address A<3:0>=0001)
Bit Default Mnemonic Description
7 1 tx_ena
Tx output enable:
0 = outputs disabled
1 = outputs active
6 1 tx_dig_reset
Tx digital circuitry reset. This can be used to minimize power
consumption when the device is disabled but not powered down. It
must be enabled when the device is active.
0 = reset
1 = active
5 0 Not for customer use.
4:1 0.1.1.1 tx_amp_trim
Transmit amplitude trim:
0000 = -21%
1111 = +24%
0 1 tx_clk_sw_ena
Tx clock detection enable. This must be disabled in SW mode when
pll_ref=0 (reg#0<5>=0)
0 = disable
1 = enable
Page 29Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
4.0 Register Definitions
.
.
Table 10 Transmit PLL1, Register #2 (Address A<3:0>=0010)
Bit Default Mnemonic Description
7:5 0.1.1 Not for customer use.
4:3 0.0 Not for customer use.
2:1 1.0 Not for customer use.
0 1 Not for customer use.
Table 11 Transmit PLL2, Register #3 (Address A<3:0>=0011)
Bit Default Mnemonic Description
7 1 Not for customer use.
6 1 Not for customer use.
5 1 Not for customer use.
4 0 Not for customer use.
3 0 Not for customer use.
2 0 Not for customer use.
1:0 1.0 Not for customer use.
Table 12 Equalizer Load, Register #4 (Address A<3:0>=0100)
Bit Default Mnemonic Description
7 0 Not for customer use.
6:2 0.0.0.0.0 Not for customer use.
1 0 Not for customer use.
0 1 Not for customer use.
Table 13 Equalizer & AGC, Register #5 (Address A<3:0>=0101) (Sheet 1 of 2)
Bit Default Mnemonic Description
7 1 eq_adapt_enab
Equalizer adaption enable:
0 = freeze adaption
1 = activate adaption
6:5 0.0 eq_adapt_gain
Equalizer adaption step size:
00 = 1
01 = 2
10 = 4
11 = 8
4 1 agc_adapt_ena
AGC adaption enable:
0 = freeze adaption
1 = activate adaption
Page 30Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
4.0 Register Definitions
3:2 0.0 agc_adapt_gain
AGC adaption step size:
00 = 1
01 = 2
10 = 4
11 = 8
1 1 afe_ena
Analog front end enable (also enables matching filter oscillator core):
0 = disabled (no bias)
1 = enabled
0 0 Not for customer use.
Table 14 Matching Filter 2, Register #6 (Address A<3:0>=0110)
Bit Default Mnemonic Description
7:5 0.1.0 Not for customer use.
4:3 1.0 Not for customer use.
2:1 0.0 Not for customer use.
0 1 Not for customer use.
1. This register is used in CMI (co-ax) mode only.
Table 15 Slicer, Register #7 (Address A<3:0>=0111)
Bit Default Mnemonic Description
7:4 0.0.0.0 Not for customer use.
3 1 Unused
2 0 Not for customer use.
1 0 Not for customer use.
0 0 Not for customer use.
Table 16 RxPLL 1, Register #8 (Address A<3:0>=1000)
Bit Default Mnemonic Description
7:5 0.1.1 Not for customer use.
4:3 0.0 Not for customer use.
2 0 Not for customer use
1 0 Unused
0 1 Not for customer use.
Table 13 Equalizer & AGC, Register #5 (Address A<3:0>=0101) (Sheet 2 of 2)
Bit Default Mnemonic Description
Page 31Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
4.0 Register Definitions
Table 17 Rx PLL 2, Register #9 (Address A<3:0>=1001)
Bit Default Mnemonic Description
7 1 Not for customer use.
6 1 Not for customer use.
5:3 0.1.1 freq_det_pw Frequency detector output pulse width ({1 to 8} * 6.43 ns)
2 1 Not for customer use.
1 1 Not for customer use.
0 1 Not for customer use.
Table 18 Test, Register #10 (Address A<3:0>=1010)
Bit Default Mnemonic Description
7 1 los_clk_ena
Enables Rx clock switching under LOS/LOCK condition:
0 = disable
1 = enable
6 0 Not for customer use.
5:2 0.0.0.0 Not for customer use.
1 1 Not for customer use.
0 0 Not for customer use.
Table 19 Register, Bias and Fuse Controls, Register #11 (Address A<3:0>=1011)
Bit Default Mnemonic Description
7 0 bias_pwrdn
Power down all bias generators. This bit can be used to power down
all the active analog circuitry on the device.
0= active
1=power down
6 1 reg_reset Register array reset, ignores remainder of transaction (active low).
This register is write only.
5:2 1.0.0.0 Not for customer use.
1:0 0.0 Not for customer use.
Page 32Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
4.0 Register Definitions
.
.
Table 20 Rx Digital 1, Register #12 (Address A<3:0>=1100)
Bit Default Mnemonic Description
70 los_format
Combine (logical OR) LOS/LOCK function onto LOS pin:
0 = disable
1 = enable
6 1 los_amp_trim
Amplitude LOS threshold trim:
0 = Reduced ALOS dessert threshold (-3db)
1 = Nominal ALOS thresholds
5:4 1.1 los_ena
LOS disable controls (amplitude LOS & digital LOS):
0 = disable
1 = enable
3 0 frame_ena
Byte align enable: If used, this feature must be enabled during system
configuration prior to applying data to the receiver. If this is not
possible see the Cortina Systems® LXT6155 155 Mbps SDH/SONET/
ATM Transceiver Application Note (document number 249280) for
further details.
0 = byte align disabled
1 = byte align enabled
2 0 Not for customer use.
1 0 Not for customer use.
0 1 Not for customer use.
Table 21 Rx Digital 2, Register #13 (Address A<3:0>=11001)
Bit Default Mnemonic Description
7 1 rx_dig_reset
Rx digital circuitry reset. This can be used to minimize power
consumption when the device is disabled but not powered down. It
must be enabled when the device is active
0 = reset
1 = normal operation
6:3 0.0.0.0 cnffp Frame pulse position. Refer to Figure 7 for usage.
2:1 1.0 los_tran_assert
D-LOS transition density count for assertion:
00 = 128
01 = 512
10 = 3112
11 = 4096
A-LOS assertion integration period:
00 = 2048 bits
01 = 512 bits
10 = 128 bits
11 = 32 bits
01
los_tran_deass
ert
D-LOS transition density count for de-assertion:
0 = 4/32
1 = SONET compliant1
A-LOS de-assertion integration period:
0 = 0 bits
1 = 128 bits
1. SONET compliant LOS de-assertion refers to Bellcore GR-253, pages 6-16 (section 6.2.1.1.1),
recommendation R6-54, LOS alarm is de-asserted (cleared) when two valid frame headers have been
received with no LOS events in the interval.
Page 33Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
4.0 Register Definitions
.
Table 22 Status Control, Register #14 (Address A<3:0>=1110)
Bit Default Mnemonic Description
7:4 0.0.0.0 Unused
3:0 0.0.0.0 stat_cont Status register (register #15) mux control (indirect addressing to
increase read space)
Table 23 Read-Only Register #15 (Address A<3:0>=1111)
Value of:
stat_cont
Status Output
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
00
(Status
register)
Analog
LOS
Digital
LOS
Tx clock
activity
alarm
status
SONET
OOF
signal
Unused3Rx PLL
frequency
lock alarm
Unused3
01 Not for customer use. Not for customer use.
02 Not for customer use. Not for customer use.
03
(Fuse
contents-
upper bits)
Not for customer use.
04
(Fuse
contents-
upper bits)
Not for customer use. Not for customer use.
051,2
(Interrupt
register)
Analog
LOS
interrupt
(los_ana_i)
Digital
LOS
interrupt
(los_dig_i)
Tx clock
alarm
interrupt
OOF
interrupt
(oof_i)
Unused3Unused3
Rx PLL
frequency
lock alarm
interrupt
(rx_lock_i)
CMI coding
error alarm
interrupts
(cmi_err_i)
064
(Device ID) MSB LSB
1. Bits 7:1 are cleared upon reading the status register (stat_cont = 00).
2. Bit 0 is cleared upon reading interrupt register (stat_cont = 05).
3. Ignore these bits during register transactions, unpredictable contents
4. Contains device revision number in hexadecimal notation.
Page 34Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
5.0 Application Information
5.0 Application Information
The following provides application examples of interfacing the LXT6155 Transceiver to the
line side and the overhead terminator side. Line side encoding schemes can be one of
two types: LVPECL NRZ encoded for a fiber optic module, or CMI encoded for a 75
coax cable. On the systems side, serial differential or parallel eight-bit modes can be
used. All signals are TTL level compatible, except serial interface signals (TPOS, TNEG,
TSICLKP, TSICLKN, RSOCLKP, RSOCLKN, RPOS, and RNEG) which are 3.3 V LVPECL
compatible.
5.1 Fiber Optic Module Interface
The LXT6155 Transceiver is designed to directly drive a 3.3 V LVPECL fiber optic
transceiver. The LVPECL drivers require the proper transmission line impedance to
correctly drive the fiber module. Signal traces should be 50 controlled impedance lines
and should be biased to the appropriate level. Please refer to Figure 16 on page 35 for the
proper interface.
To interface the LXT6155 Transceiver LVPECL signals to a 5 V PECL fiber optic module,
please refer to the Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
Application Note (document number 249280).
Page 35Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
5.2 Coax Interface
5.2 Coax Interface
As shown in Figure 17 on page 36, the LXT6155 Transceiver directly drives a transformer
connected to a 75 coaxial cable with up to 12.7 dB cable loss at 78 MHz. This is
approximately 110 m of RG59U. Please refer to manufacturers specifications for
maximum cable lengths. Output CMI waveform conform to the ITU G.703 specifications.
Rise and fall times are less than 2.0 ns.
Caution:
Be careful to decouple the system side center tap of the transformer, as shown in
Figure 17 on page 36. Also any additional protection against line overvoltage must be
applied symmetrically in order to preserve the balanced operation of the LXT6155
Transceiver input and output stage.
Figure 16 3.3 V LVPECL to 3.3 V LVPECL Interface
B0072-02
R2R1
R6R5
R8R7
VCC
RTIP
RAGND
RDGND
GND
TDGND
RAGND
SUB
52
53
42
35
11
50
57
TAVCC TAVCC
DVCC
RAVCC
5
RDVCC 41
PVCC 38
VCC 25
TDVCC 6
RAVCC 46
Well 38
49
48
4
47
51
50
Controlled
impedance
68 nF
330 nF
15k
1%
RRING
TTIP1 63
62
TRING1
RD
RD*
TD
TD*
ATST
TXISH
VBIAS
NC
RXISH
VCC
LXT6155
Transceiver
3.3V
Fiber Optic
Module
R4R3
Notes:
1) R1, R2, R5, R6 = 127 , 1%
2) R3, R4, R7, R8 = 82.5 , 1%
3) Transmission lines should be 50 , controlled impedance strip lines.
Keep length as short as possible.
4) VCC = 3.3V for both resistor network, and Fiber Optic Module.
Page 36Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
5.2 Coax Interface
.
Figure 17 75 Ohm Coax Cable Interface
LL
E
W
CCVAR
CCV
DT
CC
V
CCV
P
CC
VDR
CCVAT
CCVA
T
BU
S
DNG
AR
DNG
DT
DN
G
DNGDR
DN
GAR
DNGT
DNGAT
58
46
6
25
38
41
5
64
57
50
1
1
35
42
53
59
3
RAVCC
VCC
DVCCTAV C C
RTIP
RXISH
TXISH
VBIAS
ATST
NC
68nF
330nF
1.0nF
1.0nF
1.0 F
1.0 F
1CT:1
1CT:1
15k
1%
75
1%
37.5
1%
37.5
1%
TTIP1
RRING
LXT6155
Transceiver
TRING1
52
75
Strip Line
37.5
Strip Line
37.5
Strip Line
75 Coax
75 Coax
49
48
4
47 63
51
62
Table 24 Transformer Specifications
Parameter Min Typ Max Unit Notes
Transmission, S12
-3 dB Low 10 MHz
-3 dB High 320 MHz
Return Loss, S11
-20 dB Low 5 MHz
-20 dB High 250 MHz
In-band Loss 0.5 dB 30 MHz ~ 300 MHz
Common mode rejection -10 dB DC~250 MHz
Cross-talk in dual packages -40 dB DC~156 MHz
Turns ratio 0.97 1.0 1.03
Page 37Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
5.2 Coax Interface
Table 25 Crystal Specifications
Parameter Min Typ Max Unit Notes
Center frequency 19.44 MHz
Freq tolerance -20 20 ppm At 25 C
Temperature drift -20 20 ppm -40 ~ 85 C
Aging -10 10 ppm First 10 years
Mode Fundamental
Shunt capacitance 5 pF
Equivalent resistance 8.4 40
Temperature Range -40 85 C
Page 38Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
6.0 Test Specifications
Information in Table 26 through Table 36 on page 47 and Figure 18 on page 39 through
Figure 29 on page 49 represent the performance specifications of the LXT6155
Transceiver and are guaranteed by test, except as noted by design.
Table 26 Absolute Maximum Ratings
Parameter Sym Min Max Unit
DC supply (reference to GND) Vcc 4.0 V
Input voltage, TTL pins Vin (TTL) GND -0.3 5.5 V
Input voltage, other pins Vin GND -0.3 VCC + 0.3 V
Input current, any pin Iin -10 25 mA
Storage temperature Tstg -65 150 °C
Caution:
Operating at or beyond these limits may result in damage to the device.
Normal operation not guaranteed at these extremes.
Table 27 Recommended Operating Conditions
Parameter Sym Min Typ Max Unit
DC supply (referenced to GND) Vcc 3.0 3.3 3.6 V
Case operating temperature Tc -40 25 85 °C
Total current consumption
serial/fiber
serial/coax
parallel/fiber
parallel/coax
———
150
210
100
150
mA
Table 28 DC Electrical Characteristics (Vcc = 3.0 V to 3.6 V; TA = -40 °C to 85 °C)
(Sheet 1 of 2)
Parameter Sym Min Typ1Max Unit Test
Conditions
High level input voltage (LVPECL) Vih1 Vcc-1.03 Vcc-0.88 V
Low level input voltage (LVPECL) Vil1 Vcc-1.81 Vcc-1.62 V
Differential input voltage (LVPECL) Vidiff 0.1 V
High level output voltage (LVPECL) Voh1 Vcc-1.03 Vcc-0.95 Vcc-0.88 V 50 pulled
down to VCC -
2.0 V.
Low level output voltage (LVPECL) Vol1 Vcc-1.81 Vcc-1.70 Vcc-1.62 V
High level input voltage (TTL)2Vih2 2.0 V
Low level input voltage (TTL)2Vil2 0.8 V
High level output voltage (TTL) Voh2 2.4 V IOH = 4 mA
1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to
production testing.
2. These specs are also valid for XTALIN when using an external clock.
Page 39Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Low level output voltage (TTL) Vol2 0.4 V IOL = 4 mA
Input leakage current, low (TTL) Ill 10 A
Input leakage current, high (TTL) Ilh 10 A
Table 29 Transmit Timing Characteristics
Parameter Sym Min Typ1Max Unit Test Conditions
Transmit serial input clock frequency 155.52 MHz
Transmit serial input clock frequency error -20 +20 ppm Compliant with GR253
Transmit serial input clock duty cycle 45 55 %
Transmit serial input clock and data rise /
fall time2 1.2 ns 20% - 80%
Transmit parallel input clock frequency 19.44 MHz
Transmit parallel input clock frequency
error -20 +20 ppm
Transmit parallel input clock duty cycle 45 55 %
Transmit parallel input data & clock rise/
fall time2—210ns
TPICLK to TPID<0:7> hold time Thtpid 3 ns
TPICLK to TPID<0:7> setup time Tstpid 2 ns
TSICLKP(TSICLKN) to TPOS (TNEG)
setup time Tstpos 1.25 ns
TSICLKP (TSICLKN) to TPOS (TNEG)
hold time Thtpos 0.75 ns
1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to
production testing.
2. Not production tested, guaranteed by design and other correlation factors.
Figure 18 Transmit Parallel Input Data Timing
Table 28 DC Electrical Characteristics (Vcc = 3.0 V to 3.6 V; TA = -40 °C to 85 °C)
(Sheet 2 of 2)
Parameter Sym Min Typ1Max Unit Test
Conditions
1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to
production testing.
2. These specs are also valid for XTALIN when using an external clock.
Thtpid
TPICLK*
TPID<0:7>
Tstpid
*This shows timing in HW mode. In SW mode (HWSEL=1) this clock polarity can be inverted.
Page 40Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Figure 19 Transmit Serial Input Data Timing
Table 30 Transmit Analog Characteristics
Parameters Note Min Typ1Max Unit Test Conditions
Transmit jitter generation2
(Intrinsic jitter SONET spec) 12 kHz - 1.3 MHz
——0.1UIpp
PRBS(23) pattern.
Transmit input data and
clock have no input jitter.
Receive line input is all
zeros.
0.01 UIrm
s
Transmit jitter generation2
(Intrinsic jitter SDH spec)
500 Hz - 1.3 MHz 1.5 UIpp
65 kHz - 1.3 MHz 0.075 UIpp
Transmit jitter transfer
function peaking2DC - 230 kHz 0.4 dB PRBS(23) data. Input jitter
as shown in Figure 26.
Synthesizer capture range Fcap -20 +20 ppm
parallel modeSynthesizer track range Ftrack -20 +20 ppm
Synthesizer lock time Tlock 100 s
Transmit output rise and fall
times - CMI signals
TTIP0
TRING0 ——2.2ns
10% - 90%
0 m cable length
Transmit output amplitude -
CMI signals
TTIP0
TRING0 0.9 1.1 Vpp
TTIP0/TRING0
output impedance Zout 1.6 2.0 k
1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to
production testing.
2. Not production tested, guaranteed by design and other correlation factors.
Thtpos
TSICLKP
TPOS
TNEG
Tstpos
TSICLKN
Page 41Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Table 31 Receive Timing Characteristics
Parameter Sym Min Typ1Max Unit Test Conditions
Receive serial output clock
frequency
RSOCLKp
RSOCLKn 155.5
2—MHz
Receive serial output clock
duty cycle RSOCLKdc 45 55 %
Receive serial output clock
and data rise/fall time2 1.2 ns 20% - 80%.
RSOCLKP/RSOCLKN to
RPOS/RNEG propagation
delay
RSOCLKpd -0.5 1.5 ns
Receive parallel output clock
frequency RPOCLK 19.44 MHz
Receive parallel output clock
duty cycle RPOCPdc 45 55 %
Receive parallel output data
& clock rise/fall time RPOCLKt 2 5 ns
RPOCLK to RPOD<0:7>
propagation delay RPOCLKpd 0 7 ns
RPOCLK to ROFP
propagation delay ROFPpd 0 4 ns
Reference Input Clock into
XTALIN pin (TTL) REFCLK 19.44 MHz The REFCLK replaces the
crystal
Reference Clock Offset from
Nominal -100 100 ppm
1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to
production testing.
2. Not production tested, guaranteed by design and other correlation factors.
Figure 20 Receive Serial Output Data Timing
RSOCLKN
RPOS
RNEG
RSOCLKP
RSOCLKPD
Page 42Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Figure 21 Receive Parallel Output Data Timing
1. Signals shown in HW Mode. In SW Mode (HWSEL=1), the RPOCLK polarity can be inverted. Refer to
Table 8 on page 28 for details.
Table 32 Receive Analog Characteristics (Sheet 1 of 2)
Parameter Note Min Typ1Max Unit Test Conditions
End to end loss budget
(coax)1—15dB
BER=1E-12. PRBS (23)
data. CMI encoded. Input
white noise = 5 mV RMS
max.
LOS - fiber
Assert 20 sec No data transition. Default
LOS setting.
De-assert 187.5 sec No LOS events. Default
LOS settings.
LOS Thresholds - Coax
Assert 18 dB Attenuation measured at
78 MHz, CMI, 75 load.
12.7 dB cable loss plus
remaining flat loss.
De-assert 17 dB
LOS hysteresis - coax HYS 1.0 4.0 dB
Measured from the level
where LOS is asserted.
PRBS(23) data.
Receive jitter generation2
(intrinsic jitter SONET spec)
12 kHz -
1.3 MHz
0.01 UIrm
s
CMI encoded PRBS(23) at
RTIP/RRING with no data
jitter. Transmit input = all
zeros Refer to Figure 27
and Ta b l e 3 5 .
——0.1UIpp
Receive jitter generation2
(intrinsic jitter SDH spec)
500 Hz -
1.3 MHz ——0.5UIpp
65 kHz -
1.3 MHz 0.075 UIpp
Receive jitter transfer
peaking2DC - 230 kHz 0.12 dB
PRBS(23) Data. jitter
transfer fuction shown in
Figure 28.
Receive jitter tolerance2
0.1Hz - 19.3Hz 39 UIpp
BER=1E-10. Input jitter as
the max. tolerance curve
shown in Figure 26
500 Hz -
6.5 kHz 1.5 UIpp
65 kHz - 0.15 UIpp
1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to
production testing.
2. Not production tested, guaranteed by design and other correlation factors.
RPOCLK1
RPOD<0:7>
ROFP
RPOCLKPD
ROFPPD
Page 43Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
PLL nominal center
frequency Fnom 155.52 MHz
PLL capture range Fcap -20 +20 ppm
PLL track range Ftrack -20 +20 ppm
PLL lock time Tlock 100 s
PRBS(23) pattern, from
data applied at RTIP/
RRING. Device in fiber
optic mode.
Equalizer adaptation time 500 bits From data applied
Line input impedance
(RTIP and RRING) RIN 4 k Differential resistance
Table 33 Serial Control Timing
Parameter Sym Min Typ Max Unit Test Conditions1
Rise/Fall time - All TTL outputs tRF 25 ns Load 1.6 mA, 50 pF
SDI to SCLK setup time tDC 5 ns
SCLK to SDI hold time tCDH 5 ns
SCLK low time tCL 120 ns
SCLK high time tCH 120 ns
SCLK rise and fall time tR, tF 25 ns
CS to SCLK setup time tCC 5 ns
SCLK to CS hold time tCCH 5 ns
CS inactive time tCWH 5 ns
SCLK to SDO valid tCDV 0 20 ns
SCLK falling edge to SDO high Z tCDZ 0 20 ns
CS rising edge to SDO high Z tCZ 0 20 ns
1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to
production testing.
Table 32 Receive Analog Characteristics (Sheet 2 of 2)
Parameter Note Min Typ1Max Unit Test Conditions
1. Typical values are at 25 °C and 3.3 V. They are for design aid only; not guaranteed and not subject to
production testing.
2. Not production tested, guaranteed by design and other correlation factors.
Page 44Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Figure 22 Microprocessor Input Timing Diagram
Figure 23 Microprocessor Output Timing Diagram
CS
tCWH
tCCH
tCL
tCH
tCC
SCLK
SDI
tDC
R/W
tCDH
CONTROL BYTE DATA BYTE
SCLK
tCDZ
CS
High Z
tCDV
SDO
tCZ
High Z
Page 45Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Figure 24 CMI Encoded Zero per G.703 and STS-3
1 ns
V
1 ns 1 ns
1 ns
1 ns1 ns
T1818930-92
Positive transition at mid-unit interval
N
egative transitions
(Note 1)
(Note 1)(Note 1)
N
ominal
pulse
N
ominal
zero
level
(Note 2)
(Note 1)
0.60
0.55
0.50
0.45
0.40
0.05
0.05
0.40
0.45
0.55
0.60
0.50
0.1 ns 0.1 ns
0.35 ns 0.35 ns 0.1 ns
1.608 ns 1.608 ns
0.1 ns
T = 6.43 ns
1.608 ns
1.608 ns
Page 46Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Note:
The maximum “steady state” amplitude should not exceed the 0.55 V limit. Overshoots
and other transients are permitted to fall into the dotted area.
Note:
With the signal applied, the vertical position of the trace can be adjusted with the objective
of meeting the limits of the masks. Any such adjustment should be the same for both
masks and should not exceed 0.05 V.
Figure 25 CMI Encoded One per G.703 and STS-3
Table 34 Jitter Tolerance Template (in UIpp)
Frequency OC3 STM1
10 Hz 15
19.3 Hz 39
30 Hz 15
300 Hz 1.5
500 Hz 1.5
6.5 kHz 1.5 1.5
65 kHz 0.15 0.15
1.3 MHz 0.15 0.15
1 ns
V
1 ns
1 ns
T1818940-92
1 ns
Positive transitionNegative transition
(Note 1)
(Note 1)(Note 1)
Nominal
pulse
Nominal
zero
level
(Note 2)
(Note 4)
0.60
0.55
0.50
0.45
0.40
0.05
– 0.05
– 0.40
– 0.45
– 0.55
– 0.60
– 0.50
0.1 ns0.1 ns
3.215 ns 3.215 ns
1.2 ns 1.2 ns
1.608 ns 1.608 ns
0.5 ns 0.5 ns
T = 6.43 ns
Page 47Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Figure 26 Jitter Tolerance (template Values from Table 34)
Table 35 Jitter Generation
Signal f11f21Measured Jitter
OC3 12kHz 1.3MHz
0.01 UI rms
0.1 UIpp
STM1
500 Hz 1.3 MHz 1.5 UIpp
65 kHz 1.3 MHz 0.075 UIpp
1. See Figure 27 on page 48 for definition of cut-off
frequencies.
Table 36 Jitter Transfer
Signal f11A11Unit
OC3 230 kHz 0.4 dB
STM1 230 kHz 0.4 dB
1. See Figure 28 on page 48 for definition of cut-off
frequencies and gain.
0.1
1
10
100
1Hz 10Hz 100Hz 1KHz 10KHz 100KHz 1MHz 10MHz
Frequency
Input Jitter [UI(pk-pk)]
Measured Data
OC3 Template
STM1 Template
Page 48Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Note:
Measured with the device in remote loopback. Data reflects total jitter in both Tx and Rx
path.
Figure 27 Jitter Generation Measurement Filter Characteristics
Figure 28 Typical Coax Jitter Transfer
-40
-30
-20
-10
0
10
1 10 100 1000 10000 100000 1000000 1000000
0
Frequency [Hz]
Gain
Coax mode
LXT6155 spec.
ITU G.825 template
A1
f1
Page 49Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
6.0 Test Specifications
Note:
Measured with the device in remote loopback. Data reflects total jitter in both Tx and Rx
path.
Figure 29 Typical Fiber Jitter Transfer
B0074-02
1
-40
-30
-20
-10
0
A1
f1
10
10 100
Frequency (Hz)
Gain
1000 10000 100000 1000000 1E+07
ITU G.825 spec.
LXT6155 ATM Transceiver spec.
Fiber mode
Page 50Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
7.0 Mechanical Specifications
7.0 Mechanical Specifications
Figure 30 LXT6155 Transceiver LE Package Specification
Table 37 LXT6155 Transceiver LE Package Specification (64-Pin Low-Profile Quad Flat
Pack)
Dim
Inches Millimeters
Min Max Min Max
A .063 1.60
A1 .002 .006 0.05 0.15
A2 .053 .057 1.35 1.45
B .007 .011 0.17 0.27
D 0.472 BSC112.00 BSC1
D1 0.394 BSC110.00 BSC1
E 0.472 BSC112.00 BSC1
E1 0.394 BSC110.00 BSC1
e 0.020 BSC10.50 BSC1
L 0.018 0.030 0.45 0.75
L1 0.039 REF 1.00 REF
3 1 13° 1 13°
q
1. BSC—Basic Spacing between Centers
D
D1
E
E1
for sides with even
number of pins
e/2
for sides with odd
number of pins
e
A1
A2
L
A
B
L1
3
3
Page 51
End of Document
Cortina Systems® LXT6155 155 Mbps SDH/SONET/ATM Transceiver
LXT6155 Transceiver
Datasheet
249612, Revision 7.0
14 Feburary 2007
Contact Information
Contact Information
Cortina Systems, Inc.
840 W. California Ave
Sunnyvale, CA 94086
408-481-2300
sales@cortina-systems.com
apps@cortina-systems.com
www.cortina-systems.com
This document contains information proprietary to Cortina Systems, Inc. Any use or disclosure, in whole or in part, of
this information to any unauthorized party, for any purposes other than that for which it is provided is expressly
prohibited except as authorized by Cortina Systems, Inc. in writing. Cortina Systems, Inc. reserves its rights to pursue
both civil and criminal penalties for copying or disclosure of this material without authorization.
*Other names and brands may be claimed as the property of others.
© Cortina Systems, Inc. 2007